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Abstract. In the air transportation system, airports are connected by companies operating flights in different ways. 

One is to use a shuttle system, with a high number of evenly scheduled daily flights.  In such a case, a delay 

occurring will be smoothed out using the buffer effect of the remaining rotating flights. On the other hand, 

companies operating a single rotation will only be able to mitigate the delay using the turnaround duration. It is 

the same for transit flights. In existing simulation environments, such a fine structure is not taken into account, 

even if some tools were designed in the context of rail transportation. The purpose of the present work is to provide 

the air transportation community with an advanced delay propagation simulator using an adaptive multi-agent 

model. The main contribution is the introduction of a learning procedure mimicking the airlines behavior as a 

response to a delay. The mitigation effects will thus be made dependent on the rotation typology on the various 

legs1 of the network and will adapt according to the outcomes of a decision. Furthermore, a priori knowledge about 

a specific airline behavior (low cost, regular) may be encoded in the learning algorithm to closely adhere to reality.  

1. INTRODUCTION 

In the commercial sector of Air Transportation System, delays are of the great concern as they generate 

disruptions and costs for the airlines, ANSPs, airport operators, ground handlers and passengers. Delay of a 

flight may cause delay of consecutive flight that is operated by the same aircraft and, in the case of hub airport, 

delay of connected flights due to the late transfer passengers. In 2016, around 2 million flights (20%) have been 

delayed in the ECAC area, causing increase by more than 1 milliard euros of direct operating costs to the airlines 

[1]. To cope with this problem, airlines pad their flight schedules including extra time between two flights. 

However this increase airline’s direct cost since flight crew is being paid for more time than a flight actually 

takes, and due to lower aircraft exploitation. In the similar way, uncertainty of flight schedules due to the delays 

cause inefficient use of the sparse resources such as airspace and airports, which already operating at their limits. 

In order to decrease delays, efficiently plan operating schedules and measures for delay mitigation, it is 

important to identify delay origins but also understand mechanisms of their formation and propagation. 

Study of ATC delays, delays caused by ATFM regulations in the case of airspace capacity shortage, have been 

done extensively, however studies of non-ATC delays are mainly data-driven without complete understanding of 

delay propagation due to the lack of airline actions as a respond to initial delays. 

The current models and simulation tools used in the air traffic management domain are not able to identify clearly 

what is the result or impact of a delay on the network efficiency. This situation is clearly due to the lack of 

information on the mode of connections between the various legs of the flights. It is only in the last years that the 

flight plan information sent to the network manager shall contain a registration number, allowing to the network 

manager to identify which aircraft is used on which leg and to correlate the information. Since then a set of studies 

allows us to get a better picture of the delay propagation mechanism. In early 2017, S. Belkoura, JM Peña, and M. 

Zanin [2], shown that analyzing a large set of flights operating over the European airspace, that airports can be 

classified into two groups: those in which outbound delays get independent of inbound ones, and those in which 

large inbound delays are propagated, on average, under the form of large outbound delays. These considerations 

has been motivation for the more detailed analysis of such behaviors based on airline predominant network design, 

and the mechanisms for delay compensation and reduction. The objective of this paper is to present the initiative 

to provide to the air transport community with an advanced delay propagation simulator using an adaptive multi-

agent model. We will start by giving some useful definitions and setting the scene in term of airline network and 

types of operations, and then we will introduce the multi agent approach in how it will be used in our context. We 

will then describe the State estimation and adaptive decision rules that has been used to set up our model and 

simulations. 

                                                           
1 A flight leg is basically flight from one point to another point, a flight plan could have several legs 
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2. DELAY DEFINTION AND PROPAGATION 

By the most general definition, “delay is the time lapse which occurs when a planned event does not happen at 

the planned time” [3]. However the way and the moment when delay is measured depend on the context. For an 

airline schedule departure or arrival delay is how late a flight departs or arrives compared to an airline’s 

schedule, and it is measured on the ramp. Delays could be introduce during the various phase of operations, 

during the taxiing, while airborne, en-route, during arrival sequencing or departure sequencing, and recording 

delay is not always an easy task. Delay propagates throughout the Air Traffic Management network because of 

the interdependencies between different schedule flights. The interdependency between flights is introduced if: 

performed successively using same resources such as aircraft and crews, sharing transfer passengers or sharing 

airspace/airport resources. For example, a late arrival of one flight may cause a late departure of the consecutive 

flight, introduce a delay in the schedule sequence of arrivals at a given airport or delay a next flight using same 

apron. Therefore the main delay categorization is into concepts of Primary and Secondary delay. A primary 

delay is delay that affects the initiation of the flight and it is unaffected by any earlier event. However, a 

secondary or reactionary delay is accumulated, and is imposed as a consequence of the unavailability of aircraft, 

crew or passengers due to disruption earlier in the day. The cause of this earlier disruption could be itself either a 

primary delay at the start of the previous flight, or a reactionary delay arising from an even earlier incident.  

The most common strategy for the delay prevention is to build schedules more robust to the delays by padding a 

flight schedules including extra time between two flights. However, when experiencing a delay airlines take 

measures for the delay mitigation. Delay may be recovered while aircraft is airborne or during turn-around process. 

Each of the mentioned strategies have their costs, and to choose optimal solution to initial problem it is important 

to have a knowledge of delay effect and its propagation. Due to various causes of flight interdependencies and a 

network it is very complex task to model delay propagation. For the modelling of the delay propagation an 

Approximate Network Delays model (AND) has been described [4] by a stochastic and dynamic queuing model 

designed to compute approximately delays at each of the individual airports in a network and, more important, 

how these delays propagate from one airport to another over the course of a day or other time period of interest. It 

treats the airports in the network as a set of interconnected individual queuing systems. To be able to measure the 

propagation of the delay the notion of effective Delay multiplier (EDM)has been introduced by Felix Mora-

Camino in early 2017 [5]. In our work we will use the EFD [5] not use the AND [4] approach.  We will consider 

the rotation time for an aircraft at a given airport. This rotation time will be function of the type of aircraft, of the 

availability of the various resources needed for the rotation at the airport..  

3. NETWORK 

For the network modelling, we will start by using what have been done in 2007 by M. Alderighi, A. Centro P. 

Nukamp and P. Rietveld [6]: “There is no unique or even widely used definition of what exactly constitutes an 

HS (Hub and Spoke) or a PP (point to point) network. Instead, a number of definitions coexist. From a network 

design perspective the HS or PP network can be described by using a simple network of four nodes:” 

 
In their paper they found some evidence that the FSCs (Full-Service Carrier) have developed their networks as 

mixed multi-HS and PP systems with a strong dominance of the HS. These configurations vary from Iberia, which 

has the most spatially concentrated HS network with a two-hub radial network (Barcelona and Madrid), to British 

Airways, which has the most mixed HS and PP network configuration. In particular, British Airways network is 

organized such that London-Heathrow is the main hub, and Manchester, Glasgow and Edinburgh are bases with 

several direct connections to European and domestic destinations. The Lufthansa network developed into a two-

HS with mixed PP structure. In particular, the hubs are Munich and Frankfurt; and the bases with PP connections 

are Berlin, Hamburg and Dusseldorf. Finally, the Air France network (before the KLM merger) is classified as a 

single HS configuration with Charles de Gaulle as the hub for intra- European and intercontinental traffic, and 

Paris-Orly acting as a PP airport base for domestic traffic within France. Their analysis shows variations among 
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LCCs (Low Cost Carriers) network configurations. While Ryanair and EasyJet have developed a pure PP structure, 

Virgin Express and Air Berlin offer a modest percentage of connecting flights in Brussels and Berlin. However, 

Virgin’s connectivity ratio has grown in the last few years, and it is possible that the bases of this LCC can turn 

into small hubs if this trend continues in the years to come. In this work we will classified Airlines by Type (FSC, 

LCC) and we will modelled their network by a set of legs. This modelling will allow to define different Network 

configurations. 

4. MULTI-AGENT SYSTEMS 

Multi-agent systems have been used to solve many problems in operations research, like regulation of urban 

transportation networks [7] design of mechanical systems [8], or path-finding problems [9].This paradigm is often 

regarded as a kind of distributed artificial intelligence. Multi-agent systems are made of autonomous agents 

interacting among themselves and with their environment [10]. Usually, agents have a limited perception of 

environment and they partially know the internal state of their neighbors, via message exchanges. 

Their behavior can either be simple (whereby reactive agents are only influenced by environmental changes) or 

complex (whereby cognitive agents try to fulfill an objective). 

Self-organization is a key aspect of multi-agent systems. If the rules that direct agents are carefully chosen, a 

complex behavior can emerge at the system level from local interactions and behavior of agents. When multi-agent 

systems are used to solve operations research problems, a carefully chosen set of agent behaviors can help to find 

an overall solution to the problem (system level) by only using local rules (agents level). 

Multi-agent systems can be implemented either within a computer simulation, or as a physical system that is 

composed of robots that are able to communicate and to interact with their environment. When agents are 

implemented within a computer simulation, computations of agents can be done in parallel, exploiting modern 

hardware architectures (multi- core processors, computations on graphic card). A multi-agent system can also run 

on a cluster of computers. Those systems have several advantages compared to centralized decision methods. 

When correctly designed, they exhibit a good resilience when facing disruptive events [11]. Agents try to fulfill a 

goal and act in order to become closer to this objective. When they are confronted to local perturbations in their 

environment, they adapt their actions to take those changes into account, enabling the system to get back to a new 

stable state. Since decisions are decentralized at agent’s level, the failure of an agent will not impact the whole 

system. In centralized decision processes, a central regulation entity failure may prevent the system to work. In 

the field of information technologies, such a central point would be defined as a Single Point of Failure (SPOF). 

4.1. AMAS Approach 

In the AMAS theory (Adaptive Multi-Agent Systems) [12], agents are considered as autonomous and cooperative 

entities, having a partial knowledge on their environment and searching to reach a local objective. Agents of these 

systems interact locally in a cooperative manner producing partial functions. Cooperation is defined as the capacity 

of the agents to work together in order to reach a common objective. Thus, any activity between agents is 

complementary and solidarity links exist between them. Using cooperation, the system self-adapts to stay in 

cooperative state. The cooperation of all parts of the system makes the adequate function the system was designed 

for “emerges”. 

Local interactions allow the system to self-adapt to perturbations and so to handle dynamics without challenging 

the already reached solution. Perturbations produce “Non Cooperative Situations”. To repair those situations, 

agents possess mechanisms to autonomously adapt their behavior to the context [12]: 

• Tuning: the agent adjusts its internal state to modify its behavior, 

• Reorganization: the agent modifies the way it interacts with its neighborhoods, 

• Evolution: the agent can create other agents or self-suppress when there is no other agent to produce a 

functionality or when a functionality is useless. 

The algorithm of an adaptive agent can be described as follow: if a Non Cooperative Situation is detected, agent 

uses one or more self-adaptation mechanisms to come back to a cooperative state where it performs its nominal 

behavior. 

To ease the design of agents’ behavior and interactions for solving optimization problems under constraints based 

on the AMAS Theory, the AMAS4Opt agent model has been proposed [13]. This model provides design patterns 

for two cooperative agent roles: “constrained role” and “service role”. One agent can have one or both roles and 

switches at runtime between them depending on the situation it faces. The agents having the “constrained role” 

manage the constraints and must be satisfied, while the agents having the “service role” are skilled to help the 
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agents under the “constrained role”. This model uses the notion of so called criticality of agents with the 

“constrained role” as an engine for the cooperation between agents. We have used and extended this model to 

design the agents and the general architecture of our system. 

4.2. Applied to air traffic management 

In the Adaptive Multi-Agent System Theory [12] agents are defined as autonomous, adaptive and cooperative 

entities that possess local objective. The local cooperation between agents allows the system to self-adapt in order 

to realize the function for which it is designed. Cooperation is defined as the ability agents have to work together 

in order to realize a common global goal. It implies that the activities of the agents are supplementary, and 

dependency links and solidarity exist between them. To deal with dynamic environments, agents possess 

mechanisms enabling them to autonomously modify their organization. In order to identify the agents of the 

ATLAS system, we followed the ADELFE toolkit (French acronym for “Toolkit to develop software with 

emergent functionality” - Atelier de Developpement de Logiciels à Fonctionnalité Emergente). 

ADELFE allows to develop software with emergent functionality [12]. The goal of this methodology is to guide 

the development of adaptive multi-agent systems, through several work definitions, from preliminary requirements 

to design and fast prototyping. Thus, ADELFE allows to qualify the environment of the system, the exchanged 

messages and to identify the system entities. 

To ease the design of agent’s behavior and interactions for solving optimization problems based on the AMAS 

Theory, the AMAS4Opt agent model has been proposed [12]. This model provides design patterns for two 

cooperative agent roles: “constrained role” and “service role”. One agent can have one or both roles and switches 

at runtime between them depending on the situation it faces. The agents having the “constrained role” manages 

the constraints and must be satisfied, while the agents having the “service role” are skilled to help the agents under 

the “constrained role”. This model uses the notion of so-called criticality of agents with the “constrained role” as 

an engine for the cooperation between agents. We have used and extended this model to design the agents and the 

general architecture of our system. In this section, the identified agents, their behavior, interactions and the 

criticality measure of agent under “constrained role” are detailed. Then, the extension of the AMAS4Opt model, 

the cost measure, representing the criticality of agents under the “service role” is presented. 

4.3. Agents  

Given the problem description and using the ADELFE toolkit, we identified three kinds of entities: 

• Cooperative agent’s types: the aircraft agent, the airline agent, the network manager… 

• Active entities agent’s types: the meteorological coverage and passenger demand. These entities do not 

have a goal to satisfy, but they still interact and influence agent activities and decisions, 

• Passive entities agent’s types: the airport agent, aircraft agent, leg agent .These entities are considered 

passive because they do not interact with other entities, they are resources. 

The AMAS4Opt model allows to design the behavior and interactions between agents. In our case and given the 

AMAS4Opt agent roles definition, the aircraft, airport and airline agents play the “service role”, and the network 

manager agents and meteorological agents play the “constrained role”. 

The second essential element of our agents is the set of links between it and others local’s agents. We will discuss 

later this notion of locality. At this point, we would like to focus on the necessity to maintain a coherent set of 

links between agents during all the simulation time. A link is a direct connection between two agents, by which 

both can exchange information related to their internal state. For example, when an aircraft need to takeoff, he 

knows its delay from the departure airport. So, in the lifecycle presented in Figure 2:  Multi-agent system lifecycle, 

when the agent aircraft is activating, it exchanges delay messages with its airport. For example, aircraft agent’s set 

of links contains a link between airport departure and the aircraft. 
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Figure 2:  Multi-agent system lifecycle 

4.3.1. Agents lifecycle  

In our system and based on the agent behavior definitions given by AMAS4Opt, the propagation of the delay is 

provided by message passing between its agents. The life cycle of each agent is decomposed into three steps: 

“Perceive - Decide - Act”. During phases of perception and action, agents receive and send messages. The phase 

of decision is the key step. Indeed, according to its perception and its state, the agent chooses which action it has 

to perform. The cycle “Perceive - Decide - Act” is repeated until the system provides a solution. As the agents 

only have partial perceptions, they do not know if a global solution is reached. In order to detect that a good and 

coherent solution is obtained, and stop the agents, we introduce an Observer: as its name suggests, its function is 

only to observe the evolution of the system. Whenever this one is stable: agents do not change their state, the 

Observer asks all the agents to stop and exposes their states. It is very important to note that the Observer has no 

interaction with agents during the solving, it only observes and stops them: it does not belong to the solving 

process. 

5. STATE ESTIMATION AND ADAPTIVE DECISION RULES 

5.1. Agent attributes and operations 

In a simulation framework, a perfect knowledge of the situation is generally assumed, so that the state of each 

entity in the simulated world is known in advance. When robustness and adaptability are key ingredients of the 

modeled system, such an approach is not satisfying as it will not reproduce the way real actors will behave. In 

order to gain an extra level of realism in the framework introduced in this work, the knowledge of the internal 

states of the agents involved in the simulation will be partial and has to be estimated for the remote entities. The 

following assumptions are made to make the system amenable to mathematical modeling: 

• The agents ni,Ai 1... are vertices in a connectivity graph with one edge ije for each communication 

channel. 

• Communications are perfectly reliable and do not suffer transmission delays. 

• Each agent has a state, that is made of categorical attributes (e.g; “runway saturated”, “normal operation”) 

and continuous attributes (e.g; number of inbound flights in the next 30mn, number of taxiing aircraft). 

• The knowledge of its own state is perfect for an agent, but only an indirect observation of it is made 

available to the others. 

• Decision rules applied to mitigate delays are encoded as a decision tree that is learned during the 

simulation process. The internal nodes are based on literals that can be of the  

5.2. Evolving the agent system 

Following the general principles of multi agent modeling, that is collective behavior through communication, the 

delay simulator will implement the two classical phases of message passing and decision. However, since the 

environment is only known in a probabilistic fashion, an extra level of adaptation is needed. Furthermore, the 

successive phases in the lifecycle of an agent are assumed to be synchronous over all the system: an agent cannot 

enter a stage before all the others are ready to perform the same operation. It will not be a problem when the 

simulator is operated on a single compute node, even in a multithreading environment, but some care must be 
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taken when spreading over a cluster. In such a case, a clock message must be issued by a master node, so that all 

agents involved in the process know the current simulation stage and acknowledge in turn. Currently, such a case 

was not covered and the implementation is deferred to future work.  

The process implemented to complete one iteration is given below: 

• In the communication phase, each agent broadcast a set of performances indicators that partially reflects 

its own state. 

• The state of neighboring agents is estimated, using a hidden markov model [14].  

• The decision stage is then performed, using decision trees [15]. 

• A backward update step is performed, starting from the terminal nodes involved in the decision, and 

propagating errors. 

5.3. State estimation for neighbors 

To make the model amenable to statistical thinking, it is assumed that the state of neighbors is a categorical random 

variable. Since this assumption does not complies with the communication process described above, that makes 

use of performance indicators that are real variables, a preprocessing phase is applied to convert them to a single 

or a vector of categorical states. The rules applied to perform this operation are based on experts experience and 

are fixed during all the simulation. When trying to estimate the state of an agent, given only partial observations 

of it, it makes sense to assume that the state evolution is governed by a Markov chain with unknown transition 

matrix. It can be further generalized to 𝑘 −markovian processes by gathered successive states into 𝑘 −uples, so 

that most of usual situations can be handled that way. The classical Baum-Welch algorithm is used to learn the 

unknown parameters. Please note that it is a local optimization procedure (in fact an adaptation of the EM-

algorithm to hidden Markov chains), so the initialization is critical in finding the correct parameters. Expert 

knowledge about true operational practices are thus used as a starting point for the transition matrix. For the sake 

of completeness, the Baum-Welch algorithm [16] is given below. The estimated state for agent j at iteration i will 

be denoted by 𝑋𝑖
𝑗
, while the estimated transition matrix will be 𝑀𝑖

𝑗
, with elements 𝑀𝑖

𝑗(𝑙𝑘) = 𝑃(𝑋𝑖+1 = 𝑘 |𝑋𝑖 =

𝑙). Finally, the observations and the state are related by an estimated conditional probability matrix 𝑂𝑖
𝑗
 with 

elements𝑂𝑖
𝑗(𝑙𝑘) = 𝑃(𝑌𝑖 = 𝑙|𝑋𝑖 = 𝑘). 

The first step in the Baum-Welch algorithm is to estimate for all states k the probability of being in state k at 

iteration i. First, the probability of the chain of observations 𝑌1, … , 𝑌𝑖 knowing that the current state is 𝑘 can be 

obtained by forward propagation. Namely: 

𝑃(𝑌1 = 𝑙, 𝑋1 = 𝑘) =  𝑃(𝑌1 = 𝑙|𝑋1 = 𝑘)𝑃(𝑋1 = 𝑘) = 𝑂1
𝑗(𝑘𝑙)𝑃(𝑋1 = 𝑘) 

and recursively: 

𝑃(𝑌1 = 𝑙1, … , 𝑌𝑝 = 𝑙𝑝, 𝑋𝑝 = 𝑘) = 𝑃(𝑌𝑝 = 𝑙𝑝|𝑋𝑝 = 𝑘)𝑃(𝑋𝑝 = 𝑘, 𝑌1 = 𝑙1, … , 𝑌𝑝−1 = 𝑙𝑝−1 ) =

𝑂𝑝
𝑗
 (𝑘𝑙𝑝) ∑ 𝑀𝑝

𝑗(𝑖𝑘)𝑃(𝑌1 = 𝑙1, 𝑌𝑝−1 = 𝑙𝑝−1, 𝑋𝑝−1 = 𝑖)𝑛
𝑖=1  

The previous probability is generally denoted as 𝛼𝑝(𝑘). 

Learning matrix 𝑀𝑖+1
𝑗

 and emission probabilities 𝑂𝑖+1
𝑗

  is made using maximum likelihood estimation, that is in 

this case a simple counting estimator. Let (𝑙1, … , 𝑙𝑄) be a sequence of observations over a size Q time window 

(please note that due to the Markov property, it can be of arbitrary origin). The probability: 

𝛽𝑘(𝑖) = 𝑃(𝑌𝑘+1 = 𝑙𝑘+1, … , 𝑌𝑄 = 𝑙𝑄|𝑋𝑘 = 𝑖) 

Can be estimated using a backward algorithm: 

1. Initialization 𝛽𝑄(𝑖) = 1 

2. Back-propagation 𝛽𝑘  (𝑖) = ∑ 𝛽𝑘+1
𝑛
𝑝=1 (𝑝)𝑂(𝑙𝑘+1𝑝)𝑀𝑗(𝑖𝑝) 

The probability of being in state i at time k knowing the observation sequence can be obtained as: 

𝛾𝑘(𝑖) =
𝛼𝑘(𝑖)𝛽_𝑘(𝑖)

∑ 𝛼𝑘(𝑖)𝛽𝑘(𝑖)𝑛
𝑖=1

  

And finally, the joint probability of state p and state l at time k is computed by the formula: 

𝜉𝑘(𝑝𝑙) = 𝛼𝑘(𝑝)𝑀(𝑝𝑙)𝑂(𝑙𝑙𝑘+1)𝛽𝑘+1(𝑙)𝜆 with 𝜆 a normalizing constant that ensure that all the 𝜉𝑘 sum to 1. 

The maximum likelihood estimator of the transition matrix is then: 

𝑀(𝑝𝑙) =
∑ 𝜉𝑘(𝑝𝑙)

𝑄
𝑘=1

∑ 𝛾𝑘(𝑝)
𝑄
𝑘=1

 

Similarly, the observation probabilities are estimated by: 
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𝑂(𝑝𝑙) =
∑ 1𝑙𝑘=𝑙𝛾𝑘(𝑝)

𝑄
𝑘=1

∑ 𝛾𝑘(𝑝)
𝑄
𝑘=1   

 

And the state probability vector as 𝛾1. The Baum-Welch algorithm is easily implemented in pure Java, with a 

minimal impact on the performance compared to numerical computing oriented languages like Fortran. Each agent 

maintains an hidden markov model for all its neighbors, the update being performed during the communication 

phase. Since the state estimations of the agents are independent, it is advisable to split the set of agents into equally 

sized batches, and to distribute the computation over all the available cores of the processor. In the case of clusters, 

the same process can be applied to speed up the computation. However, communication cost may become 

dominant if the size of agent pools present on each compute node is too low, so that care must be taken to use this 

kind of parallelism only on large simulation instances. In the current implementation, no cluster computation is 

available, but is planned for future releases. 

5.4. Agent rules 

The agents will compute their states synchronously during the update phase. The current state of the agent and the 

estimated ones of its neighbors are considered as attributes of a decision tree whose leaves are the updates states. 

While many algorithms exist for learning such structures, the special nature of the agent system requires some 

features: 

• The tree learning must be adapted to data streams, since it must be performed during the simulation run. 

• Some attributes are random variables, namely the states of the neighbors that are only estimated. The 

learning algorithm must thus be able to work with uncertain data. 

To cope with these requirements, a novel learning procedure, the Dirichlet Decision Tree (DDT) is proposed. First, 

for a given agent, decision attributes can be split into categorical values, that are elements of a finite set, and 

continuous values that belong to an interval of the real numbers. To simplify the problem, only categorical values 

will be considered as estimated states of neighboring agents, while the current agent has access to continuous 

values that may be understood as key performance indicators (KPI). With this assumption, inner nodes can be 

equality testing of the form 𝑎𝑡𝑖 = 𝑣𝑗 for attribute number i and value 𝑣𝑗 when 𝑎𝑡𝑖 is categorical or real inequality 

𝑎𝑡𝑖 ≤ 𝑣𝑗 for continuous attributes. In this last case, 𝑎𝑡𝑖 is not considered to be a random variable, but will be such 

in the former if it is estimated.  The decision tree is initialized either from an expert advice or from an already 

build database of examples. Since there is no need to special treatment in this first stage, a very classical algorithm 

based on entropy is selected. The samples of the initial databases are denoted as (𝑥1
𝑖 , … , 𝑥𝑁

𝑖 , 𝑠𝑖), 𝑖 = 1 … 𝑃  where 

for the sample number i, 𝑠𝑖 is the state obtained as a response to the vector of attributes 𝑥1
𝑖 , … , 𝑥𝑁

𝑖  . Please note that 

in this phase, no attribute is a random variable.  The overall process is summarized below. 

1. The entropy of the complete sample is computed as: 𝐻 = ∑ 𝑝𝑗 log2 𝑝𝑗  𝑛
𝑗=1  , where 𝑝𝑗 is the estimated 

probability of occurrence of state j, given by 𝑝𝑗 = 𝑁−1 ∑ 1𝑠𝑖=𝑗
𝑁
𝑖=1  

2. For each attribute k, the entropy of the sample relative to the attribute is defined to be 

∑ 𝑞𝑙 ∑ 𝑝𝑗
𝑙 log2 𝑝𝑗

𝑙𝑛
𝑗=1

𝑄𝑘
𝑙=1  where 𝑄𝑘is the number of possible values for attribute k, 𝑞𝑙 = 𝑁−1 ∑ 1

𝑥𝑘
𝑖 =𝑙

𝑁
𝑖=1  and 

𝑝𝑗
𝑙 = ∑

1
𝑠𝑖=𝑗

1
𝑥𝑘

𝑖 =𝑙

𝑁𝑞𝑙

𝑁
𝑖=1  

3. The attribute that maximizes the difference between the original entropy and the relative entropy will be 

selected at the root node. 

4. The process is iterated down to leaves using at each stage the remaining part of the original sample that 

remains after application of the rules borne by the parent nodes. 

 It worth to note that estimating probabilities with counting ratio is a maximum likelihood procedure when the 

underlying probability distribution is multinomial. When using the output of hidden markov models , the state is 

no longer deterministic, but follows a probability distribution. In such a case, the procedure makes use of a 

Bayesian estimator, with a Dirichlet distribution as the conjugate prior. At each node, the probabilities 𝑝𝑗
𝑙  are 

assumed to be drawn from a Dirichlet probability law with unknown parameters 𝛼1, … , 𝛼𝑛: 

𝑃(𝑝1, … , 𝑝𝑛) =
Γ(∑  𝛼𝑖𝑖 )

∏ Γ(𝛼𝑖)𝑖

∏ 𝑝𝑖
𝑎𝑖−1

𝑖  

A sufficient statistic for the estimation is given by the sum ∑ log 𝑝𝑖𝑖 , which can be update online. While the 

maximum likelihood estimator is obtained by solving a system of nonlinear equations, only a few fixed-point 

iterations is enough to get the solution up to machine precision. Once the vector of parameters (𝛼1, … , 𝛼𝑛) has 

been obtained, the Bayes estimator for the probabilities (𝑝1 , … , 𝑝𝑛) assuming a Dirichlet prior distribution can be 
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obtained and replaces the counting estimator. As the prior distribution estimation requires some probabilities 

samples, a sliding window procedure is applied. The resulting algorithm can correctly estimate the decision 

attributes, even when the states of the linked agents is only known probabilistically. 

6. CONCLUSION AND FUTURE WORK 

The work presented here is in early stage of development, and complete testing is yet to be done. However, the 

estimation and learning procedures are operational on test situations and make the agents able to mimic real world 

behaviors. A new principle for stochastic decisions was also introduced, thanks to the use of a priori Dirichlet 

distribution, that gives a mean to cope with uncertain or noise contaminated observations. In a future work, an in-

depth analysis of the algorithm will be done, and an extension to continuous valued attributes will be sought after. 

All the code will be made publicly available, and will hopefully be adopted in the air traffic management 

community as a mean of testing new concepts applicable to delay mitigation.  
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