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Abstract

This paper deals with optimal control applied to one of the most
crucial and challenging problems in Air Traffic Management, that of
aircraft conflict avoidance. We propose an optimal control model
where aircraft separation is achieved by changing the speeds of air-
craft, and the integral over a time window of their squared accelera-
tions is minimized. Pairwise aircraft separation constraints constitute
the main difficulties to be handled. We propose an original decompo-
sition of the problem into three zones, in such a way that in two of
them no conflict occurs. Then, using the Pontryagin maximum prin-
ciple, two new formulations of the original optimal control problem
are proposed and solved via direct shooting methods. Thanks to our
decomposition, these numerical methods are applied on subproblems
having reduced size with respect to the original one, thus improving
the efficiency of the solution process. Thirty problem instances are nu-
merically solved, showing the effectiveness of the proposed approaches.
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1 Introduction

The problem of aircraft conflict avoidance during en-route flights constitutes one of
the most crucial and challenging problems in Air Traffic Management (ATM) and
Control. It consists in ensuring that aircraft during their flight follow trajectories
that respect minimal pairwise distances of separation, horizontally and vertically.
When a loss of separation occurs, aircraft are said to be in conflict, and suitable
separation maneuvers have to be issued to separate them. This is currently done
by air traffic controllers, that continuously monitor some portions of the airspace,
and, if a potential conflict is detected, give instruction to separate aircraft. This
is crucial to ensure flight safety, and is more and more challenging due to the
air traffic growth on the world scale. Increasing automation is therefore needed
in ATM, that in turns requires the development of suitable mathematical models
and efficient and reliable algorithms.

As one usually aims at solving the problem minimizing the deviation with re-
spect to the original aircraft configuration and flight plans, aircraft conflict avoid-
ance can naturally be modelled as an optimization or an optimal control problem.
In this paper, we propose mathematical models and resolution methods based on
optimal control.

Standard separation norms for commercial en-route aircraft are 5NM horizon-
tally and 1000ft vertically (1NM (nautical mile) = 1852m; 1ft (feet) = 0.3048m).
This defines a cylindric protection volume centered on every aircraft, which is then
separated from the others if there is no other aircraft entering its protection vol-
ume. When aircraft are conflicting, they can be separated deviating for example
their heading angle, their altitude or their speed. The first kind of maneuver is
currently the most used in practice by air traffic controllers. Aircraft speed varia-
tions, on the other hand, are considered very promising, especially in the context
of the so-called subliminal speed control [6], consisting in modifying the aircraft
speeds within a very small range around their original speeds, without informing
air traffic controllers. A review of conflict detection and resolution approaches up
to the year 2000 is provided in [19]. A more recent discussion about modelling
issues is provided in [8].

Local continuous optimization has been proposed in [21]. Mixed-integer opti-
mization approaches date back to 2002, with linear models proposed in [20, 23];
more recently, nonlinear models are attracting a growing attention, see, e.g.,
[1, 2, 9, 10].
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Optimal control arises as a natural framework for the problem at hand, as well
as for the close problem of trajectory planning, as it allows one to naturally model
aircraft dynamics. Clements [13] proposes an optimal control for a minimum-
time flight trajectory to a specified fly-to point. The same author in [14] presents
a formulation where the control variable constraint is the maximum acceptable
aircraft turn rate and the state variable constraint is defined in terms of the radius
of the protected zone of conflicting aircraft. Bicchi and Pallottino [3] propose an
optimal control model where aircraft velocities are considered constant and again
the time for aircraft to go through given trajectory waypoints is minimized. The
minimum-time aircraft trajectory problem is also studied in [24], where the optimal
controls are found by either maximizing or minimizing a modified Hamiltonian.

In [16], turn and speed changes are considered as controls and some numerical
results are obtained, that however show the limitation of the proposed approach
in terms of numerical solutions.

Optimal control models in the considered framework are indeed rather difficult
to solve. Shooting methods are usually applied (see [5] for a recent survey). Direct
shooting methods, based on time discretization, discretize both control and states
variables using numerical integrators (of, e.g., Euler or Runge-Kutta type) to ap-
proximate the dynamic system. This leads to solve a finite dimensional nonlinear
programming (NLP) problem. These methods yield possibly large-scale problems,
and in addition suffer of approximation errors due to the time discretization. In
contrast, methods based on the Pontryagin Maximum Principle (PMP) [22], map
the variables at the initial time to their corresponding values at the final time,
that leads to a finite dimensional problem with matching end-point conditions.
In this case, there is no time-discretization and a high solution accuracy can be
achieved. Nevertheless, these methods suffer of lack of a priori informations about
the solution structure, and the initialization of the adjoint (costate) variables is
in general difficult. To benefit of the advantages of the two classes of methods, a
hybrid approach has been suggested (see, e.g. [7]), where the direct and indirect
multiple shooting are combined in such a way that the numerical approximation
computed by the direct method is used to initialize the adjoint variables in the
indirect shooting method.

In this paper, we propose to use the direct shooting method on new formu-
lations based on the PMP through an original decomposition of the addressed
problem. We observe that in aircraft conflict avoidance, we can identify a sub-
problem where aircraft are potentially conflicting, and so inequality constraints on
state variables for pairwise separation have to be applied, and two other subprob-
lems where this kind of constraints do not need to be verified, because aircraft are
not yet in the conflict zone or have already passed such a zone (and so, they are
separated by construction).
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We propose an optimal control model for aircraft conflict avoidance based on
speed regulation, where aircraft accelerations are the commands and where the
cost function is the integral on the time window of the squared accelerations.
Then, we propose a decomposition of the overall problem in subproblems, that
we call prezone, zone, and postzone. Using the PMP on the prezone and on the
postzone, we derive analytical solutions. This leads to two new formulations of the
original optimal control problem, where the number of variables and constraints in
the NLPs obtained by applying direct shooting methods is strongly reduced. We
show that these two original resolution strategies allow us to obtain very promising
results on problem instances containing up to 13 aircraft.

This paper is organized as follows. In Section 2, we present an optimal control
model based on speed changes for aircraft conflict avoidance. In Section 3, we pro-
pose our original decomposition of the addressed problem. The main contribution
of this paper is presented in Sections 4, 5 and 6, where we present the formula-
tions of the three subproblems, their properties in terms of existence of solutions,
and their numerical solution via the application of the PMP or the direct shoot-
ing method. In Section 7, we present numerical results validating the proposed
approach on a set of 30 problem instances. Section 8 concludes the paper.

2 Optimal control model through accelera-

tion command

In this section, we present an optimal control model to achieve aircraft separation
by only modifying their speeds. This model uses the accelerations of the aircraft as
commands of the dynamical system, keeping the trajectories unchanged in terms
of headings.

Let us denote xi and vi the state variables representing respectively the position
and the velocity of aircraft i ∈ I := {1, ...,n}, where n is the number of aircraft.
The acceleration ui, for each aircraft i, is the command of the system. Aircraft
are considered during their en-route cruise phase and expected to be at the same
altitude (they are assigned the same flight level), thus we deal with a planar
configuration. The velocity vi and so the acceleration ui are with values in R, and
the position xi is with values in R2 with ẋi(t) = vi(t)di where di ∈ R2 is fixed. For
each aircraft i, the velocity vi and the acceleration ui are bounded; i.e., belonging
to the interval [vi, vi] and [ui, ui] respectively.

We consider a tactical en-route phase of flights, that means that an air sector
is monitored during a relatively short time window [t0, tf ], and aircraft separation
maneuvers are issued in order to have aircraft separated over all this time window.
The air sector and the time window can be easily considered in a bijection, i.e., the
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air sector is defined by the positions xi(t0) and xj(tf ) of all aircraft i and j. Thus,
the initial and the final times (t0 and tf ) are fixed and identical for all aircraft.
Let D be the minimum required horizontal separation distance between each pair
of aircraft and di the direction (heading) of the ith aircraft.

The position x(t) of an aircraft at time t in a planar configuration is to be
considered in cartesian coordinates x(t) := (xX(t), xY (t))T ,∀t ∈ [t0, tf ]. Note that
the controls ui are searched in a set of square integrable functions over [t0, tf ].
Moreover, bound constraints on the controls are directly added in the following
problems.

The mathematical model is the following:

(P)



min
u,v,x

∑
i∈I

∫ tf

t0

u2
i (t)dt

s.t.

v̇i(t) = ui(t) ∀t ∈ [t0, tf ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [t0, tf ], ∀i ∈ I

ui ≤ ui(t) ≤ ui ∀t ∈ [t0, tf ], ∀i ∈ I

vi ≤ vi(t) ≤ vi ∀t ∈ [t0, tf ], ∀i ∈ I

xi(t0) = x0
i , vi(t0) = v0

i ∀i ∈ I

xi(tf ) free , vi(tf ) = vfi ∀i ∈ I

‖xi(t)− xj(t)‖2 ≥ D2 ∀t ∈ [t0, tf ],

∀(i, j) ∈ I2, i < j

We choose to minimize a quadratic energy cost function depending on speed
variations. This criterion takes into account the speed changes of all aircraft by
acceleration or deceleration. Note that problem (P) is twice continuously differen-
tiable, with a convex criterion (strictly convex if only u is considered as variable).
The state equations, depending on the state variables v and x, are all linear. The
main difficulties in the solution of (P) are related to the tight bound constraints on
the state variables vi(.) (specially in the case of subliminal velocity control), and
to the concave inequality constraints expressing the pairwise aircraft separation.

To solve an optimal control problem, one can derive necessary optimality condi-
tions through the PMP. The solution can then be obtained numerically by applying
an indirect shooting technique. However, problem (P) owns constraints involving
state variables that makes it difficult to apply such an indirect method. As an
alternative to solve problem (P), one can apply direct shooting methods. They
are based on the discretization of the time window, yielding a large-scale nonlinear
(continuous) optimization problem (NLP), that can be solved by standard local
optimization solvers. Note that discretizing problem (P), the number of control
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variables amounts to n×p, where n is the number of aircraft and p is the number of
discretization points, and the number of separation constraints amounts to n(n−1)p

2
respectively. As an example, let us consider a conflict avoidance problem with only
three aircraft, flying during 1h discretized by using steps of 15′′. This yields a non-
linear problem with 720 (n = 3 and p = 240) control variables, 720 separation
inequality constraints (plus 1440 inequality constraints on the velocity bounds).

In the following, we show that problem (P) can be decomposed into three
subproblems in such a way that the PMP can be relatively easily applied to two
of them. This implies that the direct shooting method is applied to the remaining
subproblem. In this way, the size of the NLP to be solved is drastically reduced,
improving the efficiency of the solution process. In the next sections, we present
our decomposition method of problem (P) into three parts: prezone, zone and
postzone, such that no conflict can occur in the prezone and in the postzone, and
we propose a solution approach for each of these subproblems.

3 Decomposing the problem into zones

Given the aircraft predicted planar (straight-line) trajectories, one can check inter-
sections of these trajectories so as to identify spatial regions where the separation
constraints must be actually checked. The corresponding time window where the
separation constraints have to be checked can then be identified as well. This is
the basis of the original strategy of resolution of the problem at hand, proposed
in this paper. In the following, we discuss the decomposition of the problem.

prezone zone postzone
D D

xijin

xjiin xijout

xjiout

•

•

•

•

aircraft j

aircraft i

Figure 1: Spatial decomposition for two aircraft.

Let Si define the line segment corresponding to all the positions xi(t) of aircraft
i, for all time t in the time window [t0, tf ]. Two aircraft i and j are in conflict when
some points on Si have a distance less than or equal to D to another point on Sj ,
and reciprocally (see Fig. 1). We can thus easily identify a planar region where i
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and j are in conflict. For each pair of aircraft, we will denote this planar region by
zone. The zone is characterized by the fact that no conflict occurs outside it, while
inside it conflicts may occur, and so separation constraints have to be imposed.
We define prezone the region preceding the zone, and respectively postzone the
remaining region. This is illustrated in Fig. 1.

In the remaining of this section, we present the way a zone is identified in
practice. Let us consider aircraft i and j. We first have to determine their entrance
and exit points xijin and xijout, if they exist. This means that we have to check if
Si and Sj own points at a distance less than or equal to D. Let us denote by
(Di) : aix + biy + ci = 0 the equation of the line supporting Si; this defines
the equation of the trajectory of aircraft i and so ai = dYi , bi = −dXi , and ci =
−aixXi (t0)−bixYi (t0). For i and j following trajectories (Di) and (Dj) respectively,

to determine the points xijin and xijout (if they exist), we use the fact that xijin and

xijout must belong to (Di), for aircraft i, and have distance from (Dj) equal to D
(reciprocally for aircraft j). This yields the following two equations:

aix+ biy + ci = 0

|ajx+ bjy + cj |√
a2
j + b2j

= D

that give two distinct but similar linear systems:{
aix+ biy = −ci
ajx+ bjy = D

√
a2
j + b2j − cj

{
aix+ biy = −ci
ajx+ bjy = −D

√
a2
j + b2j − cj

Denoting by (Ki,Kj)
T the second right hand side of the first system (for the second

one, we just have to change a sign in Kj), we obtain:

x =
bjKi − biKj

aibj − ajbi
and y =

ajKi − aiKj

ajbi − aibj
.

Depending on the values of Kj , these yield two distinct points which are xijin and

xijout. We just have to check which point is in and which one is out, and also if they
exist and belong to Si. Note that this computation, while being easy, has to be
done twice for each pair of aircraft. This therefore yields n×(n−1) computations.

Once entry and exit points xijin and xijout are known, we can determine the time
zone for an aircraft i, i.e., the time window corresponding to the zone. We denote
it by [tiin, t

i
out] (see Fig. 2). We have to solve the following equations: ẋi(t) = vidi

and ẋi(t) = vidi to obtain tiin and tiout respectively. Considering ẋi(t) = vidi, one
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has xi(t) = vidit+K1, where K1 := xi(t0)− vidit0 and thus

tijin :=



(xijin)X −K1

vidXi
, if dXi 6= 0

(xijin)Y −K1

vidYi
, else.

Considering now the second equation, we obtain similarly:

tijout :=



(xijout)
X −K2

vidXi
, if dXi 6= 0

(xijout)
Y −K2

vidYi
, else.

where K2 := xi(t0)− vidit0.

tijin

tjiin

tijout

tjiout time

aircraft j

aircraft i

tZ tZ

prezone zone postzone

Figure 2: Decomposition in time zones for all aircraft. Time tin and tout are shown for aircraft i and
j.

Remark that for i and j, if tijin 6= tjiin, we take the maximum value, and similarly

for tijout 6= tjiout. Finally, we can define the general time zone [tZ , tZ ] as:

tZ := min
i∈I

min
j∈I,j>i

max{tijin, t
ji
in} and tZ := max

i∈I
max
j∈I,j>i

min{tijout, t
ji
out} (1)

that so requires a computational complexity of O(n2). The general time zone,
illustrated in Fig. 2, corresponds to a unique time window for all the n aircraft
and it is the only window where aircraft separation constraints have to be satisfied.
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4 Applying the PMP on the postzone

In this section, we focus on the postzone to derive necessary optimality conditions
using the PMP.

From a temporal point of view, the postzone corresponds to [tZ , tf ], i.e., from
the end of the zone until the final time. As conflicts occur only in the zone,
starting from tZ , there is no more conflict between the aircraft. Thus, the aircraft
separation constraints can be discarded yielding the following problem:

(Ppostzone)



min
u,v,x

∑
i∈I

∫ tf

tZ

u2
i (t)dt

s.t.

v̇i(t) = ui(t) ∀t ∈ [tZ , tf ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [tZ , tf ], ∀i ∈ I

ui ≤ ui(t) ≤ ui ∀t ∈ [tZ , tf ], ∀i ∈ I

vi ≤ vi(t) ≤ vi ∀t ∈ [tZ , tf ], ∀i ∈ I

xi(tZ) = xtZi , vi(tZ) = vtZi ∀i ∈ I

xi(tf ) free , vi(tf ) = vfi ∀i ∈ I

Remark 1 The fixed values of the velocity at times tZ and tf , respectively vtZi and

vfi , have to be in the interval [vi, vi], otherwise it would not be any point satisfying
the constraints of problem (Ppostzone). In the following, we suppose that the values

of vtZi and vfi are in the interval.

The following two propositions provide some properties about the solution of prob-
lem (Ppostzone).

Proposition 1 (Conditions on the existence of a realizable solution) A re-
alizable solution of problem (Ppostzone) exists if and only if

ui ≤
vfi − v

tZ
i

tf − tZ
≤ ui, ∀i ∈ I.

Proof 1 Let ũ be a realizable control, that implies ui ≤ ũi(t) ≤ ui ∀t ∈ [tZ , tf ], ∀i ∈
I.
By using the monotonicity property of the integral, one has:∫ tf

tZ

ui ≤
∫ tf

tZ

ũi(t)dt ≤
∫ tf

tZ

ui ∀i ∈ I.
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Hence, denoting by ṽi the velocity corresponding to the acceleration ũi, one obtains

(tf − tZ)× ui ≤ ṽi(tf )− ṽi(tZ) ≤ (tf − tZ)× ui ∀t ∈ [tZ , tf ], ∀i ∈ I.

The result follows from ṽi(tZ) = vtZi and ṽi(tf ) = vfi .

Reciprocally, suppose that

ui ≤
vfi − v

tZ
i

tf − tZ
≤ ui, ∀i ∈ I.

By considering a constant control ũi(t) :=
vfi − v

tZ
i

tf − tZ
, ∀t ∈ [tZ , tf ], ∀i ∈ I, we obtain

the corresponding velocity:

ṽi(t) =

∫ t

tZ

ũi(τ)dτ+ṽi(tZ) =

∫ t

tZ

vfi − v
tZ
i

tf − tZ
dτ+ṽi(tZ) = (t−tZ)×

vfi − v
tZ
i

tf − tZ
+ṽi(tZ).

Thus, ṽi(tf ) = (tf − tZ)× vfi −v
tZ
i

tf−tZ
+ ṽi(tZ) = vfi − v

tZ
i + ṽi(tZ).

Hence, setting ṽi(tZ) := vtZi , one has ṽi(tf ) = vfi . Moreover, as ṽi is affine with

respect to t, and as vtZi and vfi are in [vi, vi], one has that ṽi(t) ∈ [vi, vi] for all
t ∈ [tZ , tf ].

Therefore, this solution (ũ, ṽ) is realizable for problem (Ppostzone). Note that
there is no constraint on the final position and so, x̃ is just defined from ṽ by fixing
x̃(tZ) = xtZ .

Proposition 2 (Solution of problem (Ppostzone)) The unique solution of prob-
lem (Ppostzone), if a realizable solution exists, is:

u∗i (t) :=
vfi − v

tZ
i

tf − tZ
, ∀i ∈ I.

This optimal control provides the following optimal state variables:

v∗i (t) :=
vfi − v

tZ
i

tf − tZ
t+

vtZi × tf − v
f
i × tZ

tf − tZ
and

x∗i (t) := di ×

(
vfi − v

tZ
i

2(tf − tZ)
t2 +

vtZi × tf − v
f
i × tZ

tf − tZ
t

)
+X0
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where X0 = xtZ−di×
(

vfi −v
tZ
i

2(tf−tZ)
tZ

2
+

v
tZ
i ×tf−v

f
i ×tZ

tf−tZ
tZ

)
, and the following optimal

cost

J∗ := J(u∗) =
∑
i∈I

(
vfi − v

tZ
i

)2

tf − tZ
.

Proof 2 Let us first relax problem (Ppostzone) by discarding bound constraints on

u and v: ui ≤ ui(t) ≤ ui and vi ≤ vi(t) ≤ vi, ∀t ∈ [tZ , tf ] ∀i ∈ I.
Note that problem (Ppostzone) corresponds to the sum of n independent sub-

problems, one for each i ∈ I, as follows:

(P ipostzone)



min
ui,vi,xi

∫ tf

tZ

u2
i (t)dt

s.t.

v̇i(t) = ui(t) ∀t ∈ [tZ , tf ],

ẋi(t) = vi(t)di ∀t ∈ [tZ , tf ],

xi(tZ) = xtZi , vi(tZ) = vtZi

xi(tf ) free , vi(tf ) = vfi

The Hamiltonian of problem (P ipostzone) is:

Hi(x
X
i (t), xYi (t), vi(t), z1,i(t), z2,i(t), z3,i(t), z0,i, ui(t))

= z1,i(t)vi(t)d
X
i + z2,i(t)vi(t)d

Y
i + z3,i(t)ui(t) + z0,iu

2
i (t) ,

(2)

where the real scalar z0,i is associated to the cost function and z1,i(t), z2,i(t), z3,i(t)
are the costate variables; z1,i(t), z2,i(t), z3,i(t) are associated to xXi (t), xYi (t) and
vi(t) respectively.
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The associated system of differential equations, for all t ∈ [tZ , tf ], is:

ẋXi (t) =
∂Hi(.)

∂z1,i
= vi(t)d

X
i ,

ẋYi (t) =
∂Hi(.)

∂z2,i
= vi(t)d

Y
i ,

v̇i(t) =
∂Hi(.)

∂z3,i
= ui(t),

ż1,i(t) = −∂Hi(.)

∂xXi
= 0,

ż2,i(t) = −∂Hi(.)

∂xYi
= 0,

ż3,i(t) = −∂Hi(.)

∂vi
= −z1,i(t)d

X
i − z2,i(t)d

Y
i .

Maximizing the Hamiltonian with respect to ui, and then fixing the value z0,i

to −1 without loss of generality (just the normal extremals are studied here), we
obtain:

u∗i = argmax
ui

Hi(.) =
z3,i(t)

2

This result is obtained by deriving Hi with respect to ui (∂Hi
∂ui

= z3,i − 2ui), and

by solving ∂Hi
∂ui

= 0, thus providing the necessary optimality conditions at the first

order. By deriving two times with respect to ui, we obtain ∂2Hi

∂u2i
= −2 < 0, which

proves that u∗i is indeed the unique maximum of Hi.

By replacing ui(t) in the above differential equations by
z3,i(t)

2 , this yields a
system with 6 equations, 6 unknowns, 3 initial conditions and just 1 final condi-
tion. The transversality conditions provide 2 new final conditions on the costate
variables: z1,i(tf ) = 0 and z2,i(tf ) = 0. Considering the two differential equations
ż1,i(t) = 0 and ż2,i(t) = 0, this implies that z1,i(t) = 0 and z1,i(t) = 0, for all t ∈
[tZ , tf ]. Therefore, the last differential equation ż3,i(t) = −z1,i(t)d

X
i −z2,i(t)d

Y
i = 0,

and then z3,i is constant for all t ∈ [tZ , tf ]. By denoting A this constant, one has
u∗i (t) = A

2 and hence (considering the third differential equation of our system),
v∗i (t) = A

2 t + B, where B is another real constant. By using the initial and fi-
nal conditions on vi, one obtains the values of the two constants A and B; i.e.,

v∗i (tZ) = A
2 tZ + B = vtZi and v∗i (tf ) = A

2 tf + B = vfi , hence A = 2
vfi −v

tZ
i

tf−tZ
and

B =
tf×v

tZ
i −tZ×v

f
i

tf−tZ
. Substituting the values of these two constants, we obtain the

expression of the optimal solution u∗, v∗, x∗ and J∗.
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Let us now discuss about the relaxed bound constraints on u and v.
First consider the bound constraints on the velocity v: vi ≤ vi(t) ≤ vi. From

the values of A and B obtained by solving the relaxed problem, one has that v∗i (t) =
A
2 t+B and then v∗i (t) is affine. Let us suppose that vfi ≤ v

tZ
i , then one has A ≤ 0

and then v∗i (t) ≤ v∗i (tZ) = vtZi for all t ∈ [tZ , tf ]. Moreover, as A ≤ 0, one has

v∗i (t) ≥ v∗i (tf ) = vfi for all t ∈ [tZ , tf ]. Hence, vi ≤ vfi ≤ v∗i (t) ≤ vtZi ≤ vi,

for all t ∈ [tZ , tf ]. Let us now suppose that vfi ≥ vtZi , then one has A ≥ 0 and

then v∗i (t) ≥ v∗i (tZ) = vtZi for all t ∈ [tZ , tf ]. Moreover, as A ≥ 0, one has

v∗i (t) ≤ v∗i (tf ) = vfi for all t ∈ [tZ , tf ]. Thus, one has vi ≤ vtZi ≤ v∗i (t) ≤ vfi ≤ vi,
for all t ∈ [tZ , tf ]. In conclusion, if the optimal control u∗ exists then the bound
constraints on the velocity v are satisfied.

Let us now consider the bound constraints on u: ui ≤ ui(t) ≤ ui for all i ∈ I

and t ∈ [tZ , tf ]. As u∗i (t) is constant and equal to
vfi −v

tZ
i

tf−tZ
, if ∃i ∈ I such that

vfi −v
tZ
i

tf−tZ
6∈ [ui, ui] from Proposition 1, one can conclude that there is no realizable

control for problem (Ppostzone). In conclusion, if a control u∗ exists, the bound
constraints on u are satisfied.

Therefore, we proved that from the relaxed problem (Ppostzone), the optimal
control u∗ can be provided using the PMP; the velocity, the position and the final
cost can then be derived. Moreover, such an optimal constant solution u∗ exists if
and only if the bound constraints on u are satisfied.

Remark 2 In the addressed application, the bounds on the control are in practice
quite large, and so easily satisfied. It follows that in general, we have a solution of
problem (Ppostzone).

By decomposing the time interval into two parts [t0, tZ ] and [tZ , tf ], and using
Propositions 1 and 2, one can reformulate problem (P). The following theorem
presents this new formulation of problem (P), involving a lower number of variables
with respect to the initial one.

Theorem 1 (Reformulation of problem (P)) A reformulation of problem (P)

13



is:

(P1)



min
u,v,x

∑
i∈I

∫ tZ

t0

u2
i (t)dt +

∑
i∈I

(vfi − vi(tZ))2

tf − tZ

s.t.

v̇i(t) = ui(t) ∀t ∈ [t0, tZ ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [t0, tZ ], ∀i ∈ I

ui ≤ ui(t) ≤ ui ∀t ∈ [t0, tZ ], ∀i ∈ I

vi ≤ vi(t) ≤ vi ∀t ∈ [t0, tZ ], ∀i ∈ I

ui ≤
vfi − vi(tZ)

tf − tZ
≤ ui ∀i ∈ I

xi(t0) = x0
i , vi(t0) = v0

i ∀i ∈ I

xi(tf ) free , vi(tf ) = vfi ∀i ∈ I

‖ xi(t)− xj(t) ‖2 ≥ D2 ∀t ∈ [t0, tZ ],

∀(i, j) ∈ I2, i < j

Proof 3 By decomposing the time window [t0, tf ] into two parts [t0, tZ ] and [tZ , tf ],
problem (P) becomes almost separable. The only link occurs at time tZ . Indeed,
the two subproblems can provide disconnected solutions of u, v and x, but only at
time tZ .

The control u can be discontinuous because it is possible for an aircraft to
change roughly its acceleration. So u can be discontinuous at time tZ ; indeed,
u has just to be integrable over [t0, tZ ] and [tZ , tf ]. For the velocity v and the
position x, one must keep the continuity of the solution at time tZ . Suppose that we
solve the first subproblem on [t0, tZ ], computing an optimal control u1, an optimal
velocity v1 and position x1. Using the values of v1(tZ) and x1(tZ) used as initial
conditions of the second subproblem for t in [tZ , tf ] , and from Propositions 1
and 2, a solution of the second subproblem, if it exists, can be easily computed.
The existence of a solution for the second subproblem provides a new constraint

on v1(tZ): ui ≤
vfi −v

1
i (tZ)

tf−tZ
≤ ui for all i ∈ I. Note that if this constraint is not

satisfied, the second subproblem (for time in [tZ , tf ]) has no realizable point (see
Proposition 1). Therefore this constraint has to be added to problem (PZ1) and the
result follows.

Remark 3 The new formulation of Theorem 1 only provides solutions for all
t ∈ [t0, tZ ], if such an optimal solution exists. All the remaining solutions, for all
time t in [tZ , tf ], have to be derived from Proposition 2.
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5 Applying the PMP on the prezone

In this section, we focus on the prezone to derive necessary optimality conditions
using the PMP. This provides a new formulation of problem (P).

This section follows the same outline as the previous one dedicated to the study
of the postzone, however the case treated here is much more difficult and major
differences occur. For the sake of simplification and without loss of generality, we
fix t0 = 0 in this section.

From a temporal point of view, the prezone corresponds to [0, tZ ], i.e., from
the initial time until the beginning of the zone. As conflicts occur only in the zone,
from the initial time to the beginning of the zone, tZ , there is no conflict between
aircraft. Thus, the aircraft separation constraints can be discarded yielding the
following problem:

(Pprezone)



min
u,v,x

∑
i∈I

∫ tZ

0
u2
i (t)dt

s.t.

v̇i(t) = ui(t) ∀t ∈ [t0, tZ ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [t0, tZ ], ∀i ∈ I

ui ≤ ui(t) ≤ ui ∀t ∈ [t0, tZ ], ∀i ∈ I

vi ≤ vi(t) ≤ vi ∀t ∈ [t0, tZ ], ∀i ∈ I

xi(0) = x0
i , vi(0) = v0

i ∀i ∈ I

xi(tZ) = x
tZ
i , vi(tZ) = v

tZ
i ∀i ∈ I

Remark 4 The only difference between problem (Ppostzone) and problem (Pprezone)

is that the final position has now to be fixed: xi(tZ) = x
tZ
i .

Remark 5 The fixed values of the velocity at times 0 and tZ , respectively v0
i

and v
tZ
i , have to be in the interval [vi, vi], otherwise it would not exist any point

satisfying the constraints of problem (Pprezone).

In the following, we suppose that the values of v0
i and v

tZ
i are in the interval [vi, vi].

In the first part of this section the bound constraints on the velocity are not

15



taken into account, then the problem (Pprezone) is relaxed providing:

(PR prezone)



min
u,v,x

∑
i∈I

∫ tZ

0
u2
i (t)dt

s.t.

v̇i(t) = ui(t) ∀t ∈ [t0, tZ ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [t0, tZ ], ∀i ∈ I

ui ≤ ui(t) ≤ ui ∀t ∈ [t0, tZ ], ∀i ∈ I

xi(0) = x0
i , vi(0) = v0

i ∀i ∈ I

xi(tZ) = x
tZ
i , vi(tZ) = v

tZ
i ∀i ∈ I

The way to consider the bound constraints on the velocity will be discussed below
to derive a new formulation of problem (P).

The following two propositions provide some properties about the solution of
problem (PR prezone).

Proposition 3 (A solution of Problem (PR prezone)) If

ui ≤
6
(

(x
tZ
i )D − (x0

i )
D
)

dDi tZ
2

−
2(v

tZ
i + 2v0

i )

tZ
≤ ui

and

ui ≤
−6
(

(x
tZ
i )D − (x0

i )
D
)

dDi tZ
2

+
4(v

tZ
i + v0

i )

tZ
≤ ui

Then one has

u∗i (t) = −

12
(

(x
tZ
i )D − (x0i )D

)
dDi tZ

3
−

6(v
tZ
i + v0i )

tZ2

 t+
6
(

(x
tZ
i )D − (x0i )D

)
dDi tZ

2
−

2(v
tZ
i + 2v0i )

tZ
,

v∗i (t) = −

6
(

(x
tZ
i )D − (x0i )D

)
dDi tZ

3
−

3(v
tZ
i + v0i )

tZ2

 t2 +

6
(

(x
tZ
i )D − (x0i )D

)
dDi tZ

2
−

2(v
tZ
i + 2v0i )

tZ

 t+ v0i ,

(
xXi

)∗
(t) = −

2
(

(x
tZ
i )D − (x0i )D

)
dDi tZ

3
−

(v
tZ
i + v0i )

tZ2

 dXi t
3 +

3
(

(x
tZ
i )D − (x0i )D

)
dDi tZ

2
−

(v
tZ
i + 2v0i )

tZ

 dXi t
2

+v0i d
X
i t+ (x0i )X ,

(
xYi

)∗
(t) = −

2
(

(x
tZ
i )D − (x0i )D

)
dDi tZ

3
−

(v
tZ
i + v0i )

tZ2

 dYi t
3 +

3
(

(x
tZ
i )D − (x0i )D

)
dDi tZ

2
−

(v
tZ
i + 2v0i )

tZ

 dYi t
2

+v0i d
Y
i t+ (x0i )Y ,
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where dDi = dXi if dXi 6= 0 else dDi = dYi (note that di = (dXi , d
Y
i ) is the cartesian

direction of aircraft i and cannot be the null vector).

The optimal cost is:

J∗ := J(u∗) =
∑
i∈I

−
6

(
(x

tZ
i )D − (x0i )D

)
dDi tZ

3
−

3(v
tZ
i + v0i )

tZ2

 t2f +

6
(

(x
tZ
i )D − (x0i )D

)
dDi tZ

2
−

2(v
tZ
i + 2v0i )

tZ

 tf

 .

Proof 4 Let us first relax problem (PR prezone) by discarding bound constraints

on u: ui ≤ ui(t) ≤ ui, ∀t ∈ [t0, tZ ] ∀i ∈ I.
Note that problem (PR prezone) corresponds to the sum of n independent sub-

problems, one for each i ∈ I, as follows:

(P iprezone)



min
ui,vi,xi

∫ tZ

0
u2
i (t)dt

s.t.

v̇i(t) = ui(t) ∀t ∈ [t0, tZ ],

ẋi(t) = vi(t)di ∀t ∈ [t0, tZ ],

xi(0) = x0
i , vi(0) = v0

i

xi(tZ) = x
tZ
i , vi(tZ) = v

tZ
i

As mentioned in Remark 4, problem (P ipostzone) and problem (P iprezone) only

differ because the final position has now to be fixed. Thus, the Hamiltonian of this
new system is the same as for problem (P ipostzone).

Hence, the maximum of the Hamiltonian with respect to ui, (by fixing the value

z0,i to −1) is the same as for problem (Ppostzone): u∗i (t) = argmax
ui

Hi(.) =
z3,i(t)

2 .

This result also proves that u∗ is the unique maximum for problem (P iprezone).

By replacing ui(t) in the differential equations by
z3,i(t)

2 , this yields a system
with 6 equations, 6 unknowns, 3 initial conditions and 3 final conditions. Note
that we have now two final conditions (coming from the final position at time
tZ). Therefore, the following system of differential equations has to be solved in a
different way with respect to what has been done for the postzone, because ż3,i is no
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more equal to zero and then z3,i and the control u∗i is no more constant in [0, tZ ]:

ẋXi (t) =
∂Hi(.)

∂z1,i
= vi(t)d

X
i ,

ẋYi (t) =
∂Hi(.)

∂z2,i
= vi(t)d

Y
i ,

v̇i(t) =
∂Hi(.)

∂z3,i
=

z3,i(t)

2
,

ż1,i(t) = −∂Hi(.)

∂xXi
= 0,

ż2,i(t) = −∂Hi(.)

∂xYi
= 0,

ż3,i(t) = −∂Hi(.)

∂vi
= −z1,i(t)d

X
i − z2,i(t)d

Y
i .

The fourth and fifth equations yields that z∗1,i(t) = A and z∗1,i(t) = B, where A

and B are two real constants. Hence, the sixth equation gives ż3,i(t) = −A dXi −
B dYi and then

z3,i(t) =
(
−A dXi −B dYi

)
t+ C,

where C is a new real constant. Note that this provides an optimal control u∗

which is now affine:

u∗i (t) =

(
−A dXi −B dYi

)
t+ C

2
.

The third equation yields the optimal velocity v∗:

v∗i (t) = −
(
A dXi +B dYi

)
4

t2 +
C

2
t+D,

where D is a new real constant (note that this constant is obviously distinct to the
separation distance D and it is just only used in this proof).

The first equation ẋXi (t) = −
(

(A dXi +B dYi )
4 t2 + C

2 t+D

)
dXi yields the opti-

mal abscissa position:

(
xXi
)∗

(t) = −
(
A (dXi )2 +B dXi d

Y
i

)
12

t3 +
C

4
dXi t2 +D dXi t+ E,

where E is a new real constant.
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Moreover, by introducing a new real constant F , and using the second equation,
one obtains in the same way the optimal ordinate position:

(
xYi
)∗

(t) = −
(
A dXi d

Y
i +B (dYi )2

)
12

t3 +
C

4
dYi t2 +D dYi t+ F.

From the 6 initial and final conditions, one can determine the six constant
A,B,C,D,E, F . Directly, from the initial conditions one obtains D = v0

i , E =
(x0
i )
X and F = (x0

i )
Y . From the final condition, it remains to solve a linear

system of 3 equations and 3 variables A,B,C. By defining Q :=
(A dXi +B dYi )

4 ,
one obtains:

−QtZ2 +
C

2
tZ + v0

i = v
tZ
i ,

−1

3
QdDi tZ

3 +
C

4
dDi tZ

2 + v0
i d
D
i tZ + (x0

i )
D = (x

tZ
i )D.

Where dDi is equal to dXi or dYi if and only if they are not null (they cannot be both
equal to zero).

Hence, one obtains:

C =
12
(

(x
tZ
i )D − (x0

i )
D
)

dDi tZ
2

−
4(v

tZ
i + 2v0

i )

tZ
,

and

Q =
6
(

(x
tZ
i )D − (x0

i )
D
)

dDi tZ
3

−
3(v

tZ
i + v0

i )

tZ2 .

Only these five coefficients are necessary to find all the optimal controls and the
associate state variables u∗, v∗, x∗ and also the objective value of the cost function
J∗.

Let us consider the bound constraints on u: ui ≤ ui(t) ≤ ui for all i ∈ I and
t ∈ [0, tZ ]:

ui ≤ u∗i (t) = −2Qt+
C

2
≤ ui,∀t ∈ [0, tZ ]

As u∗(t) is affine, one has just to check the constraint at time t = 0 and t = tZ
providing: 2ui ≤ C ≤ 2ui and 2ui ≤ −4QtZ + C ≤ 2ui . Then one obtains the
two following conditions:

ui ≤
C

2
=

6
(

(x
tZ
i )D − (x0

i )
D
)

dDi tZ
2

−
2(v

tZ
i + 2v0

i )

tZ
≤ ui, (3)
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and

ui ≤ −2QtZ +
C

2
=
−6
(

(x
tZ
i )D − (x0

i )
D
)

dDi tZ
2

+
4(v

tZ
i + v0

i )

tZ
≤ ui. (4)

Hence, the unique solution verifying the optimality conditions derived from the
PMP is u∗, v∗, x∗ if the above conditions (3) and (4) on the control are satisfied.
Note that u∗i (t) can be also constant in the prezone as in the postzone, if and only
if Q = 0.

The optimal cost function is computed from u∗:

J(u∗) =
∑
i∈I

∫ tf

0
(u∗)2dt =

∑
i∈I

∫ tf

0

(
−2Qt+

C

2

)2

dt =
∑
i∈I

(
−Qt2f +

C

2
tf

)
.

Therefore, we proved that from the relaxed problem (PR prezone), the optimal
control u∗ can be provided using the PMP; the velocity, the position and the final
cost can then be derived. However, such a solution exists if the conditions (3) and
(4) are satisfied.

Remark 6 Analogously to the case of the postzone, we can observe that the
bounds on the control are in practice quite large, and so easily satisfied. It fol-
lows that in general, we have a solution of problem (PR prezone).

Let us now take into account the bounds constraints on vi(t). In this case,
we have to consider the following assumption on the shape of the optimal control,
which follows directly from Proposition 3 and by the numerical solutions provided
in Section 7:

Assumption 1 The optimal control on the time window [0, tZ ] has the following
shape, for each aircraft i: u∗i (t) is affine or u∗i (t) is affine from t = 0 until a critical
time that we denote tci , and it is null after. The critical time tci occurs when the
velocity of aircraft i reaches a bound constraint vi or vi. This yields a velocity vi(t)
which is quadratic or quadratic and then constant at time tci . Furthermore, let us
suppose also that u∗(t) remains in its bounds; this implies that the conditions of
Proposition 3 are satisfied.

Remark 7 Note that if the velocity vi(t) stays in its bounds for all t in [0, tZ ],
then by fixing tci = tZ , one obtains just one shape for the control: affine and null
at time tci .
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By decomposing the time interval into three parts [0, tZ ], [tZ , tZ ] and [tZ , tf ],
by using Propositions 1, 2, 3 and Assumption 1, one can reformulate problem (P)
starting from reformulation (P1). This provides a new optimization problem with
less variables and constraints than problems (P) and (P1).

Theorem 2 (Reformulation of problem (P)) Under Assumption 1, another
reformulation of problem (P), with t0 = 0, is:

(P2)



min
u, v, x,

(A,B, tc) ∈ R3n

∑
i∈I

(
1

3
A2
i (t

c
i )

3 +AiBi(t
c
i )

2 +B2
i t
c
i +

∫ tZ

tZ

u2
i (t)dt +

(vfi − vi(tZ))2

tf − tZ

)

s.t.

v̇i(t) = ui(t) ∀t ∈ [tZ , tZ ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [tZ , tZ ], ∀i ∈ I

ui ≤ ui(t) ≤ ui ∀t ∈ [tZ , tZ ], ∀i ∈ I

vi ≤ vi(t) ≤ vi ∀t ∈ [tZ , tZ ], ∀i ∈ I

ui ≤
vfi − vi(tZ)

tf − tZ
≤ ui ∀i ∈ I

ui ≤ Bi ≤ ui ∀i ∈ I

ui ≤ Aitci +Bi ≤ ui ∀i ∈ I

vi(tZ) =
1

2
Ai(t

c
i )

2 +Bit
c
i + v0

i ∀i ∈ I

xi(tZ) = vi(tZ)di(tZ − tci ) +

(
1

6
Ai(t

c
i )

3 +
1

2
Bi(t

c
i )

2 + v0
i t
c
i

)
di + x0

i ∀i ∈ I[
xi(tZ) =

(
tZ

2
− tci

3

)
diAi(t

c
i )

2 +

(
tZ −

tci
2

)
Bidit

c
i + tZdiv

0
i + x0

i

]
∀i ∈ I

tci = min{tZ} ∪
{
t ∈ [0, tZ ],

1

2
Ait

2 +Bit+ Ci = vi

}
∪
{
t ∈ [0, tZ ],

1

2
Ait

2 +Bit+ Ci = vi

}
∀i ∈ I

xi(0) = x0
i , vi(0) = v0

i ∀i ∈ I

xi(tf ) free , vi(tf ) = vfi ∀i ∈ I

‖ xi(t)− xj(t) ‖2 ≥ D2 ∀t ∈ [tZ , tZ ],

∀(i, j) ∈ I2, i < j

Note that there are major differences between the problem formulations P1

and P2. In the formulation P2, for each aircraft i, new real optimization variables
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Ai, Bi, and tci are introduced. Furthermore, the cost function in P2 is no convex
anymore.

Proof 5 The time window [0, tf ] is now decomposed into three parts [t0, tZ ], [tZ , tZ ]
and [tZ , tf ], hence problem (P) becomes almost separable. The links occur at time
in tZ and also at tZ . Indeed, the three subproblems can provide disconnected solu-
tions of u, v and x, but only at times tZ and tZ .

This new reformulation starts from reformulation (P1) yielding the last part

of the objective function
∑

i∈I
(vfi −vi(tZ))2

tf−tZ
and the constraints ui ≤

vfi −vi(tZ)

tf−tZ
≤

ui,∀i ∈ I. Note that these are discussed in the proof of Theorem 1. Hence, we
have just to demonstrate the first part of this new formulation, from t = 0 to tZ .

From Assumption 1, we can directly derive the shape of the solution. Indeed,
the control is affine from t = 0 to tci :

u∗i (t) = Ait+Bi,

where Ai and Bi are real constants which are the new unknown of our new formu-
lation. This provides 3 × n new optimization variables: Ai, Bi and tci . Thus, two
new constraints have to be added in order to satisfy the conditions of Proposition 3:

ui ≤ Bi ≤ ui and ui ≤ Aitci +Bi ≤ ui, ∀i ∈ I.

From the solution on the optimal control, one can derive the first part of the cost
function J :∫ tZ

0
(u∗i (t))

2dt =

∫ tci

0
(Ait+Bi)

2dt =
A2
i

3
(tci )

3 +AiBi(t
c
i )

2 +B2
i t
c
i .

Note that u∗i (t) = 0 for all t in [0, tci ].
From u∗i (t) = Ait + Bi for all t in [0, tci ] and zero after, one can provide the

velocity:

v∗i (t) =

{
Ai
2 t

2 +Bit+ v0
i , ∀t ∈ [0, tci ]

Ai
2 (tci )

2 +Bit
c
i + v0

i , ∀t ∈ [tci , tZ ]

This implies the link between the prezone and the zone at time tZ :

v∗i (tZ) = v∗i (t
c
i ) =

Ai
2

(tci )
2 +Bit

c
i + v0

i ,∀i ∈ I.

Now, from the optimal velocity, one can derive the position of aircraft i:

x∗i (t) = tci

{
Ai
6 dit

3 + Bi
2 dit

2 + v0
i dit+ x0

i , ∀t ∈ [0, tci ](
Ai
2 (tci )

2 +Bit
c
i + v0

i

)
di(t− tci ) + Ai

6 di(t
c
i )

3 + Bi
2 di(t

c
i )

2 + v0
i di(t

c
i ) + x0

i , ∀t ∈ [tci , tZ ]
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Hence, the following constraint at time tZ on the position is:

x∗i (tZ) =

(
Ai
2

(tci )
2 +Bit

c
i + v0

i

)
di(tZ − tci ) +

Ai
6
di(t

c
i )

3 +
Bi
2
di(t

c
i )

2 + v0
i di(t

c
i ) +x0

i .

Now, it remains to explain the critical time tci . It is defined as the time in [0, tZ ]
when the velocity of aircraft i reaches for the first time a limit vi or vi. Note that
if the velocity stays in [vi, vi], then tci has to be fixed to tZ . Therefore, the following
condition involving tci , Ai and Bi holds:

tci = min{tZ}∪
{
t ∈ [0, tZ ],

1

2
Ait

2 +Bit+ Ci = vi

}
∪
{
t ∈ [0, tZ ],

1

2
Ait

2 +Bit+ Ci = vi

}
That concludes the proof.

Note that the control u can be discontinuous, because it is possible for an
aircraft to roughly change its acceleration. Therefore, ui can be discontinuous at
time tZ but also at times tci and tZ ; indeed, ui has just to be integrable over [0, tci ],
[tci , tZ ], [tZ , tZ ] and [tZ , tf ]. For the velocity v and the position x, one must keep
the continuity of the solution at times tci , tZ and tZ .

Remark 8 The new formulation (P2) only provides solutions for all t in [tZ , tZ ]
(if such an optimal solution exists). All the remaining solutions, for all time t in
[0, tZ ], have been developed in the proof of Theorem 2. The last part of the solutions
for a time t in [tZ , tf ] are given in Proposition 2.

6 Applying the direct shooting method

Let us now focus on the numerical solution of Problem (P) and its two reformula-
tions (P1) and (P2). In all these three cases, we have to solve an optimal control
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problem in a time window [ta, tb], with t0 ≤ ta ≤ tb ≤ tf , of the following type:

(P̃)



min
u,v,x

∑
i∈I

∫ tb

ta

u2
i (t)dt

s.t.

v̇i(t) = ui(t) ∀t ∈ [ta, tb], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [ta, tb], ∀i ∈ I

ui ≤ ui(t) ≤ ui ∀t ∈ [ta, tb], ∀i ∈ I

vi ≤ vi(t) ≤ vi ∀t ∈ [ta, tb], ∀i ∈ I

xi(ta) = xai , vi(ta) = vai ∀i ∈ I

xi(tb) free , vi(tb) = vbi ∀i ∈ I

‖xi(t)− xj(t)‖2 ≥ D2 ∀t ∈ [ta, tb],

∀(i, j) ∈ I2, i < j

Problem (P̃) corresponds to Problem (P) when ta = t0 and tb = tf . In the case
when we consider the problem decomposition based on the postzone, then ta = t0
and tb = tZ ; finally in the case when we consider the problem decomposition based
on the prezone, then ta = tZ and tb = tZ .

By applying the direct shooting method to the optimal control problem (P̃),
the ordinary differential equations are computationally treated by discretizing the
variables appearing in the equations with respect to the time. Numerical integra-
tors (for example, Euler -type integrators) are used to approximate the differential
equations.

By discretizing the time in [ta, tb] into N steps (h = tb−ta
N ), and then by

discretizing the controls ui and the state variables vi, xi (for all aircraft i), we
obtain the following NLP problem:
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(P̃ disc)



min
(x,v,u)

h
∑
i∈I

∑
k∈K

(u
(k)
i )2

s.t.

v
(k+1)
i = NUMvi(u

(k)
i ) ∀k ∈ K,∀i ∈ I

x
(k+1)
i = NUMxi(v

(k)
i ) ∀k ∈ K,∀i ∈ I

ui ≤ u(k)
i ≤ ui ∀k ∈ K,∀i ∈ I

vi ≤ v(k)
i ≤ vi ∀k ∈ K,∀i ∈ I

v
(0)
i = vai ∀i ∈ I

x
(0)
i = xai ∀i ∈ I

v
(N)
i = vbi ∀i ∈ I

‖ x(k)
i − x

(k)
j ‖

2 ≥ D2 ∀k ∈ K, ∀i < j, (i, j) ∈ I2

where NUM is a numerical integrator depending on the state variables, and

u
(k)
i , v

(k)
i and x

(k)
i denote the values of the acceleration, velocity and respectively

position at time tk = kh. Variables are indexed on the set K = {0, . . . , N − 1}.
From problem (P1), we obtain the following discretized problem:

(P̃ disc1 )



min
(x,v,u)

h
∑
i∈I

∑
k∈K

(u
(k)
i )2 +

∑
i∈I

(vfi − v
(N)
i )2

tf − tZ

s.t.

v
(k+1)
i = NUMvi(u

(k)
i ) ∀k ∈ K,∀i ∈ I

x
(k+1)
i = NUMxi(v

(k)
i ) ∀k ∈ K,∀i ∈ I

ui ≤ u(k)
i ≤ ui ∀k ∈ K,∀i ∈ I

vi ≤ v(k)
i ≤ vi ∀k ∈ K,∀i ∈ I

ui ≤
vfi − v

(N)
i

tf − tZ
≤ ui ∀i ∈ I

v
(0)
i = v0

i ∀i ∈ I

x
(0)
i = x0

i ∀i ∈ I

v
(N)
i = vtZi ∀i ∈ I

‖ x(k)
i − x

(k)
j ‖

2 ≥ D2 ∀k ∈ K, ∀i < j, (i, j) ∈ I2
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From problem (P2), we obtain the following discretized problem:

(P̃ disc2 )



min
u, v, x,

(A,B, tc) ∈ (Rn)3

∑
i∈I

(
1

3
A2
i (t

c
i )

3 +AiBi(t
c
i )

2 +B2
i t
c
i + h

∑
k∈K

(u
(k)
i )2 +

(vfi − v
(N)
i )2

tf − tZ

)

s.t.

v
(k+1)
i = NUMvi(u

(k)
i ) ∀k ∈ K,∀i ∈ I

x
(k+1)
i = NUMxi(v

(k)
i ) ∀k ∈ K,∀i ∈ I

ui ≤ u(k)
i ≤ ui ∀k ∈ K,∀i ∈ I

vi ≤ v(k)
i ≤ vi ∀k ∈ K,∀i ∈ I

ui ≤
vfi − v

(N)
i

tf − tZ
≤ ui ∀i ∈ I

ui ≤ Bi ≤ ui ∀i ∈ I

ui ≤ Aitci +Bi ≤ ui ∀i ∈ I

tci = min{tZ} ∪
{
t ∈ [0, tZ ],

1

2
Ait

2 +Bit+ Ci = vi

}
∪
{
t ∈ [0, tZ ],

1

2
Ait

2 +Bit+ Ci = vi

}
∀i ∈ I

v
(0)
i =

1

2
Ai(t

c
i )

2 +Bit
c
i + v0

i ∀i ∈ I

x
(0)
i = vi(tZ)di(tZ − tci ) +

(
1

6
Ai(t

c
i )

3 +
1

2
Bi(t

c
i )

2 + v0
i t
c
i

)
di + x0

i ∀i ∈ I

v
(N)
i = vtZi ∀i ∈ I

‖ x(k)
i − x

(k)
j ‖

2 ≥ D2 ∀k ∈ K, ∀i < j, (i, j) ∈ I2

By considering h fixed, we have N discretization steps for (P̃ disc) with ta = t0
and tb = tf , and respectively N1 and N2 for problems (P̃ disc1 ) and (P̃ disc2 ); note
that N ≥ N1 ≥ N2. Hence, for (P̃ disc) with ta = t0 and tb = tf , we have

4nN variables, N
(
n(n−1)

2 + 3n
)

+ n equality and inequality constraints and 4nN

bound constraints, for (P̃ disc1 ), 4nN1 variables, N1

(
n(n−1)

2 + 3n
)

+n equality and

inequality constraints and 4nN1 +n bound constraints and for (P̃ disc2 ), 4nN2 + 3n

variables, N1

(
n(n−1)

2 + 4n
)

+3n equality and inequality constraints and 4nN1+3n

bound constraints.

Note that we can alternatively use a semi-direct shooting method on (P̃) where
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the only variables are the discretized controls u
(k)
i and the discretized state vari-

ables are computed from u
(k)
i through the equality constraints. This yields more

compact formulations with nN variables, N
(
n(n−1)

2

)
+ n equality and inequality

constraints and 4nN bound constraints. Nevertheless, we show in [12] that the
direct shooting method is more efficient on the considered problem. Therefore in
the following we use the direct shooting method for our computational tests.

7 Computational Results

In this section, we discuss numerical results obtained by applying the proposed
optimal control-based approaches to solve the aircraft conflict avoidance problem.
Computational experiments were carried out using the AMPL [18] modelling en-
vironment and the Interior Point method-based solver IpOpt [25] for large-scale
nonlinear problems. We implemented our approach implying the application of
the PMP in the prezone in C programming language, as the computation of tc

induces logical expressions to be verified, that makes an AMPL implementation
(easily applied in the two cases other than the prezone) not much performing. All
the numerical tests were performed on a 2.66GHz Intel Xeon (octo-core) processor
with 32GB of RAM and Linux Operating System.

Test problem instances are generated in the following way. Aircraft are placed
on a circle, flying with a heading pointing toward the center of the circle but
deviated with an angle belonging to [−π/6,+π/6], see Figure 5 for an illustration.
The aircraft trajectories are represented as straight lines in R2. The horizontal
separation norm is 5NM. For each aircraft i, its initial (nominal) velocity vt0i
is either 400 or 447NM/h, or belongs to the interval [400; 450]. These values
correspond to common aircraft speeds. The tight bounds imposed on velocity
values are due to operational reasons, and follow the directives of the ERASMUS
project [4] to perform a subliminal velocity control. Namely, we consider:

• [vt0i − 6%vt0i , v
t0
i + 3%vt0i ] for the ‘weak’ ERASMUS regulation;

• [vt0i − 12%vt0i , v
t0
i + 6%vt0i ] for the ‘strong’ ERASMUS regulation;

• [vt0i − 10%vt0i , v
t0
i + 10%vt0i ] for a symmetric-range regulation.

The bounds imposed on aircraft accelerations are based on the Eurocontrol’s Base
of Aircraft Data (BADA) [17], and have values ui = − ui = 4000NM/h2.

A time window [t0, tf ] with t0 = 0 and tf = 1h is considered to issue separation
maneuvers (acting on velocities), ensuring separation throughout all the time win-
dow. At final time tf , aircraft are expected to return to their nominal velocities
vt0i (terminal conditions in our optimal control model).
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Table 1 summarizes the characteristics of the considered problem instances:
number of aircraft n, number of initial potential conflicts, number of initial con-
flicts actually occurring unless speed changes are performed (potential concourses),
percentage of time spent in the zone (see Section 3), nominal velocities (in NM/h),
allowed percentage of speed change (e.g., with the weak ERASMUS regulation,
from −6% to +3%), and sum of all initial potential conflict times.

In our numerical experiments, the time discretization step is equal to h = 15′′.
The starting points are deduced from the trivial controls, in the sense that all the
state variables (velocities and positions) are computed from command (accelera-
tion) values equal to 0. A complete descriptions of these 30 instances can be found
in [11].

In Tables 2, 3 and 4, we present the results obtained applying the proposed
optimal control approaches, presented in Sections 4, 5 and 6.
In these tables, for each problem instance, we report the number of variables, the
number of constraints, the total number of iterations and the number of func-
tion evaluations carried out by the NLP solver (IPOPT), the computed objective
function value and the computing time.

Table 2 reports the results obtained applying the direct shooting method on the
whole time window [0, tf ], while the results in Table 3 and the results in Table 4
are obtained applying such method respectively only in the time interval [0, tZ ]
(i.e., from the initial time to the end of the zone), then computing the PMP-based
solution in the postzone, and only in the time interval [tZ , tZ ] (i.e., in the zone),
then computing the PMP-based solution in the prezone as well as in the postzone.

Let us first consider Table 2. We are able to compute an optimal solution for 29
problem instances out of 30 (pb16 for which the maximum number of iterations is
reached). As expected, the computing time increases with the size of the problem
and its complexity, that is mainly related to the number of potential conflicts and
concourses. Applying the direct method on the whole time window yields in two
cases to computing times that exceed 300 seconds.
For the sake of illustration, Figure 5 represents the R2-trajectory configuration for
the 13-aircraft conflict avoidance problem pb29. For the same problem instance,
Figure 6 displays the optimal velocity solution curves.

Combining the direct method to the PMP in the postzone (Table 3), computing
times are drastically reduced. As expected, the benefit is directly related to the
size of the time window during which the direct method is applied, and thereby to
the size of the zone: the more the zone is small, the more the PMP is applied on a
larger time interval, thus yielding a reduction in the total computing time. More
specifically, the size of the zone is related to the number of variables and constraints
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pb. nb. of nb. of nb. of ZONE time nominal velocity (NM/h) velocity bound percents conflict times

ID aircr. confl. conc. % w.r.t. 1h 400 447 [400; 450] [-6; 3] [-12; 6] [-10; 10] sum (seconds)

pb01 3 2 3 13 X X 61.0

pb02 3 2 3 16 X X 50.5

pb03 3 2 2 11 X X 73.3

pb04 4 3 3 16 X X 150.0

pb05 4 3 3 16 X X 102.2

pb06 5 4 5 26 X X 206.1

pb07 5 4 5 26 X X 225.0

pb08 6 4 6 41 X X 315.7

pb09 6 4 5 31 X X 207.9

pb10 6 4 5 15 X X 225.0

pb11 7 4 11 41 X X 416.4

pb12 7 4 11 36 X X 372.6

pb13 7 4 9 26 X X 291.6

pb14 8 4 7 41 X X 346.2

pb15 8 4 5 53 X X 236.6

pb16 8 6 10 16 X X 411.2

pb17 9 5 13 35 X X 357.0

pb18 9 5 13 31 X X 319.5

pb19 9 5 13 31 X X 319.5

pb20 10 5 5 31 X X 232.0

pb21 10 5 5 31 X X 232.0

pb22 10 5 5 35 X X 259.2

pb23 11 6 17 45 X X 521.1

pb24 11 5 7 54 X X 259.1

pb25 11 6 15 51 X X 320.4

pb26 12 6 12 32 X X 643.0

pb27 12 6 15 46 X X 472.2

pb28 12 6 12 29 X X 575.4

pb29 13 9 14 67 X X 1294.0

pb30 13 6 14 59 X X 418.3

Table 1: Data instances: problem names, number of aircraft, number of initial potential conflicts,
number of initial potential concourses, time spent in the zone, nominal velocity, percentages of speed
changes, and sum of durations of initial potential conflict.

29



pb. nb. of nb. of nb. of nb. of obj. cpu time

ID var. constr. it. eval. value (seconds)

pb01 2898 5781 19 31 78.212 0.892
pb02 2898 5781 37 234 145.547 1.828
pb03 2898 5781 23 137 912.703 0.976
pb04 3864 8190 33 42 1073.489 1.860
pb05 3864 8190 97 551 648.361 5.220
pb06 4830 10840 138 957 3161.899 10.888
pb07 4830 10840 45 121 948.502 3.720
pb08 5796 13731 136 158 1271.155 18.804
pb09 5796 13731 31 116 335.791 3.840
pb10 5796 13731 63 79 1675.380 6.960
pb11 6762 16863 41 75 601.908 6.864
pb12 6762 16863 52 99 796.172 8.968
pb13 6762 16863 26 141 714.660 4.664
pb14 7728 20236 68 139 931.898 13.232
pb15 7728 20236 41 158 1857.248 9.760
pb16 7728 20236 3000 4238 118446.731 592.500
pb17 8694 23850 26 105 646.542 8.192
pb18 8694 23850 95 581 814.456 30.272
pb19 8694 23850 48 212 814.456 15.332
pb20 9660 27705 847 8941 6130.617 339.148
pb21 9660 27705 112 974 6130.617 43.396
pb22 9660 27705 119 1040 4921.333 43.676
pb23 10626 31801 105 220 5885.763 64.260
pb24 10626 31801 57 240 1612.852 33.076
pb25 10626 31801 51 135 2675.255 31.464
pb26 11592 36138 161 841 2412.280 122.644
pb27 11592 36138 152 1107 6134.474 116.588
pb28 11592 36138 137 329 3065.079 105.488
pb29 12558 40716 78 337 4930.398 79.176
pb30 12558 40716 136 749 3025.378 137.604

Table 2: Numerical results obtained by applying the direct solution method on the whole time window:
number of variables, number of constraints, number of iterations, number of funtion evaluations, objective
value, computing time.
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of the NLP problem to be solved with the direct method. The computed solution
is the same in most of the cases, except for two problem instances: pb16 which is
again not solved and pb08. Remark that computed solutions are local optima and
so, different minima can be provided.

Applying the PMP also in the prezone (Table 4) requires a larger computational
effort compared to the application of the PMP in the postzone only, yielding
larger computing times. This behaviour is related to the increased complexity of
the problem to be solved when the PMP is applied in the prezone, as discussed
in Section5. As a consequence, we are not able, in general, to reduce furtherly
the computing time with respect to the case of the PMP on the postzone only,
and computing times in some cases are even larger than those required by the
application of the direct method on the whole time window (Table 2). On the
other hand, we remark a better quality of the solution in most cases, as expected.
Remark also that pb16 is now solved to optimality. Furthermore, our assumptions
of the form of the solution are confirmed by the experimental results.

In order to more clearly compare the results obtained for our three proposed
approaches, we make use of the performance profiles of Dolan and Moré [15]. We
recall that when using performance profiles, for τ ≥ 0 on the x-axis, one can read
on the y-axis the fraction ρs(τ) of problems for which the performance of a given
algorithm is within a factor 2τ of the best one. In our case, Figure 3 displays a
performance profile comparing the results in terms of objective function values,
and Figure 4 displays a performance profile comparing the results in terms of
computing time. Figure 3 shows that the approach based on the PMP applied in
both the prezone and the postzone ensures the most accurate computation of the
solutions. Figure 4 clearly highlights the benefit, in terms of CPU time, of using
the approach based on the PMP applied in the postzone only.

To summarize, the case of PMP in the postzone appears to offer the best
tradeoff between ease of implementation and quality of solution, while being very
efficient in terms of computing time.

8 Conclusion

In this paper, we consider the problem of aircraft conflict avoidance using only
(subliminal) velocity regulation, keeping the R3-trajectories unchanged. We pro-
pose a decomposition tailored to this problem into specific zones with respect to the
pairwise aircraft separation constraints. We show that into two of these zones con-
flicts cannot occur, so separation constraints can be neglected, and we can provide
analytical solutions by using the PMP, where the criterion is the sum of squared
accelerations. This leads to two new formulations, (Ppostzone) and (Pprezone),
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pb. nb. of nb. of nb. of nb. of obj. cpu time

ID var. constr. it. eval. value (seconds)

pb01 1698 3057 45 48 78.212 0.924
pb02 1674 3033 27 59 145.547 0.540
pb03 1686 3018 29 44 912.703 0.556
pb04 2280 4208 45 47 1073.489 1.232
pb05 2200 4068 60 90 648.361 1.524
pb06 2990 5845 89 276 3161.899 3.520
pb07 2990 5845 59 98 948.502 2.428
pb08 3492 7593 77 96 2839.976 4.548
pb09 3996 8100 56 103 335.791 3.676
pb10 3156 6060 94 102 1675.380 3.956
pb11 5138 11074 67 99 601.908 7.236
pb12 4578 9863 90 141 796.172 8.244
pb13 4130 8533 63 242 714.660 4.940
pb14 6320 13844 114 172 931.898 16.160
pb15 6384 14768 118 208 1857.248 17.888
pb16 4592 9112 3000 3907 123212.425 195.508
pb17 5598 12843 47 65 646.542 6.408
pb18 5022 11511 50 76 814.456 6.128
pb19 4914 11286 45 81 814.456 5.536
pb20 5820 13640 54 150 6130.617 7.720
pb21 5700 13385 37 52 6130.617 4.748
pb22 6500 15235 49 69 4921.333 7.292
pb23 7062 18348 210 875 5885.763 62.988
pb24 8426 22000 197 1259 1612.852 79.524
pb25 7678 20251 99 197 2675.255 36.728
pb26 7224 17856 109 194 2412.280 33.808
pb27 7176 19884 146 808 6134.474 57.076
pb28 6456 15918 133 247 3065.079 36.372
pb29 10478 31057 136 235 4930.398 103.036
pb30 9438 27755 146 651 3025.378 94.232

Table 3: Numerical results obtained by applying the direct solution method from t0 to the end of the
zone, followed by the PMP-based solution in the postzone: number of variables, number of constraints,
number of iterations, number of funtion evaluations, objective value, computing time.
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pb. nb. of nb. of nb. of nb. of obj. cpu time

ID var. constr. it. eval. value (seconds)

pb01 105 204 35 40 77.373 0.184
pb02 123 240 24 29 143.983 0.180
pb03 87 168 35 53 903.409 0.128
pb04 164 398 42 61 1060.880 0.512
pb05 164 398 30 43 641.733 0.336
pb06 325 955 48 70 3122.111 2.616
pb07 325 955 33 34 938.711 1.696
pb08 612 2112 64 91 1756.963 15.348
pb09 462 1587 85 120 331.512 11.968
pb10 234 789 110 247 1656.187 3.068
pb11 714 2814 50 58 597.113 19.208
pb12 637 2506 80 100 788.753 26.520
pb13 455 1778 67 84 706.879 8.716
pb14 816 3616 121 174 1210.623 63.448
pb15 1048 4660 111 158 1833.433 131.428
pb16 328 1420 239 543 3238.583 10.300
pb17 783 3843 99 130 639.962 52.548
pb18 702 3438 94 114 805.225 36.196
pb19 693 3393 86 104 805.356 32.976
pb20 790 4255 86 119 6056.946 44.472
pb21 780 4200 94 158 6057.702 49.548
pb22 880 4750 91 140 4938.707 61.796
pb23 1221 7216 356 1495 5775.604 604.440
pb24 1474 8734 128 174 1586.150 408.272
pb25 1386 8206 84 130 2636.618 200.364
pb26 972 6186 109 143 2162.484 112.396
pb27 1356 8682 164 232 5961.284 437.956
pb28 864 5484 114 153 3022.051 82.972
pb29 2145 14859 208 311 4805.068 2137.156
pb30 1898 13130 137 200 2994.086 988.284

Table 4: Numerical results obtained by applying the direct solution method only in the zone, and
computing the PMP-based solution in the prezone as well as in the postzone: number of variables, number
of constraints, number of iterations, number of funtion evaluations, objective value, computing time.
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Figure 3: Performance profile on the value of the objective function.
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Figure 4: Performance profile on the computing time.
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Figure 5: R2-trajectory configuration for the 13-aircraft conflict avoidance problem pb29.
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Figure 6: Optimal velocity solution curves for the 13-aircraft conflict avoidance problem pb29.

which are solved by using numerical direct shooting methods. Numerical tests on
thirty problem instances show that formulation (Ppostzone) provides the best re-
sults in terms of computing time, while formulation (Pprezone) provides a solution
on all instances, that are also the most smooth solutions.

The main advantages of our approaches are the continuity of the velocity solu-
tions, the subliminal velocity variations as suggested in the European ERASMUS
project, the accuracy on the state informations (velocities and positions, along
the whole time window), and the reasonable computing time (for small number
of aircraft involved, e.g., less than 0.5 seconds for a problem involving 4 aircraft
along a one-hour time horizon, using the formulation (Pprezone).
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