
HAL Id: hal-01569254
https://enac.hal.science/hal-01569254

Submitted on 27 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AN ADAPTATIVE MULTI-AGENT MODEL OF
DELAYS PROPAGATION IN THE AIR TRAFFIC

SYSTEM
Georges Mykoniatis, Laurent Lapasset, Andrija Vidosavljevic

To cite this version:
Georges Mykoniatis, Laurent Lapasset, Andrija Vidosavljevic. AN ADAPTATIVE MULTI-AGENT
MODEL OF DELAYS PROPAGATION IN THE AIR TRAFFIC SYSTEM. 7th International Con-
ference on Experiments / Process / System Modeling / Simulation / Optimization (7th IC-EpsMsO)
, Jul 2017, Athènes, Greece. �hal-01569254�

https://enac.hal.science/hal-01569254
https://hal.archives-ouvertes.fr

7th International Conference on “Experiments/Process/System Modeling/Simulation/Optimization”

7th IC-EPSMSO

Athens, 5-8 July, 2017

©LFME

AN ADAPTATIVE MULTI-AGENT MODEL OF DELAYS PROPAGATION IN THE

AIR TRAFFIC SYSTEM

First A. Georges Mykoniatis, Second B. Laurent lapasset, and Third C. Andrija Vidosavljevic

Ecole Nationale de l’Aviation Civile

Keywords: Delay Propagation, hub-and-spoke airline modeling, adaptive multi-agent modeling,

Abstract. In the air transportation system, airports are connected by companies operating flights in different ways.

One is to use a shuttle system, with a high number of evenly scheduled daily flights. In such a case, a delay

occurring will be smoothed out using the buffer effect of the remaining rotating flights. On the other hand,

companies operating a single rotation will only be able to mitigate the delay using the turnaround duration. It is

the same for transit flights. In existing simulation environments, such a fine structure is not taken into account,

even if some tools were designed in the context of rail transportation. The purpose of the present work is to provide

the air transportation community with an advanced delay propagation simulator using an adaptive multi-agent

model. The main contribution is the introduction of a learning procedure mimicking the airlines behavior as a

response to a delay. The mitigation effects will thus be made dependent on the rotation typology on the various

legs1 of the network and will adapt according to the outcomes of a decision. Furthermore, a priori knowledge about

a specific airline behavior (low cost, regular) may be encoded in the learning algorithm to closely adhere to reality.

1. INTRODUCTION

In the commercial sector of Air Transportation System, delays are of the great concern as they generate

disruptions and costs for the airlines, ANSPs, airport operators, ground handlers and passengers. Delay of a

flight may cause delay of consecutive flight that is operated by the same aircraft and, in the case of hub airport,

delay of connected flights due to the late transfer passengers. In 2016, around 2 million flights (20%) have been

delayed in the ECAC area, causing increase by more than 1 milliard euros of direct operating costs to the airlines

[1]. To cope with this problem, airlines pad their flight schedules including extra time between two flights.

However this increase airline’s direct cost since flight crew is being paid for more time than a flight actually

takes, and due to lower aircraft exploitation. In the similar way, uncertainty of flight schedules due to the delays

cause inefficient use of the sparse resources such as airspace and airports, which already operating at their limits.

In order to decrease delays, efficiently plan operating schedules and measures for delay mitigation, it is

important to identify delay origins but also understand mechanisms of their formation and propagation.

Study of ATC delays, delays caused by ATFM regulations in the case of airspace capacity shortage, have been

done extensively, however studies of non-ATC delays are mainly data-driven without complete understanding of

delay propagation due to the lack of airline actions as a respond to initial delays.

The current models and simulation tools used in the air traffic management domain are not able to identify clearly

what is the result or impact of a delay on the network efficiency. This situation is clearly due to the lack of

information on the mode of connections between the various legs of the flights. It is only in the last years that the

flight plan information sent to the network manager shall contain a registration number, allowing to the network

manager to identify which aircraft is used on which leg and to correlate the information. Since then a set of studies

allows us to get a better picture of the delay propagation mechanism. In early 2017, S. Belkoura, JM Peña, and M.

Zanin [2], shown that analyzing a large set of flights operating over the European airspace, that airports can be

classified into two groups: those in which outbound delays get independent of inbound ones, and those in which

large inbound delays are propagated, on average, under the form of large outbound delays. These considerations

has been motivation for the more detailed analysis of such behaviors based on airline predominant network design,

and the mechanisms for delay compensation and reduction. The objective of this paper is to present the initiative

to provide to the air transport community with an advanced delay propagation simulator using an adaptive multi-

agent model. We will start by giving some useful definitions and setting the scene in term of airline network and

types of operations, and then we will introduce the multi agent approach in how it will be used in our context. We

will then describe the State estimation and adaptive decision rules that has been used to set up our model and

simulations.

1 A flight leg is basically flight from one point to another point, a flight plan could have several legs

First A. Georges Mykoniatis, Second B. Laurent lapasset, and Third C. Andrija Vidosavljevic

2. DELAY DEFINTION AND PROPAGATION

By the most general definition, “delay is the time lapse which occurs when a planned event does not happen at

the planned time” [3]. However the way and the moment when delay is measured depend on the context. For an

airline schedule departure or arrival delay is how late a flight departs or arrives compared to an airline’s

schedule, and it is measured on the ramp. Delays could be introduce during the various phase of operations,

during the taxiing, while airborne, en-route, during arrival sequencing or departure sequencing, and recording

delay is not always an easy task. Delay propagates throughout the Air Traffic Management network because of

the interdependencies between different schedule flights. The interdependency between flights is introduced if:

performed successively using same resources such as aircraft and crews, sharing transfer passengers or sharing

airspace/airport resources. For example, a late arrival of one flight may cause a late departure of the consecutive

flight, introduce a delay in the schedule sequence of arrivals at a given airport or delay a next flight using same

apron. Therefore the main delay categorization is into concepts of Primary and Secondary delay. A primary

delay is delay that affects the initiation of the flight and it is unaffected by any earlier event. However, a

secondary or reactionary delay is accumulated, and is imposed as a consequence of the unavailability of aircraft,

crew or passengers due to disruption earlier in the day. The cause of this earlier disruption could be itself either a

primary delay at the start of the previous flight, or a reactionary delay arising from an even earlier incident.

The most common strategy for the delay prevention is to build schedules more robust to the delays by padding a

flight schedules including extra time between two flights. However, when experiencing a delay airlines take

measures for the delay mitigation. Delay may be recovered while aircraft is airborne or during turn-around process.

Each of the mentioned strategies have their costs, and to choose optimal solution to initial problem it is important

to have a knowledge of delay effect and its propagation. Due to various causes of flight interdependencies and a

network it is very complex task to model delay propagation. For the modelling of the delay propagation an

Approximate Network Delays model (AND) has been described [4] by a stochastic and dynamic queuing model

designed to compute approximately delays at each of the individual airports in a network and, more important,

how these delays propagate from one airport to another over the course of a day or other time period of interest. It

treats the airports in the network as a set of interconnected individual queuing systems. To be able to measure the

propagation of the delay the notion of effective Delay multiplier (EDM)has been introduced by Felix Mora-

Camino in early 2017 [5]. In our work we will use the EFD [5] not use the AND [4] approach. We will consider

the rotation time for an aircraft at a given airport. This rotation time will be function of the type of aircraft, of the

availability of the various resources needed for the rotation at the airport..

3. NETWORK

For the network modelling, we will start by using what have been done in 2007 by M. Alderighi, A. Centro P.

Nukamp and P. Rietveld [6]: “There is no unique or even widely used definition of what exactly constitutes an

HS (Hub and Spoke) or a PP (point to point) network. Instead, a number of definitions coexist. From a network

design perspective the HS or PP network can be described by using a simple network of four nodes:”

In their paper they found some evidence that the FSCs (Full-Service Carrier) have developed their networks as

mixed multi-HS and PP systems with a strong dominance of the HS. These configurations vary from Iberia, which

has the most spatially concentrated HS network with a two-hub radial network (Barcelona and Madrid), to British

Airways, which has the most mixed HS and PP network configuration. In particular, British Airways network is

organized such that London-Heathrow is the main hub, and Manchester, Glasgow and Edinburgh are bases with

several direct connections to European and domestic destinations. The Lufthansa network developed into a two-

HS with mixed PP structure. In particular, the hubs are Munich and Frankfurt; and the bases with PP connections

are Berlin, Hamburg and Dusseldorf. Finally, the Air France network (before the KLM merger) is classified as a

single HS configuration with Charles de Gaulle as the hub for intra- European and intercontinental traffic, and

Paris-Orly acting as a PP airport base for domestic traffic within France. Their analysis shows variations among

First A. Georges Mykoniatis, Second B. Laurent lapasset, and Third C. Andrija Vidosavljevic

LCCs (Low Cost Carriers) network configurations. While Ryanair and EasyJet have developed a pure PP structure,

Virgin Express and Air Berlin offer a modest percentage of connecting flights in Brussels and Berlin. However,

Virgin’s connectivity ratio has grown in the last few years, and it is possible that the bases of this LCC can turn

into small hubs if this trend continues in the years to come. In this work we will classified Airlines by Type (FSC,

LCC) and we will modelled their network by a set of legs. This modelling will allow to define different Network

configurations.

4. MULTI-AGENT SYSTEMS

Multi-agent systems have been used to solve many problems in operations research, like regulation of urban

transportation networks [7] design of mechanical systems [8], or path-finding problems [9].This paradigm is often

regarded as a kind of distributed artificial intelligence. Multi-agent systems are made of autonomous agents

interacting among themselves and with their environment [10]. Usually, agents have a limited perception of

environment and they partially know the internal state of their neighbors, via message exchanges.

Their behavior can either be simple (whereby reactive agents are only influenced by environmental changes) or

complex (whereby cognitive agents try to fulfill an objective).

Self-organization is a key aspect of multi-agent systems. If the rules that direct agents are carefully chosen, a

complex behavior can emerge at the system level from local interactions and behavior of agents. When multi-agent

systems are used to solve operations research problems, a carefully chosen set of agent behaviors can help to find

an overall solution to the problem (system level) by only using local rules (agents level).

Multi-agent systems can be implemented either within a computer simulation, or as a physical system that is

composed of robots that are able to communicate and to interact with their environment. When agents are

implemented within a computer simulation, computations of agents can be done in parallel, exploiting modern

hardware architectures (multi- core processors, computations on graphic card). A multi-agent system can also run

on a cluster of computers. Those systems have several advantages compared to centralized decision methods.

When correctly designed, they exhibit a good resilience when facing disruptive events [11]. Agents try to fulfill a

goal and act in order to become closer to this objective. When they are confronted to local perturbations in their

environment, they adapt their actions to take those changes into account, enabling the system to get back to a new

stable state. Since decisions are decentralized at agent’s level, the failure of an agent will not impact the whole

system. In centralized decision processes, a central regulation entity failure may prevent the system to work. In

the field of information technologies, such a central point would be defined as a Single Point of Failure (SPOF).

4.1. AMAS Approach

In the AMAS theory (Adaptive Multi-Agent Systems) [12], agents are considered as autonomous and cooperative

entities, having a partial knowledge on their environment and searching to reach a local objective. Agents of these

systems interact locally in a cooperative manner producing partial functions. Cooperation is defined as the capacity

of the agents to work together in order to reach a common objective. Thus, any activity between agents is

complementary and solidarity links exist between them. Using cooperation, the system self-adapts to stay in

cooperative state. The cooperation of all parts of the system makes the adequate function the system was designed

for “emerges”.

Local interactions allow the system to self-adapt to perturbations and so to handle dynamics without challenging

the already reached solution. Perturbations produce “Non Cooperative Situations”. To repair those situations,

agents possess mechanisms to autonomously adapt their behavior to the context [12]:

• Tuning: the agent adjusts its internal state to modify its behavior,

• Reorganization: the agent modifies the way it interacts with its neighborhoods,

• Evolution: the agent can create other agents or self-suppress when there is no other agent to produce a

functionality or when a functionality is useless.

The algorithm of an adaptive agent can be described as follow: if a Non Cooperative Situation is detected, agent

uses one or more self-adaptation mechanisms to come back to a cooperative state where it performs its nominal

behavior.

To ease the design of agents’ behavior and interactions for solving optimization problems under constraints based

on the AMAS Theory, the AMAS4Opt agent model has been proposed [13]. This model provides design patterns

for two cooperative agent roles: “constrained role” and “service role”. One agent can have one or both roles and

switches at runtime between them depending on the situation it faces. The agents having the “constrained role”

manage the constraints and must be satisfied, while the agents having the “service role” are skilled to help the

First A. Georges Mykoniatis, Second B. Laurent lapasset, and Third C. Andrija Vidosavljevic

agents under the “constrained role”. This model uses the notion of so called criticality of agents with the

“constrained role” as an engine for the cooperation between agents. We have used and extended this model to

design the agents and the general architecture of our system.

4.2. Applied to air traffic management

In the Adaptive Multi-Agent System Theory [12] agents are defined as autonomous, adaptive and cooperative

entities that possess local objective. The local cooperation between agents allows the system to self-adapt in order

to realize the function for which it is designed. Cooperation is defined as the ability agents have to work together

in order to realize a common global goal. It implies that the activities of the agents are supplementary, and

dependency links and solidarity exist between them. To deal with dynamic environments, agents possess

mechanisms enabling them to autonomously modify their organization. In order to identify the agents of the

ATLAS system, we followed the ADELFE toolkit (French acronym for “Toolkit to develop software with

emergent functionality” - Atelier de Developpement de Logiciels à Fonctionnalité Emergente).

ADELFE allows to develop software with emergent functionality [12]. The goal of this methodology is to guide

the development of adaptive multi-agent systems, through several work definitions, from preliminary requirements

to design and fast prototyping. Thus, ADELFE allows to qualify the environment of the system, the exchanged

messages and to identify the system entities.

To ease the design of agent’s behavior and interactions for solving optimization problems based on the AMAS

Theory, the AMAS4Opt agent model has been proposed [12]. This model provides design patterns for two

cooperative agent roles: “constrained role” and “service role”. One agent can have one or both roles and switches

at runtime between them depending on the situation it faces. The agents having the “constrained role” manages

the constraints and must be satisfied, while the agents having the “service role” are skilled to help the agents under

the “constrained role”. This model uses the notion of so-called criticality of agents with the “constrained role” as

an engine for the cooperation between agents. We have used and extended this model to design the agents and the

general architecture of our system. In this section, the identified agents, their behavior, interactions and the

criticality measure of agent under “constrained role” are detailed. Then, the extension of the AMAS4Opt model,

the cost measure, representing the criticality of agents under the “service role” is presented.

4.3. Agents

Given the problem description and using the ADELFE toolkit, we identified three kinds of entities:

• Cooperative agent’s types: the aircraft agent, the airline agent, the network manager…

• Active entities agent’s types: the meteorological coverage and passenger demand. These entities do not

have a goal to satisfy, but they still interact and influence agent activities and decisions,

• Passive entities agent’s types: the airport agent, aircraft agent, leg agent .These entities are considered

passive because they do not interact with other entities, they are resources.

The AMAS4Opt model allows to design the behavior and interactions between agents. In our case and given the

AMAS4Opt agent roles definition, the aircraft, airport and airline agents play the “service role”, and the network

manager agents and meteorological agents play the “constrained role”.

The second essential element of our agents is the set of links between it and others local’s agents. We will discuss

later this notion of locality. At this point, we would like to focus on the necessity to maintain a coherent set of

links between agents during all the simulation time. A link is a direct connection between two agents, by which

both can exchange information related to their internal state. For example, when an aircraft need to takeoff, he

knows its delay from the departure airport. So, in the lifecycle presented in Figure 2: Multi-agent system lifecycle,

when the agent aircraft is activating, it exchanges delay messages with its airport. For example, aircraft agent’s set

of links contains a link between airport departure and the aircraft.

First A. Georges Mykoniatis, Second B. Laurent lapasset, and Third C. Andrija Vidosavljevic

Figure 2: Multi-agent system lifecycle

4.3.1. Agents lifecycle

In our system and based on the agent behavior definitions given by AMAS4Opt, the propagation of the delay is

provided by message passing between its agents. The life cycle of each agent is decomposed into three steps:

“Perceive - Decide - Act”. During phases of perception and action, agents receive and send messages. The phase

of decision is the key step. Indeed, according to its perception and its state, the agent chooses which action it has

to perform. The cycle “Perceive - Decide - Act” is repeated until the system provides a solution. As the agents

only have partial perceptions, they do not know if a global solution is reached. In order to detect that a good and

coherent solution is obtained, and stop the agents, we introduce an Observer: as its name suggests, its function is

only to observe the evolution of the system. Whenever this one is stable: agents do not change their state, the

Observer asks all the agents to stop and exposes their states. It is very important to note that the Observer has no

interaction with agents during the solving, it only observes and stops them: it does not belong to the solving

process.

5. STATE ESTIMATION AND ADAPTIVE DECISION RULES

5.1. Agent attributes and operations

In a simulation framework, a perfect knowledge of the situation is generally assumed, so that the state of each

entity in the simulated world is known in advance. When robustness and adaptability are key ingredients of the

modeled system, such an approach is not satisfying as it will not reproduce the way real actors will behave. In

order to gain an extra level of realism in the framework introduced in this work, the knowledge of the internal

states of the agents involved in the simulation will be partial and has to be estimated for the remote entities. The

following assumptions are made to make the system amenable to mathematical modeling:

• The agents ni,Ai 1... are vertices in a connectivity graph with one edge ije for each communication

channel.

• Communications are perfectly reliable and do not suffer transmission delays.

• Each agent has a state, that is made of categorical attributes (e.g; “runway saturated”, “normal operation”)

and continuous attributes (e.g; number of inbound flights in the next 30mn, number of taxiing aircraft).

• The knowledge of its own state is perfect for an agent, but only an indirect observation of it is made

available to the others.

• Decision rules applied to mitigate delays are encoded as a decision tree that is learned during the

simulation process. The internal nodes are based on literals that can be of the

5.2. Evolving the agent system

Following the general principles of multi agent modeling, that is collective behavior through communication, the

delay simulator will implement the two classical phases of message passing and decision. However, since the

environment is only known in a probabilistic fashion, an extra level of adaptation is needed. Furthermore, the

successive phases in the lifecycle of an agent are assumed to be synchronous over all the system: an agent cannot

enter a stage before all the others are ready to perform the same operation. It will not be a problem when the

simulator is operated on a single compute node, even in a multithreading environment, but some care must be

First A. Georges Mykoniatis, Second B. Laurent lapasset, and Third C. Andrija Vidosavljevic

taken when spreading over a cluster. In such a case, a clock message must be issued by a master node, so that all

agents involved in the process know the current simulation stage and acknowledge in turn. Currently, such a case

was not covered and the implementation is deferred to future work.

The process implemented to complete one iteration is given below:

• In the communication phase, each agent broadcast a set of performances indicators that partially reflects

its own state.

• The state of neighboring agents is estimated, using a hidden markov model [14].

• The decision stage is then performed, using decision trees [15].

• A backward update step is performed, starting from the terminal nodes involved in the decision, and

propagating errors.

5.3. State estimation for neighbors

To make the model amenable to statistical thinking, it is assumed that the state of neighbors is a categorical random

variable. Since this assumption does not complies with the communication process described above, that makes

use of performance indicators that are real variables, a preprocessing phase is applied to convert them to a single

or a vector of categorical states. The rules applied to perform this operation are based on experts experience and

are fixed during all the simulation. When trying to estimate the state of an agent, given only partial observations

of it, it makes sense to assume that the state evolution is governed by a Markov chain with unknown transition

matrix. It can be further generalized to 𝑘 −markovian processes by gathered successive states into 𝑘 −uples, so

that most of usual situations can be handled that way. The classical Baum-Welch algorithm is used to learn the

unknown parameters. Please note that it is a local optimization procedure (in fact an adaptation of the EM-

algorithm to hidden Markov chains), so the initialization is critical in finding the correct parameters. Expert

knowledge about true operational practices are thus used as a starting point for the transition matrix. For the sake

of completeness, the Baum-Welch algorithm [16] is given below. The estimated state for agent j at iteration i will

be denoted by 𝑋𝑖
𝑗
, while the estimated transition matrix will be 𝑀𝑖

𝑗
, with elements 𝑀𝑖

𝑗(𝑙𝑘) = 𝑃(𝑋𝑖+1 = 𝑘 |𝑋𝑖 =

𝑙). Finally, the observations and the state are related by an estimated conditional probability matrix 𝑂𝑖
𝑗
 with

elements𝑂𝑖
𝑗(𝑙𝑘) = 𝑃(𝑌𝑖 = 𝑙|𝑋𝑖 = 𝑘).

The first step in the Baum-Welch algorithm is to estimate for all states k the probability of being in state k at

iteration i. First, the probability of the chain of observations 𝑌1, … , 𝑌𝑖 knowing that the current state is 𝑘 can be

obtained by forward propagation. Namely:

𝑃(𝑌1 = 𝑙, 𝑋1 = 𝑘) = 𝑃(𝑌1 = 𝑙|𝑋1 = 𝑘)𝑃(𝑋1 = 𝑘) = 𝑂1
𝑗(𝑘𝑙)𝑃(𝑋1 = 𝑘)

and recursively:

𝑃(𝑌1 = 𝑙1, … , 𝑌𝑝 = 𝑙𝑝, 𝑋𝑝 = 𝑘) = 𝑃(𝑌𝑝 = 𝑙𝑝|𝑋𝑝 = 𝑘)𝑃(𝑋𝑝 = 𝑘, 𝑌1 = 𝑙1, … , 𝑌𝑝−1 = 𝑙𝑝−1) =

𝑂𝑝
𝑗
 (𝑘𝑙𝑝) ∑ 𝑀𝑝

𝑗(𝑖𝑘)𝑃(𝑌1 = 𝑙1, 𝑌𝑝−1 = 𝑙𝑝−1, 𝑋𝑝−1 = 𝑖)𝑛
𝑖=1

The previous probability is generally denoted as 𝛼𝑝(𝑘).

Learning matrix 𝑀𝑖+1
𝑗

 and emission probabilities 𝑂𝑖+1
𝑗

 is made using maximum likelihood estimation, that is in

this case a simple counting estimator. Let (𝑙1, … , 𝑙𝑄) be a sequence of observations over a size Q time window

(please note that due to the Markov property, it can be of arbitrary origin). The probability:

𝛽𝑘(𝑖) = 𝑃(𝑌𝑘+1 = 𝑙𝑘+1, … , 𝑌𝑄 = 𝑙𝑄|𝑋𝑘 = 𝑖)

Can be estimated using a backward algorithm:

1. Initialization 𝛽𝑄(𝑖) = 1

2. Back-propagation 𝛽𝑘 (𝑖) = ∑ 𝛽𝑘+1
𝑛
𝑝=1 (𝑝)𝑂(𝑙𝑘+1𝑝)𝑀𝑗(𝑖𝑝)

The probability of being in state i at time k knowing the observation sequence can be obtained as:

𝛾𝑘(𝑖) =
𝛼𝑘(𝑖)𝛽_𝑘(𝑖)

∑ 𝛼𝑘(𝑖)𝛽𝑘(𝑖)𝑛
𝑖=1

And finally, the joint probability of state p and state l at time k is computed by the formula:

𝜉𝑘(𝑝𝑙) = 𝛼𝑘(𝑝)𝑀(𝑝𝑙)𝑂(𝑙𝑙𝑘+1)𝛽𝑘+1(𝑙)𝜆 with 𝜆 a normalizing constant that ensure that all the 𝜉𝑘 sum to 1.

The maximum likelihood estimator of the transition matrix is then:

𝑀(𝑝𝑙) =
∑ 𝜉𝑘(𝑝𝑙)

𝑄
𝑘=1

∑ 𝛾𝑘(𝑝)
𝑄
𝑘=1

Similarly, the observation probabilities are estimated by:

First A. Georges Mykoniatis, Second B. Laurent lapasset, and Third C. Andrija Vidosavljevic

𝑂(𝑝𝑙) =
∑ 1𝑙𝑘=𝑙𝛾𝑘(𝑝)

𝑄
𝑘=1

∑ 𝛾𝑘(𝑝)
𝑄
𝑘=1

And the state probability vector as 𝛾1. The Baum-Welch algorithm is easily implemented in pure Java, with a

minimal impact on the performance compared to numerical computing oriented languages like Fortran. Each agent

maintains an hidden markov model for all its neighbors, the update being performed during the communication

phase. Since the state estimations of the agents are independent, it is advisable to split the set of agents into equally

sized batches, and to distribute the computation over all the available cores of the processor. In the case of clusters,

the same process can be applied to speed up the computation. However, communication cost may become

dominant if the size of agent pools present on each compute node is too low, so that care must be taken to use this

kind of parallelism only on large simulation instances. In the current implementation, no cluster computation is

available, but is planned for future releases.

5.4. Agent rules

The agents will compute their states synchronously during the update phase. The current state of the agent and the

estimated ones of its neighbors are considered as attributes of a decision tree whose leaves are the updates states.

While many algorithms exist for learning such structures, the special nature of the agent system requires some

features:

• The tree learning must be adapted to data streams, since it must be performed during the simulation run.

• Some attributes are random variables, namely the states of the neighbors that are only estimated. The

learning algorithm must thus be able to work with uncertain data.

To cope with these requirements, a novel learning procedure, the Dirichlet Decision Tree (DDT) is proposed. First,

for a given agent, decision attributes can be split into categorical values, that are elements of a finite set, and

continuous values that belong to an interval of the real numbers. To simplify the problem, only categorical values

will be considered as estimated states of neighboring agents, while the current agent has access to continuous

values that may be understood as key performance indicators (KPI). With this assumption, inner nodes can be

equality testing of the form 𝑎𝑡𝑖 = 𝑣𝑗 for attribute number i and value 𝑣𝑗 when 𝑎𝑡𝑖 is categorical or real inequality

𝑎𝑡𝑖 ≤ 𝑣𝑗 for continuous attributes. In this last case, 𝑎𝑡𝑖 is not considered to be a random variable, but will be such

in the former if it is estimated. The decision tree is initialized either from an expert advice or from an already

build database of examples. Since there is no need to special treatment in this first stage, a very classical algorithm

based on entropy is selected. The samples of the initial databases are denoted as (𝑥1
𝑖 , … , 𝑥𝑁

𝑖 , 𝑠𝑖), 𝑖 = 1 … 𝑃 where

for the sample number i, 𝑠𝑖 is the state obtained as a response to the vector of attributes 𝑥1
𝑖 , … , 𝑥𝑁

𝑖 . Please note that

in this phase, no attribute is a random variable. The overall process is summarized below.

1. The entropy of the complete sample is computed as: 𝐻 = ∑ 𝑝𝑗 log2 𝑝𝑗 𝑛
𝑗=1 , where 𝑝𝑗 is the estimated

probability of occurrence of state j, given by 𝑝𝑗 = 𝑁−1 ∑ 1𝑠𝑖=𝑗
𝑁
𝑖=1

2. For each attribute k, the entropy of the sample relative to the attribute is defined to be

∑ 𝑞𝑙 ∑ 𝑝𝑗
𝑙 log2 𝑝𝑗

𝑙𝑛
𝑗=1

𝑄𝑘
𝑙=1 where 𝑄𝑘is the number of possible values for attribute k, 𝑞𝑙 = 𝑁−1 ∑ 1

𝑥𝑘
𝑖 =𝑙

𝑁
𝑖=1 and

𝑝𝑗
𝑙 = ∑

1
𝑠𝑖=𝑗

1
𝑥𝑘

𝑖 =𝑙

𝑁𝑞𝑙

𝑁
𝑖=1

3. The attribute that maximizes the difference between the original entropy and the relative entropy will be

selected at the root node.

4. The process is iterated down to leaves using at each stage the remaining part of the original sample that

remains after application of the rules borne by the parent nodes.

 It worth to note that estimating probabilities with counting ratio is a maximum likelihood procedure when the

underlying probability distribution is multinomial. When using the output of hidden markov models , the state is

no longer deterministic, but follows a probability distribution. In such a case, the procedure makes use of a

Bayesian estimator, with a Dirichlet distribution as the conjugate prior. At each node, the probabilities 𝑝𝑗
𝑙 are

assumed to be drawn from a Dirichlet probability law with unknown parameters 𝛼1, … , 𝛼𝑛:

𝑃(𝑝1, … , 𝑝𝑛) =
Γ(∑ 𝛼𝑖𝑖)

∏ Γ(𝛼𝑖)𝑖

∏ 𝑝𝑖
𝑎𝑖−1

𝑖

A sufficient statistic for the estimation is given by the sum ∑ log 𝑝𝑖𝑖 , which can be update online. While the

maximum likelihood estimator is obtained by solving a system of nonlinear equations, only a few fixed-point

iterations is enough to get the solution up to machine precision. Once the vector of parameters (𝛼1, … , 𝛼𝑛) has

been obtained, the Bayes estimator for the probabilities (𝑝1 , … , 𝑝𝑛) assuming a Dirichlet prior distribution can be

First A. Georges Mykoniatis, Second B. Laurent lapasset, and Third C. Andrija Vidosavljevic

obtained and replaces the counting estimator. As the prior distribution estimation requires some probabilities

samples, a sliding window procedure is applied. The resulting algorithm can correctly estimate the decision

attributes, even when the states of the linked agents is only known probabilistically.

6. CONCLUSION AND FUTURE WORK

The work presented here is in early stage of development, and complete testing is yet to be done. However, the

estimation and learning procedures are operational on test situations and make the agents able to mimic real world

behaviors. A new principle for stochastic decisions was also introduced, thanks to the use of a priori Dirichlet

distribution, that gives a mean to cope with uncertain or noise contaminated observations. In a future work, an in-

depth analysis of the algorithm will be done, and an extension to continuous valued attributes will be sought after.

All the code will be made publicly available, and will hopefully be adopted in the air traffic management

community as a mean of testing new concepts applicable to delay mitigation.

REFERENCES

[1] PRC - EUROCONTROL Performance Review Commission, «Performance Review Report Executive

Summary – PRR 2016,» 2017.

[2] S. Belkoura, J. Peña and M. Zanin, “Beyond Linear Delay Multipliers in Air Transport,” Journal of

Advanced Transportation Volume 2017, ,, vol. Volume 2017, no. Article ID 8139215, p. 11 pages, 2017.

[3] CODA - EUROCONTROL Central Office for Delay Analysis, «A Matter of Time: Air Traffic Delay in

Europe,» 2007.

[4] N. Pyrgiotis, K. Malone and A. Odoni, “Modeling delay propagation within an airport network,”

Transportation Research, vol. Part C, no. 27, pp. pages: 60-75, 2013.

[5] F. Moracamino, L. Weigang, O. Diaz Olariaga and G. Mykoniatis, “Network Delay Multipliers and Air

Traffic Management,” in Roadef, Metz, 2017.

[6] M. ALDERIGHI, A. CENTO, P. NIJKAMP and P. RIETVELD, “Assessment of New Hub-and-Spoke and

Point-to-Point Airline Network Configurations,” Transport Reviews,, vol. Vol. 27, no. 5, p. 529–549,

September 2007.

[7] F. Balbo and S. Pinson, “An agent oriented approach to transportation regulation support systems,” in in

Proceedings of the 5th Workshop in Agent in Traffic and Transport pp. 225–242, Estoril, Portugal, 2008.

[8] D. Capera, M. Gleizes and P. Glize, “Self-organizing agents for mechanical design,” Engineering Self-

Organising Systems, pp. 169-185, 2004.

[9] M. Dorigo, M. Birattari and T. Stutzle, “Ant colony Optimization,” Computational Intelligence Magazine,

IEEE, vol. vol. 1, no. 4, pp. pp. 28–39,, November 2006.

[10] J. Ferber, Multi-agent systems: an introduction to distributed artificial intelligence, vol. 1, Harlow:

Addison Wesley Longman - ISBN 0-201-36048-9, 1999.

[11] C. Rieger, K. Moore et T. Baldwin, «Resilient control systems: A multi-agent dynamic systems

perspective,» chez Electro/Information Technology (EIT), 2013 IEEE International Conference, Rapid

City, SD, Region 04 - Central USA, 2013.

[12] M. Gleizes, “Self-adaptive Complex Systems,” in European Workshop on Multi-Agent Systems,

Maastricht, The Netherlands, 2012.

[13] E. Kaddoum, “Optimization under constraints of distributed complex problems using cooperative self-

organization,” Doctoral dissertation, Université de Toulouse, 2011.

[14] L. E. Baum et Petrie, «Statistical Inference for Probabilistic Functions of Finite State Markov Chains,» The

Annals of Mathematical Statistics, p. 1554–1563, 1966.

[15] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, vol. 1, pp. 81-106, 1986.

[16] C. Sammut and G. Webb, “Baum-Welch Algorithm,” in Encyclopedia of Machine Learning, 2010.

[17] P. Wang, L. Schaefer and L. Wojcik, “Flight Connections and their impacts on Delay propagation,” in

Digital Avionics Systems Conference, 2003. DASC '03. The 22nd, Indianapolis, IN, USA, 2003.

