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Abstract
Air Traffic Flow Management (ATFM) aims at structuring traffic in

order to reduce congestion in airspace. Congestion being linked to aircraft
located at the same position at the same time, ATFM organizes traffic in
the spatial dimension (e.g. route network) and in the time dimension (e.g.
sequencing and merging of aircraft flows taking off or landing at airports).

The objective of this paper is to develop a methodology that allows
the traffic to self-organize in the time and space dimensions when demand
is high. This structure disappears when the demand diminishes. In order
to reach this goal, a multi-agent system has been developed, in which
aircraft cooperate to structure traffic. Multi-agent systems have several
advantages, including a good resilience when confronted with disruptive
events.

In this system, three algorithms have been implemented, aiming at
reducing traffic complexity in three different ways. The first algorithm
allows aircraft agents flying on a route network to regulate speed in order
to reduce the number of conflicts, a conflict occurring when two aircraft
do not respect separation norms. The second algorithm allows aircraft
to solve conflicts when the traffic is not structured by a route network.
The third algorithm creates temporary local route networks allowing to
structure traffic.

The three algorithms implemented in this multi-agent system allow to
decrease overall traffic complexity, which becomes easier to manage by air
traffic controllers. This algorithm was applied on realistic examples and
was able to structure traffic in a resilient way.

∗Corresponding author: romaric.breil@recherche.enac.fr
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1 Introduction
Air traffic volume has been constantly increasing during the past decades, and
ICAO (International Civil Aviation Organization) predicts [25] that the an-
nual number of flights will double in 2030 in comparison to 2013. Air traffic
controllers are in charge of ensuring traffic safety and fluidity by temporarily
diverting flights from their original trajectory. In doing so, required separation
distance is maintained between all aircraft. This task is known as conflict avoid-
ance. It is increasingly perceived that the present centralized way of managing
traffic cannot scale up anymore. In order to deal with traffic growth, major
research programs around the world, like SESAR (Single European Sky ATM
Research) and NextGen (US Next Generation Air Transportation System) con-
sider automating some tasks previously done by controllers, allowing them to
manage more flights at the same time. In a more daring effort, decentralized
flow management, whereby traffic flow management is delegated to individual
aircraft, is also an option.

1.1 Air Traffic Management
Air Traffic Management (ATM) includes two functions: Air Traffic Flow Man-
agement (ATFM) which deals with flow control and Air Traffic Control (ATC)
which deals with separation assurance [24]. Air traffic is highly structured [27].
Aircraft cruise is controlled by Area Control Centers (ACC), also known in
the U.S. as Air Route Traffic Control Center (ARTCC) [17, PCG A–12]. The
airspace of every country is usually divided into several regions, each one con-
trolled by an ACC. ACCs are here again partitioned into several subregions
called sectors. Each sector is regulated by a team of air traffic controllers. Each
team is usually composed of two controllers: one is in charge of communicating
with aircraft, while the other is in charge of trajectory planning and collision
avoidance management.

Before departure, the pilot or the airline dispatcher is to submit a document
called flight plan to the civil aviation authority. The flight plan contains much
information, including its departure and arrival airports, departure time, and
the flight path. This flight path is defined by a set of geographical positions,
called waypoints, through which an aircraft shall go. Each waypoint is identified
by a name. Air traffic is structured on a route network whose vertices are the
waypoints. Once airborne, however, modifications to the flight plan may be
initiated by the flight crew or air traffic control, depending on local traffic and
weather conditions.

Sectors and route networks are designed in such a way that air traffic con-
trollers’ workload is reduced. In addition, Air Traffic Flow Management pro-
cedures ensure that air traffic demand does not exceed sectors capacity. Thus,
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air traffic controllers have only a limited number of flights to regulate simulta-
neously in their sectors, each of them following a predefined path. They will
then have to keep separation distances between each pair of aircraft above given
threshold values: in cruise phase, a conflict occurs when two aircraft are sepa-
rated by less than 5 nautical miles (1 NM = 1,852 km) horizontally and 1,000 feet
vertically (1 ft = 30.48 cm). When a conflict is detected (or predicted to occur
soon), the controller requests that one or both pilots execute a maneuver, usu-
ally temporarily changing the heading to increase separation, before returning
to initial flight path.

To allow aircraft position and speed information exchange, more and more
aircraft are equipped with a system called Automatic Dependent Surveillance-
Broadcast (ADS-B) [17, 4–5–7]. This system periodically broadcasts messages
containing aircraft identifier, position and speed (ADS-B Out). Ground stations
receive these messages and are able to provide controllers with accurate repre-
sentation of air traffic. Aircraft carrying an ADS-B In system enable airborne
traffic situational awareness.

Information carried by ADS-B is more accurate than radar positioning since
aircraft uses Global Positioning System (GPS) to get its position. Yet, for the
moment, only a fraction of the air fleet is equipped; that is why ADS-B can
only be used as a radar complement, but it cannot replace it. However, ADS-B
Out will become mandatory in the controlled airspace of several countries; for
instance, European Union aircraft will have to be equipped with ADS-B Out in
2017 [15] so will the U.S. in 2020 [16].

Air traffic controllers can only take charge of a limited number of flights
simultaneously and the current structure of air traffic is reaching its maximum
capacity. To cope with this situation, parts of the control process could be
delegated to algorithms that manage conflicts detection and resolution or other
traffic management tasks.

Some areas around the world cannot be covered with radar antennas such
as deserts and oceans; this explains why air traffic controllers regulate those
areas with difficulty. Consequently, for safety reasons, large time separations
are imposed between aircraft entering those areas (several minutes or tens of
minutes), so as to ensure the separation distance minimum is respected. Systems
allowing aircraft information exchange (like ADS-B) are currently deployed and
will eventually allow a better traffic management in those areas [34]. Automatic
separation assurance systems could benefit from this improvement.

Free Route Airspace [14] and Free Flight [23] are two air traffic management
procedures (developed respectively in Europe and U.S.) that enable aircraft to
choose their path in low traffic zones more freely by ignoring route networks.
These zones are regulated or not by air traffic controllers. Both SESAR and
NextGen research programs are currently studying the implementation of those
concepts in their respective airspaces. In those areas, more automation will also
be needed to ensure conflict-free trajectories.

Many studies have already been done to make automatic conflicts resolution
(some are referenced in [28]). Since problems encountered in Air Traffic Man-
agement (ATM) are highly combinatorial, classic optimization algorithms tend
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to become inefficient when dealing with real traffic scenarios (from hundreds to
thousands of aircraft). To overcome this situation, heuristics have been used in
several research works, giving approximate but good results in a length of time
compatible with operational constraints [9].

1.2 Multi-Agent Systems
Multi-agent systems have been used to solve many problems in operations re-
search, like regulation of urban transportation networks [3], design of mechanical
systems [6], or path-finding algorithm [12]. This paradigm is often regarded as
a kind of distributed artificial intelligence. Multi-agent systems are made of au-
tonomous agents interacting among themselves and with their environment [19].
Usually, agents have a limited perception of environment and they partially
know the internal state of their neighbors, via message exchanges. Their be-
havior can either be simple (by which reactive agents are only influenced by
environmental changes) or complex (by which cognitive agents try to fulfill an
objective).

Self-organization is a key aspect of multi-agent systems. If the rules that
direct agents are carefully chosen, a complex behavior can emerge at the system
level from local interactions and behavior of agents. When multi-agent systems
are used to solve operations research problems, a carefully chosen set of agent
behaviors can help to find an overall solution to the problem (system level) by
only using local rules (agents level).

Multi-agent systems can be implemented either within a computer simu-
lation, or as a physical system that is composed of robots which are able to
communicate and to interact with their environment.

Those systems have several advantages compared to centralized decision
methods. Firstly, when correctly designed, they exhibit a good resilience when
confronted with disruptive events [33]. Agents try to fulfill a goal and act in
order to become closer to this objective. When they are confronted with lo-
cal perturbations in their environment, they adapt their actions to take those
changes into account, enabling the system to get back to a new stable state.

Secondly, decisions are decentralized at agents level, and the failure of an
agent will not compromise the whole system. In centralized decision processes,
a central regulation entity failure may prevent the system to work. In the field
of information technologies, such a central point would be defined as a Single
Point of Failure (SPOF).

When agents are implemented within a computer simulation, computations
of agents can be done in parallel, exploiting modern hardware architecture
(multi-core processors, computations on graphic card). A multi-agent system
can also run on a cluster of computers.

Lastly, applied to air traffic management, implementation of new onboard
collaborative decision processes can be done progressively, whereby equipped
aircraft cooperate among themselves and are given more freedom in their de-
cisions than non-equipped aircraft (for example by constraining the latter to
follow rigid corridors).
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Multi-agent systems have already been applied to air traffic management
problems. Canino et al. [5] simulate air traffic control to validate the technical
improvements in information sharing and communications between aircraft and
area control centers newly introduced by SESAR and NextGen research pro-
grams. Pritchett et al. [30] use a multi-agent system to evaluate safety issues in
air traffic management. Feigh et al. [18] simulates the air transportation system
and study the emergence of complex behaviors at the system level.

Other projects focus on traffic regulation in Free Flight (or Free Route)
zones. Aircraft flying in Free Flight areas must be able to find by themselves
conflict-free trajectories, respecting the required distance separation between
aircraft. This problem can be solved by multi-agent systems, such as the one
that was developed by Wollkind, Valasek and Ioerger [38], or the one developed
by Sislak, Volf and Pechoucek [36].

This article shows how multi-agent systems can be used to address various
problems in air traffic management. Section 2 describes a conflict resolution
algorithm based on aircraft speed self-regulation for traffic evolving on a net-
work. Section 3 puts forward a broader approach to conflicts resolution by
speed regulation, for unstructured traffic. Section 4 describes an on-demand
local route network modification algorithm aiming at reducing local peaks of
traffic complexity.

2 Aircraft Speed Self-Regulation in Miles-in-Trail
Traffic

Our first experiment about multi-agent systems is related to the management
of an intersection of two Miles-in-Trail (MIT) traffic flows. Miles-in-Trail [21] is
a method used by U.S. controllers to reduce air traffic complexity. When flight
density increases in an area, traffic is structured into flows of aircraft following
the same path. Flights are separated by a given distance (for example 20NM).
This manner of structuring forms queues of aircraft. Those queues are easier to
perceive and to manage by controllers. Their job is then to monitor inter-aircraft
spacing and to apply speed control whenever it appears to be necessary.

Miles-in-Trail also makes merging or crossing of flows easier. Aircraft must
be separated by at least 5NM, which defines the maximum aircraft density
in a flow. Therefore, when two flows merge, each one must apply a 10NM
Miles-in-Trail so that aircraft alternatively come from the first and the second
flow. The same reasoning is applied to crossing flows (Figure 1) where aircraft
must be separated by more than 10NM, depending on the angle between flows
(Section 2.3.3).

2.1 Comparison with a Similar Method in the Literature
The algorithm described in this Section is similar to a method developed by
Chipalkatty et al. (2012) [8]. In that paper, aircraft speed and arrival date are
regulated in a terminal maneuvering area, on a route network where aircraft
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Figure 1: Route network used to simulate the intersection of two flows.

flows are merged before landing. In the topology described in [8], aircraft arrive
from two routes ending at the intermediate waypoints WP1 and WP2. Then
they head toward the merging point WP3 where the two flows are merged on a
single route.

Aircraft can execute two types of maneuvers between WP1/2 and WP3:
change speed, and lengthen trajectory by applying a temporary heading change
in order to delay arrival time at WP3. Before reaching WP1 and WP2, aircraft
make a pairwise negotiation. The first aircraft that will reach WP3 negotiates
maneuvers with the second one. When a solution is found, decisions of the first
aircraft cannot be modified any more. Then the second aircraft negotiates with
the third one, and the process repeats until every conflict is solved. Decisions
are taken such that after WP3, all aircraft fly at the same speed and respect
separation norms.

During the negotiation phase, the two aircraft iteratively execute an op-
timization process that minimize trajectory lengthening, speed variation and
arrival delay until the conflict is solved.

Even if the method described in [8] and the algorithm described in this Sec-
tion share some behaviors, they differ in some points. First, these methods do
not solve the same problem: while [8] regulates traffic in terminal maneuvering
areas, where aircraft decelerate before landing, our method regulates cruising
aircraft. Constraints of the problems are different: in terminal areas aircraft
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fly at lower altitudes, thus have a larger range of admissible speeds. This point
guarantees that all aircraft will be able to fly at the speed required after WP3.
Separation distances are also different and change with the aircraft category:
for example a heavy aircraft following a light one has to maintain a lower sepa-
ration distance than when a light aircraft follows a heavy one. While cruising,
separation norm is set to 5NM horizontally.

Both methods regulate speed by computing earliest and latest times of arrival
at the target waypoint. But [8] allows a second type of maneuver (lengthening
of the trajectory) that increases degree of freedom for the resolution process. On
the other hand, the negotiation process is different in our algorithm, in which
a decision can be updated after it has been taken. When two aircraft solve a
conflict, a third one appearing in the simulation can force the two first aircraft
to update their decisions.

Since in [8] an aircraft needs maximum three maneuvers to solve a conflict
(two speed changes at WP1/2 and at WP3, and one heading change), it gives
better results in terms of number of maneuvers needed to solve conflicts (see
Section 2.4). But When the decision is taken, it cannot be updated. On the
contrary in the algorithm of this Section, aircraft speed is constantly updated,
allowing the traffic to adapt itself in case of disruption (an aircraft failure, a
new aircraft entering in the area, etc.).

2.2 Hypotheses
This first algorithm is an attempt to reproduce the Miles-in-Trail traffic struc-
ture at the intersection of two flows. In this simulation, aircraft fly along two
crossing routes (Figure 1). They perceive position and speed of their neighbors
and regulate their speed to avoid conflicts. The size of the neighborhood is an
adjustable parameter of the algorithm.

The route network used in this simulation contains two intersecting paths
defined by 5 waypoints of French airspace: the first path is composed of the
waypoints LMG, MEN and MRM, and the second one by TOU, MEN and
LYS. The distances between waypoints are: 116NM for the segment LMG-
MEN, 119NM for MEN-MRM, 97NM for TOU-MEN and 105NM for MEN-
LYS. Aircraft are generated randomly at one of the western positions (LMG or
MEN). The arrival rate of aircraft along each route follows a Poisson distribution
which is considered to be a valid approximation for air traffic flows [35, III–C].

Each flight has a preferred cruise speed depending on general aircraft per-
formances and preferences of airlines. Airlines can give priority to fuel economy
by reducing speed, or to the reduction of flight duration, which increases fuel
consumption. This setting is adjusted by using a value called Cost Index (CI)
which is the ratio of the cost of flight time (which includes crew costs) over the
cost of fuel.

Denote v the current speed of an aircraft and vopt its optimal speed. In order
to be inserted into a Miles-in-Trail configuration, aircraft may have to choose
a speed v different from vopt within a given speed interval. A lower bound
vmin = vopt − 6% allows to insert this aircraft into a flow without dramatically
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increasing fuel consumption [11]. A speed interval of [vopt − 6%, vopt + 3%] is a
common choice of projects relying on speed regulation [2].

Optimal speed of generated aircraft are randomly chosen in the interval
[447 kt, 487 kt] (kt: knot, stands for NM/s), which are the optimal speeds of
an Airbus A320 [1] and an A380 [13]. These aircraft are representative of the
ones that are able to fly at 36,000 ft and above, keeping in mind that the A320
belongs to the slowest aircraft of this category, and that the A380, to the fastest
(alongside the Boeing 777, for instance). This speed range also guarantees the
maximum speed of the slowest aircraft is greater than the minimum speed of
the fastest one. Thus, all aircraft simulated in the multi-agent system described
in this Section can fly together, which is required to find a solution: for any
pair of aircraft, if the fastest aircraft flies at its minimum speed and follows the
slowest one that flies at its maximum speed, the first one does not overcome the
second one.

Aircraft acceleration and deceleration are fixed to±4,000NM/h2 (0.572m/s2)
for all aircraft. The standard turn rate [17, PCG S–6] of 3°/s is used so that a
complete 360° turn is done in 2 minutes.

Aircraft are able to communicate their position and speed using Automatic
Dependent Surveillance-Broadcast (ADS-B In and Out) services and therefore
they can know all other aircraft position.

2.3 Algorithm
In this multi-agent system, aircraft are agents exchanging ADS-B messages.
They evolve in an environment composed of a route network, represented as a
graph whose nodes are waypoints identified by a unique name. In addition to po-
sition and speed, in order to save some computation time, ADS-B messages also
contain the current edge the aircraft is following in the graph (stored as name of
previous and next waypoints). This could be easily deduced from information
about geographical position contained in real ADS-B messages, assuming that
aircraft follow accurately the route network.

This multi-agent system (Figure 2) is timed by a global clock. Each tick
corresponds to a second in the simulation. All agents are synchronized: at the
end of an iteration, agents drop off messages into the mailbox. When the next
iteration begins, those messages are delivered to addressee agents. Therefore,
even if agents processes are run sequentially, agents work logically in parallel.
This choice helps to avoid problems related to sequence order. For performance
reasons, agents are run in parallel, using multiple threads.

The decision process of each agent is a sequence of three steps. Perception
step allows agents to receive ADS-B messages and refresh internal representation
of airspace. During decision step, aircraft update their speed on the basis of
this internal representation. In action step, agents update their position using
updated speed, and broadcast a message containing the information.
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Figure 2: Multi-agent system lifecycle.

2.3.1 Nomenclature

t Current time in the simulation.

P The closest neighbor preceding the aircraft.

F The closest neighbor following the aircraft.

N Any neighbor of the aircraft, including P and F .

tN Arrival time of the neighbor N to the next waypoint the
aircraft will reach.

dN Distance of the neighbor N toward the next waypoint
the aircraft will reach.

vN Speed of the neighbor N .

vopt Optimal speed of the aircraft.

vmin|vopt , vmax|vopt Minimum and maximum speed allowed by the aircraft
performances (i.e. with respect to vopt).

tmin|vopt , tmax|vopt Minimum and maximum arrival time to the next way-
point allowed by the aircraft performances (i.e. with
respect to vopt).

vmin, vmax Minimal and maximal speed found by the decision pro-
cess of the aircraft described in this Section.

v Speed chosen by the decision process of the aircraft.

S Minimum separation distance between two aircraft.
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W,F

W,P
D,PD,F

Figure 3: Representation of an aircraft’s neighborhood. The black agent re-
ceives messages from all surrounding aircraft, detects direct neighbors (D) and
waypoints neighbors (W), and whether they are preceding (P) or following (F)
it.

2.3.2 Agents’ Perception

During the perception step, aircraft first stores information about neighboring
agents, using received ADS-B messages (neighbor identifier, position, speed,
previous and next waypoints of the flight plan). The aircraft infers the infor-
mation about the time needed for every neighbor N to reach its next waypoint:
tN = t + dN/vN , with t the current time, dN the distance of the neighbor N
toward the next waypoint and vN the neighbor speed.

At a macroscopic level, the Miles-in-Trail scenario described in Figure 1
can be obtained by a 2-steps regulation process. First, both flows of aircraft
must be regulated separately by spacing aircraft and by setting identical speeds.
Then, they must be synchronized in order to let aircraft pass alternatively the
intersection point, while keeping separation minima.

In order to do so, at a microscopic level, each aircraft filters its neighbors
to detect 2 pairs (Figure 3): the closest ones (before and after it) in the same
flow or more precisely flying from and toward the same waypoints (called direct
neighbors in this algorithm) and the pair of aircraft between which it will pass
the intersection (called waypoint neighbors).

In order to avoid conflict with direct neighbors, aircraft shall maintain an
adequately low speed so as not to overcome its predecessor P , and a sufficiently
high speed so as not to be overcome by its follower F .

Waypoint neighbors are the closest ones coming from different waypoints
and heading towards the same one as the aircraft, in running order. Aircraft
shall fly at an adequately low speed to avoid conflict with its predecessor, and
a sufficiently high speed to avoid conflict with its follower.

Computing admissible speed can be seen as finding the intersection of 3
speed intervals:

1. Speed interval physically flyable ([−6%,+3%] of optimal speed),

2. Speed allowed by its direct neighbors to avoid conflicts,
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Figure 4: Substitution of missing neighbors. The black aircraft lacks both direct
and waypoint predecessors. They are replaced by the last agent that passed its
target waypoint (gray).

3. Speed allowed by its waypoints neighbors.

When the aircraft is the first one or the last one on a route section, it may
lack of a predecessor or of a follower. The missing neighbor is replaced by the
closest aircraft on the other side of this waypoint (Figure 4).

2.3.3 Decision Process

In order to avoid conflicts, two aircraft must maintain a separation distance
S. In the case of direct neighbors, an aircraft must be 5NM behind the next
waypoint when its predecessor passes it and 5NM ahead of this waypoint when
its successor passes it (S = 5 NM). Each of those two pairs of aircraft give an
interval of dates where passing the intersection do not generate conflicts.

At a time t, an aircraft is at the distance d of its next waypoint, and wants
to compute its maximum speed vmax. First, it computes its maximum physical
speed vmax|vopt = vopt+3% (maximum speed with respect to the optimal speed).
Maintaining this speed, it will be at a distance d = S before the waypoint at
the time tmin|vopt (minimum time with respect to the optimal speed):

tmin|vopt = t+ d− S
vmax|vopt

. (1)

Then, the aircraft takes into account its predecessor P , such as to reach the
same position d = S when dP = 0:

tP = t+ dP
vP

, (2)

where tP is the arrival time of the aircraft P at the next waypoint, dP the
distance between P and this waypoint and vP the speed of the aircraft P .

Combining (1) and (2), at this step, the earliest time of arrival is

tmin = max(tmin|vopt , tP ) . (3)

Then, the maximum speed is

vmax = d− S
tmin − t

. (4)
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5 NM 4.33 NM
θ = −π3

Figure 5: Using a separation distance of 5NM for waypoint neighbors will lead
to a conflict.

Following the same method, the minimum speed vmin is computed, using
first vmin|vopt = vopt − 6% (minimum speed with respect to the optimal speed),
then substituting the predecessor P by the follower F , dA − S by dA + S and
the max function by the min:

vmin = d+ S

min
(
t+ d+S

vmin
, tF

)
− t

. (5)

Once this speed interval [vmin, vmax] has been obtained, aircraft speed can
be updated, chosen as close as possible of the optimal speed vopt:

v =


vmax if vmax < vopt,
vmin if vmin > vopt,
vopt otherwise.

(6)

This method enables an aircraft to take direct neighbors into account. Since
all aircraft of a flow apply the same method, every one finally manages to find
a speed which avoids conflicts.

In order to avoid conflicts with waypoints neighbors, the same computation
is applied a second time, replacing direct neighbors by waypoint neighbors. This
second step uses the previously obtained interval [vmin, vmax] (given by the first
computation) instead of [vmin|vopt , vmax|vopt ] (aircraft performances) and arrival
dates of waypoint neighbors instead of direct ones.

This two-step computation enables to find the intersection of 3 speed in-
tervals: aircraft performances, speeds enabled by direct neighbors, and speed
enabled by waypoint neighbors.

For a pair of direct neighbors (aircraft flying in the same flow), maintaining a
separation distance of S = 5 NM is enough to guarantee a conflict-free situation.
However, for waypoint neighbors, if the same value is used in computation, it
will lead to a conflict (Figure 5).

As described in [40, Lemma 1], separation distance S must be increased,
depending on relative aircraft headings and speeds:

S = S0
√
α2 − 2α cos θ + 1

sin θ . (7)
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5.77 NM 5 NM
θ = −π3

Figure 6: To avoid conflicts between waypoint neighbors, separation distance
must be increased.

where S0 = 5 NM is the required separation distance, θ is the angle between
both flows and v = αvN . Applied to the situation depicted Figure 6, if both
aircraft have the same speed and both fly along trajectories separated by θ = π

3 ,
they have to be separated along their trajectory by S ≈ 5.77 NM in order to be
separated by 5NM at their closest position (Figure 6).

2.4 Results
In order to validate experimentally this algorithm, 2 sets of 3 scenarios were
executed, each scenario was run 10 times in order to average results. Aircraft
were generated and flying during 1 hour, according to a Poisson point process on
each route. Each set of scenarios corresponds to a different average time interval
between the generation of two aircraft (parameter λ). Two different parameters
λ were tested: 140 s and 110 s. This latter value is the minimum theoretical in-
terval, considering an average optimal speed of 467 kt and a minimal separation
distance between aircraft on the same route of 14.14NM (minimum distance for
2 perpendicular routes). For each λ, three scenarios were tested. In the first
scenario, the regulation process was enabled, all aircraft cooperating to solve
conflicts. In the second one, the regulation process was disabled, conflicts were
not solved. In the third one, 10% of aircraft were not cooperating, their de-
cision process being disabled. The last scenario allows to validate resilience of
the algorithm, by simulating situations where some aircraft cannot or do not
want to cooperate, for example because of a failure. Aircraft optimal speeds
were chosen randomly within [447 kt, 497 kt].

During simulations, distances between all pairs of aircraft were monitored.
Each time aircraft were separated by less than 5NM, a conflict was registered
(a single record for the duration of the conflict). Each record stores the smallest
measured distance between aircraft during the conflict.

Results of each scenario are shown Table 1, values in the table are the aver-
age of the 10 runs. Without regulation, minimal distances are spread all along
[0NM, 5NM], with an average value of 2.3NM. With regulation, all conflicts
could not be solved (only two thirds of them), but the separation distances were
almost always greater than 4NM (except once by run), and the average sepa-
ration during conflicts was 4.5NM. This result indicates that this algorithm is
able to solve a majority of the initial conflicts, but the resulting separation dis-
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Figure 7: Speed profile of an aircraft in the first algorithm. This aircraft progres-
sively decelerates to avoid a conflict with a waypoint neighbor, then it goes back
to its optimal speed during the second half of its flight (after the intersection).

tance is often too close to the minimum of 5NM. This distance varies constantly
around this threshold value: a conflict is counted every time distance becomes
slightly lower than 5NM. Therefore, when the minimum distance measured
during a conflict is greater than 4NM, it can be considered as a false positive.

Thus, if we consider only conflicts where the minimal separation distance is
lower than 4NM, in the first set of scenarios (λ = 140 s), the algorithm solves
93 % of the conflicts (1 conflict remains of the 13.5 initial ones). In the second
set of scenarios (λ = 110 s), 95 % of the conflicts are solved (1.1 remaining over
the 21.7 initial ones). These values indicate that when all aircraft cooperate to
the conflict resolution, performances of this algorithm remain stable and close
to the optimum until the maximum capacity of this route network is reached
(one aircraft every 110 s on average).

On another hand, aircraft speed is adjusted every second to adapt to sur-
rounding traffic. This leads to a high number of small accelerations. In this
traffic scenario, the average flight time is 28min (1,680 s). This means that
aircraft spend up to one third of their time accelerating or decelerating (Fig-
ure 7). The average difference between current and optimal speeds is smaller in
the first set of scenarios (1.2 %) than in the second one (1.4 %). This indicates
that a lower rate of aircraft means less constraints for each one: they have more
freedom and are closer to their optimal speed (the same remark applies for the
number of accelerations).

As described in Section 1.2, resilience is the capacity of a system to recover
while confronted to disruptive events. A correctly designed multi-agent system
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should be able to recover from such events. The multi-agent system described in
this Section aims at solving conflicts. In a nominal situation where all aircraft
agents fully cooperate to solve conflicts, this system is able to solve up to 95%
of the conflicts. In a non-nominal situation where a part of the system does
not work normally, if the system is resilient it should continue to solve conflicts
with a similar efficiency, even if the result quality is slightly lower than in the
nominal mode. So resilience of this multi-agent system can be measured as the
difference between the number of conflicts when the system works normally and
when a part of the system does not work. In order to simulate a degraded mode,
we chose to modify the decision process of a part of the aircraft. Failure of these
agents is simulated by disabling their decision process. So they are still able to
broadcast information about the trajectory they plan to follow, but they do not
modify it any more in order to solve conflicts.

The scenarios where the decision process is disabled for 10% of aircraft
shows the resilience of this algorithm to disruptive events, when some agents do
not cooperate to avoid conflicts. For the first set of scenarios (λ = 140 s), the
number and the severity of conflicts are very similar to the regulated scenar-
ios, where all aircraft cooperate: if we consider only conflicts where separation
distance is lower than 4NM, the average number of conflicts changes from 1 to
1.3 (+2% while comparing to the 13.5 conflicts of the non-regulated scenario).
This value indicates that the algorithm is resilient to local disruptions, like 10%
of non-cooperative aircraft, if the maximum capacity of the route network is not
reached. Cooperative aircraft take the non-cooperative ones as a constraint for
their decision process, and are still able to solve conflicts by themselves.

In the second set of scenarios (λ = 110 s), the number of conflicts increases
by 11 % (from 1.1 to 3.4 over the 21.7 initial conflicts). In this scenario, the
maximum capacity of the route network is reached and the algorithm becomes
more sensitive to disruptions. Traffic is so dense that each non-cooperative
aircraft has a strong impact on the algorithm performances. Nonetheless the
algorithm is able to solve 84 % of the conflicts. As long as cooperative aircraft
know the position of their non-cooperative neighbors, they will be able to avoid
conflicts, because non-cooperative aircraft are taken into account as a constraint
in the decision process of cooperative aircraft.

2.5 Limits
This algorithm has several limits. Aircraft constantly update speed to adapt to
surrounding traffic. It would be more efficient to plan only a few accelerations:
this would lead to reduced speed oscillation and a better predictability of aircraft
behavior. In addition, changing the regime of aircraft engines too often reduces
their lifetime.

Decisions are based on arrival time at the next waypoint. This is well adapted
to route networks composed of long edges (on the order of tens of nautical
miles). Still, it works less efficiently for more complex networks with short
edges: aircraft may not have enough time while traveling on an edge to adjust
speed in order to avoid conflicts. Since they do not consider traffic situation
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further than their next waypoint, they are unable to anticipate decisions in
dense networks. So this algorithm works for networks used in Miles-in-Trail but
not for general route networks.

More generally, Miles-in-Trail have some drawbacks: aircraft are rerouted
in order to be put on a network, causing a noticeable lengthening of trajecto-
ries. In addition, aircraft in the same flow must fly at the same speed, which
can be different from their optimal speed. Both result in an increase of fuel
consumption, which can lead to economic consequences for airliners.

Nowadays, aircraft are able to communicate their estimated future 4D tra-
jectory, resulting in a much more accurate trajectory prediction than a simple
flight plan based on estimated time of arrival over waypoints. Traffic regulation
algorithms should take advantage of this information to compute more efficient
solutions.

So as to go beyond those limits, a more generic way to represent the problem
of speed regulation for conflict avoidance was found, based on estimation and
exchange by messages of full 4D trajectories.

3 Aircraft Speed Self-Regulation in General Traf-
fic

As exposed in [28], many conflict resolution algorithms have already been de-
veloped the past decades. Most of those methods try to reproduce the way
controllers regulate traffic by changing aircraft heading for a short period. Ac-
cording to air traffic controllers, those algorithms can interfere with their own
decisions since the controllers and the algorithms take the same kind of decision
in the same controlled areas [37].

In 2004, a new way to solve this problem was proposed as a part of the
project ERASMUS (En Route Air traffic Soft Management Ultimate System).
According to Villiers [37], instead of trying to reproduce what controllers are
doing, those algorithms should help them in an unnoticeable, “subliminal” way.
Slightly changing aircraft speed allows automated systems to organize traffic in
order to reduce the number of conflicts, creating a “lucky”, or favorable traffic
situation, more easily managed by controllers. This concept was validated with
technical experiments and human factors studies [4, 7].

3.1 Hypotheses
From an algorithmic point of view, this problem can be seen as a generalization
of the algorithm described in Section 2, where aircraft adapt speed to avoid (or
minimize) conflicts but without the high structuring level imposed by Miles-in-
Trail route network: they can follow any 4D trajectory, either following a route
network or flying along their optimal trajectory (Free Flight).

Aircraft are ruled by the same constraints as in Section 2 (speed interval of
[-6 %, +3 %] of optimal speed, acceleration of ±4,000NM/h2, turn rate of 3°/s).
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The only modification to these hypotheses is the ability to exchange full
estimated 4D trajectories over the next minutes by means of messages. These
messages can be transmitted by using Automatic Dependent Surveillance – Con-
tract (ADS-C) [26, 2.2.6]. This protocol is similar to the previously mentioned
ADS-B, but instead of requiring aircraft to broadcast position information ev-
ery fraction of second, those messages are exchanged following a request-answer
protocol. Usually, a ground station sends a request to a specific aircraft which
sends back a data frame containing additional information, such as the predicted
route composed of a set of 4D positions (3D + time).

Even if current technology does not allow aircraft to really exchange data
about trajectories directly from aircraft to aircraft, these data can be collected
by ground equipment. The algorithm described below can then compute speed
changes which can then be sent back to real aircraft. The distributed aspect of
a multi-agent approach to the traffic management is somewhat diminished since
aircraft do not take decisions themselves. Yet, other advantages are kept like
resilience and parallel computing.

A last difference between the algorithms described in Section 2 and 3 is
caused by the problem needing to be solved. A Miles-in-Trail configuration
structurally guarantees that a conflict-free solution can be found by regulating
speed as long as aircraft are separated enough on their routes. Still, in a general
traffic situation or in free route scenarios, some conflicts cannot be solved by
using speed control only, as in head-on encounters, for instance. The aim of this
algorithm is to simplify the traffic by doing subliminal control: the algorithm
reduces the number of conflicts and delegates the remaining ones to air traffic
controllers.

Thus, these conflicts need additional maneuvers to be solved. In the current
implementation of the algorithm, these maneuvers are not implemented: the
algorithm only minimizes the number of conflicts and does not try to solve
every one of them.

3.2 Algorithm
A trajectory is stored and exchanged as a sequence of arcs that can be segments
(aircraft flying at a constant speed, accelerating, or decelerating) and arcs of
circles (aircraft turning), as shown in Figure 8. This curve is differentiable at
least once everywhere.

This curve is built from a flight plan defined by a set of waypoints. An
aircraft flies straight from the first waypoint to the next. It then heads towards
the third one, before going straight, and so on. Speed changes are planed at
given dates (Section 3.2.2), and are applied in straight sections.

The multi-agent system lifecycle remains the same, as shown in Figure 2.
The only modifications are the information contained in messages and the de-
cision process. Therefore, each agent’s lifecycle is composed of 3 phases: the
first is perception, by which aircraft detects potential conflicts with neighbors;
the second is decision: aircraft computes speed changes to avoid conflicts; the
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Figure 8: In the algorithm described in Section 3, a trajectory is a curve com-
posed of segments (constant speed as dashed line, acceleration as plain line) and
of arcs of circles. Aircraft flies from a waypoint to another (triangles).

third and last phase is action: aircraft updates its position and broadcasts the
refreshed 4D trajectory to the neighborhood.

3.2.1 Perception

As in Section 2, each aircraft agent first receives messages from its neighbors
from which it extracts 4D trajectories. In order to detect conflicts, the aircraft
then samples other aircraft trajectories to get their predicted position every
10 seconds (Figure 9).

A conflict occurs when the distance between two aircraft becomes lower than
5NM on a horizontal level. When an aircraft follows a path, its future positions
are defined by its current position and by its speed changes. Since speed is to be
be chosen during the decision phase, all potential conflicts need to be detected
regardless of speed. Then, for each intruding aircraft predicted position, the
algorithm searches for possible intersections between its own path and a circle
of 5NM centered on this position. Thus, whatever speed changes the aircraft
will choose, it will always manage to detect conflicts.

Since an aircraft strictly follows a path, the decision process only modifies
speed. To manipulate a trajectory defined by a 4D curve is not necessary:
computing the integral of the instant speed as a function of time gives the
traveled distance as a function of time. In other words, the aircraft trajectory
can be represented as a 2D curve defined by the arc length as a function of time.
This curve is then projected into a 2D space (Figure 10).

Conflicts detected in the previous step are also projected in this space: each
potential intrusion extracted from the sampled neighbor’s trajectory is projected
according to its position along the path (the intersections of the black aircraft’s
trajectory and the circles in Figure 9 become the vertical segments in Figure 10).
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Figure 9: Conflict: intersection between separation distance circle of the gray
aircraft and path of the black aircraft.
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Figure 10: Representation of the 2D trajectory of the black aircraft (distance as
a function of time) and intrusions of the gray neighbor in the black aircraft’s path
at each time sample (vertical segments). A conflict will occur if the black aircraft
maintains its initial speed: the curve representing the black aircraft’s trajectory
intersects with the vertical segments that represents potential conflicts.

3.2.2 Decision

Using conflicts projected in the 2D representation (displayed in Figure 10),
aircraft can plan speed changes. The goal is to avoid conflicts by way of speed
changes. This goal can be achieved by using a decision tree: for each time
sample, the aircraft can maintain its speed, accelerate or decelerate.

To solve this problem, a greedy algorithm was used to plan speed changes.
For each time sample, three choices are tested: cruise, acceleration or deceler-
ation at the maximum rate (Figure 11). A time step of 5 s was chosen. Then,
the first loss of separation is computed, considering that no more speed changes
need to be made afterwards. The choice leading to the trajectory with the latest
first loss of separation is validated and the process starts again for the next time
step.

As in the following pseudo-code, the set of decisions D is iteratively con-
structed. For each time step, acceleration (acc), deceleration (dec) and cruise
(cr) choices are tested: the first loss of separation is stored in cflTime. Then,
the algorithm looks for the decision leading to the latest conflict time. If speed
constraints are respected (checked by the function isValid()), this decision is
accepted. The resulting set of decisions is then used to compute the new 4D
trajectory.

1: choices← {cr, acc,dec}
2: D ← {}
3: for i← t0 to tend step ∆t do
4: bestChoice← cr
5: bestCflTime← i
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Figure 11: Exploration of the decision tree. For each time step, 3 choices
are tested: to accelerate, to cruise, to decelerate. The choice leading to the
trajectory with the latest first loss of separation is applied (in this case, it
accelerates two times at the beginning, then it cruises).

6: for c in choices do
7: cflTime← getFirstConflict(D ∪ {c})
8: if isValid(D ∪ {c}) & cflTime > bestCflTime then
9: bestChoice← c

10: bestCflTime← cflTime
11: end if
12: end for
13: D ← D ∪ {bestChoice}
14: end for

Using a greedy algorithm makes possible to get good results (Section 3.3)
after a short period of computation. Yet, since greedy algorithm is only a local
optimization process, it may find a local optimum and be unable to find an
existing conflict-free solution. Therefore, some conflicts cannot be solved. The
choice of this method is a compromise between the time of computation and the
quality of the results.

Results given by the greedy algorithm can nonetheless be refined by the addi-
tion of intermediate choices (e.g. accelerations and decelerations of 2,000NM/h2

and ±4,000NM/h2), but at the cost of longer computation times.

3.3 Results
In order to compare the algorithms described Sections 2 and 3, the same protocol
was used again, on the same topology of routes (intersection of two routes, as
shown in Figure 1). Aircraft were generated and flying during 1 hour, following
a Poisson process on each route. Two different sets of scenarios corresponding to
two average time interval λ were tested: 110 s and 140 s. Three scenarios were
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Figure 12: The conflict is unsolvable because of the objective function that
tries to maximize the delay before the first loss of separation; in the first time
sample, all the possible choices (to accelerate, to cruise or to decelerate) lead to
a conflict at t = 20 s. In this case, the aircraft chooses to cruise, which leads to
a severe conflict lasting 40 s. An alternative objective function that minimizes
the duration of a conflict can choose to decelerate three times in order to cause
a less severe conflict lasting only 10 s (dashed segments).

performed for each time interval: the decision process was first disabled, before
being enabled, then disabled for 10% of the aircraft. This last scenario was
added to validate the resilience of this algorithm. Each scenario was composed
of 10 runs. The preferred speed of each aircraft was randomly chosen within the
interval [447 kt, 497 kt]. The average values of the 10 runs are shown in Table 2.

In the two scenarios where traffic is regulated by the algorithm, for λ = 110 s
and 140 s, the number of conflicts is reduced compared to the results of the
method described Section 2, whose results can be seen in Table 1, by −78%
for λ = 140 s (from an average value of 10.3 conflicts to 2.3) and −63% for
λ = 110 s (from an average value of 18.7 conflicts to 6.9). The total time when
aircraft accelerate also decreases by −97% (from 410 s to 11.5 s) and −94%
(from 503 s to 27.8 s). This indicates that decision process is more efficient
when accelerations neighboring aircraft are anticipated.

However, due to the chosen objective in the decision process which is max-
imizing the time before the first loss of separation, when a conflict cannot be
solved, aircraft do not try to minimize its importance (see Figure 12). This leads
to lower separation distances (average values of 2.28NM and 2.86NM), and a
greater number of conflicts where the minimum separation distance is lower
than 4NM. This situation could be improved by introducing conflict duration
or predicted minimum distance between aircraft into the objective function or
replacing the current criterion by one of them.

Another side effect of the relatively simple decision process we have designed
is that aircraft solve conflicts and do not try to optimize speed to get closer
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Figure 13: Aircraft speed profile in the second algorithm. This aircraft adjusts
speed each time a new neighbor appears before finding a conflict-free speed.

to the optimal one, causing greater distances with the optimal speed. This
distance with optimal speed is shown in Figure 13: the aircraft begins to fly at
its preferred speed (476 kt), changes its speed several times, then flies at 451 kt
until the end, which is far from its preferences. Confronted to the same type
of situation, the algorithm described in Section 2 tries to return to its preferred
speed, as can be observed in Figure 7. The average distance to optimal speed
is then larger in the algorithm described in Section 3 (1.4% for λ = 140 s and
2.3% for λ = 110 s) than values that the algorithm described in Section 2 returns
(1.2% and 1.4% respectively). Speed optimization can also be included into the
objective function but would lead to a multi-objective problem, harder to model
and to solve.

Another set of scenarios was run to validate the second algorithm on ac-
tual flight plans of aircraft flying over France during 10 hours (from 4 AM to
2 PM), as shown in Figure 14. Here again, the scenario was tested with conflict
resolution first disabled, then enabled. Only the flights at 37,000 ft have been
analyzed since this altitude contains the most flights, which are 465 flights in
this case. Since the route network is more complex and more dense over France
than in the Miles-in-Trail network shown in Figure 1, conflicts can be harder
to solve. In some situations, aircraft can start from positions that are too close
from each other. This causes unsolvable conflicts (see Figure 15). Nevertheless,
this algorithm is able to solve 45% of the 444 conflicts initially present, leaving
in the mean 256.5 unsolved conflicts.

As exposed in Section 1.2, resilience is the ability of a system to recover
from disruptive events. For the multi-agent system described in this Section,
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Figure 14: Traffic scenario using actual flight plans, described in Section 3. This
picture displays flight plans of aircraft flying at 12:00.
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Figure 15: In the scenario based on real flight plans, aircraft are sometimes
starting at too close positions and no speed regulation can solve resulting con-
flict.

resilience is the ability of the algorithm to solve conflicts while a part of the
agents are not able to contribute to the collaborative conflict resolution. In
order to measure resilience of this system, the validation method described in
Section 2.4 was applied to the algorithm of this Section. The decision process
of a part of the agents was disabled to simulate a failure: these aircraft are
still able to communicate their estimated trajectory, but do not modify it and
do not cooperate to solve conflicts. Then, the number of remaining conflicts is
measured for the nominal scenario where all aircraft cooperate and the degraded
scenario where some aircraft do not cooperate. The difference between these
two values indicates the level of resilience of this system.

So as to validate the resilience of the algorithm to disruptive events, each
set of scenarios include a scenario where 10% of aircraft are non-cooperative,
their decision process being disabled. For the first random scenario involving
two flows of aircraft randomly generated, with an average interval of generations
of 140 s, results are similar when every aircraft is cooperative and when 10%
of them are non-cooperative, with an average number of unsolved conflicts in-
creasing from 2.3 to 2.7 (+2% of conflicts while comparing to the 16.8 conflicts
when the decision process is disabled). For the second scenario, with average
interval of generations of 110 s, the average number of conflicts increases from
6.9 to 10.7. In this second scenario, aircraft are generated every 110 s, which is
the maximum theoretical capacity of the route network. Therefore, each non-
cooperative aircraft increases the number of conflicts. For the scenario involving
real flight plans, the average number of remaining conflicts also slightly increases
from 256.5 to 275.9 (+4% while these values are compared to the 444 conflicts
occurring in the non-regulated scenario). All these values indicate that this
multi-agent system is resilient to disruptions, since the cooperative agents take
the non-cooperative ones into account in order to include them as constraints
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into the decision process.

3.4 Limits
The implementation of ERASMUS concept on subliminal speed changes de-
scribed in this section has several advantages related to the usage of multi-
agent systems. It is resilient to perturbations, like non-cooperative agents, and
could eventually be implemented on board, removing the need to rely on ground
equipment.

But ERASMUS itself is not able to regulate traffic globally and to solve
every conflict (and is not meant to do so). Speed regulation alone cannot solve
face-to-face conflicts. The small interval of admissible speeds can be insufficient
to maintain separation in all circumstances. To avoid all conflicts, aircraft may
need to modify their path.

This is also critical in Free Flight zones, where aircraft can follow any desired
path and create even more complex traffic patterns. Thus, another functionality
needs to be implemented into this multi-agent system in order to allow aircraft
to adjust their path to overcome this situation.

4 Local Minimization of Traffic Complexity
The Free Flight concept aims at giving more freedom to aircraft by allowing
them to choose their preferred path without having to fly along the segments
of a route network. Free Flight can contribute to decrease airspace conges-
tion, since aircraft can use the whole airspace. Free Flight can also reduce fuel
consumption, since aircraft can follow a path minimizing flight time.

The drawback of Free Flight, however, is a possible increase of traffic com-
plexity: since trajectories are not organized on a route network, air traffic con-
trollers experience a higher cognitive workload to understand and regulate traf-
fic [22, 3.1.1]. This is why the implementation of Free Flight is only considered
in low-traffic conditions (upper altitudes, night).

In order to facilitate control in Free Flight zones, workload reduction can be
done by temporarily creating local route networks in specific areas and letting
aircraft follow custom trajectories outside such zones. The algorithm described
in this section has two tasks: on one hand, to monitor the traffic complexity in
order to detect areas where traffic causes an increase of controllers’ workload
and on the other hand, to temporarily create route networks in these areas to
locally decrease air traffic complexity.

The algorithm was built upon the work described in Section 3. A new
agent was inserted into the multi-agent system, as shown in Figure 16. Firstly,
this agent collects messages sent by aircraft and containing 4D trajectories.
Then, it computes a complexity map using these trajectories to detect areas
where complexity is higher than what is allowed. Finally, the algorithm merges
trajectories in each detected area in order to create a new local route network.
It then sends back path modifications to aircraft that requires it.
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Figure 16: Workflow of the algorithm described in Section 4. A new agent
is added to the multi-agent system described Section 3. This agent collects
trajectories sent by aircraft using ADS-C messages. It then monitors traffic
complexity, before detecting high complexity areas and creating local route net-
works that reduces complexity. Finally, the new paths are sent back to aircraft,
which update their trajectory.
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4.1 Detection of Complex Areas
Nomenclature

t, t′ Times in the simulation.

i, j Aircraft.

pi(t) Position vector of the aircraft i at the time t.

vi(t) Speed vector of the aircraft i at the time t.

ai(t) Acceleration vector of the aircraft i at the time t.

pij(t) Relative position of the aircraft i and j at the time t.

vij(t) Relative speed of the aircraft i and j at the time t.

pij(t, t′) Relative position of the aircraft i at the time t and j at the time
t′, used in the robust version of the convergence metrics.

vij(t, t′) Relative speed of the aircraft i at the time t and j at the time
t′, used in the robust version of the convergence metrics.

rij(t) Derivative over time of the distance between pi(t) and pj(t).

Dmax Convergence is computed between aircraft separated by less
than this maximum distance.

∆t Robust convergence uses only positions within a time interval
[t−∆t, t+ ∆t].

Cij(t) Convergence between pi(t) and pj(t).

Cij(t, t′) Convergence between pi(t) and pj(t′), used in the robust version
of the convergence metrics.

C̃ij(t) Robust convergence computed between the positions pi(t) and
pj(t′), where t′ ∈ [t−∆t, t+ ∆t].

C̃i(t) Robust convergence computed at the position pi(t), considering
all aircraft j 6= i.

C Convergence map, as a 2D grid.

(k, l), (m,n) Coordinates in the grid C.

Ck,l, Cm,n Convergence value at the coordinates (k, l) (resp. (m,n)) in the
map C.
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Complexity is measured by using convergence metric developed by Delahaye
and Puechmorel (2000) [10, Section 3]. The usual way to monitor the complexity
of a traffic situation is the congestion metric that measures the traffic density.
However, this indicator and controllers workload can be uncorrelated. The
convergence metric is an attempt to give a more accurate complexity indicator,
compared to the congestion metric. The main idea is the following: if two
aircraft converge to the same position, a conflict may occur, and therefore this
situation may increase the controller’s workload. Otherwise, if aircraft diverge,
no action is required and the workload does not increase.

Let pi(t) be the position of the aircraft i at the time t, and vi(t) its speed
vector. The relative position pij(t) and speed vij(t) of aircraft i and j at the
time t are given by

pij(t) = pj(t)− pi(t) , (8)
vij(t) = vj(t)− vi(t) . (9)

For each time t, the derivative of the distance between two aircraft i and j
is given by

rij(t) = d
dt‖pij(t)‖

= pij(t) · vij(t)
‖pij(t)‖

= ‖vij(t)‖ cos(pij(t), vij(t)) .

(10)

Equation (10) is homogeneous of degree zero with respect to pij . Since com-
puting convergence of aircraft separated by hundreds of miles is meaningless,
convergence only takes into account vectors within a spatial window of size
Dmax. rij is positive when aircraft diverge, and it is negative when they con-
verge. The divergence does not contribute to the traffic complexity, so the
convergence Cij(t) is the following:

Cij(t) =
{
−rij(t) if rij(t) < 0 and ‖pij(t)‖ < Dmax,
0 otherwise.

(11)

Estimation of future aircraft position is subject to a strong uncertainty [39],
and depends on unpredictable factors such as wind. The error on lateral position
can be neglected and the aircraft is supposed to be able to accurately follow
its path. However, the error on longitudinal position is influenced by speed
fluctuations following a normal distribution with a standard deviation of 15 kt,
or 15NM after 1 h. A robust evaluation of the complexity has to take this
longitudinal uncertainty into account. The average of convergences is computed
within a temporal window of size ∆t = 15 NM

420 kt ≈ 128 s, considering that 420 kt
is the minimum aircraft speed in this simulation.

Equations 8, 9, 10 and 11 must be modified to take into account this time
uncertainty. We add a second argument to these functions which is a time t′
belonging to [t−∆t, t+ ∆t]:

pij(t, t′) = pj(t′)− pi(t) , (12)

29



pi(30)

pj(20)

pj(30)

pj(40)

Figure 17: Computation of the convergence value C̃ij(30), located at pi(30). A
first filter is applied to keep pj(t) within the spatial window Dmax represented
by the dashed circle, and the time interval ∆t of ±10 s. Convergence is com-
puted separately between pi(30) and the remaining pj(t) (i.e. pj(20), pj(30)
and pj(40)), then averaged.

vij(t, t′) = vj(t′)− vi(t) , (13)

rij(t, t′) = pij(t, t′) · vij(t, t′)
‖pij(t, t′)‖

= ‖vij(t, t′)‖ cos(pij(t, t′), vij(t, t′)) ,
(14)

Cij(t, t′) =
{
−rij(t, t′) if rij(t, t′) < 0 and ‖pij(t, t′)‖ < Dmax,
0 otherwise.

(15)

Then, in order to compute robust convergence values between aircraft i and
j at the time t, convergence C̃ij(t) is computed as the average convergence of
the vectors vi(t) with all the vectors vj(t′), where t′ belongs to [t−∆t, t+ ∆t]:

C̃ij(t) = average({Cij(t, t′)|t′ ∈ [t−∆t, t+ ∆t]}) . (16)

Averaging values within a time window allows to reduce the uncertainty
related to the time dimension of aircraft trajectories. An illustration of this
step is shown in Figure 17. Finally, convergence C̃i(t) is computed as the sum
of convergences between the aircraft i and all its neighbors j at the time t:

C̃i(t) =
∑
i 6=j

C̃ij(t) . (17)

In this way, convergence generated by three converging aircraft will be the
double of convergence generated by two aircraft.

C̃i(t) is an isolated convergence value at the position pi(t). In order to
compute the convergence map C, all these isolated values must be transformed
into a 2D grid in which each cell corresponds to a spatially located area. The
value at coordinates (k, l) is computed as the maximum value among the values
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Figure 18: Convergence map (lower values in white, higher ones in black) with
detected areas needing to be regulated (circles).

C̃i(t) located in the cells of coordinates (m,n) surrounding the cell (k, l):

Ck,l = max({C̃i(t)|pi(t) ∈ (m,n),
m ∈ {k − 1, k, k + 1},
n ∈ {l − 1, l, l + 1}})

(18)

This algorithm was integrated into the multi-agent system described in Sec-
tion 3. Even if we were not able to decentralize completely this algorithm, the
first computation steps can be distributed among aircraft agents. An aircraft
i knows trajectories of its neighbors, received by ADS-C messages like in Sec-
tion 3. It can compute convergence values C̃i(t) along its trajectory and use
them to compute partial maps. These partial maps are sent in a message to the
traffic monitoring agent, as shown in Fig. 16. The monitoring agent aggregates
these maps, keeping the maximum value at each coordinates to obtain the final
convergence map.

Finally, in order to determine areas needing to be regulated, the convergence
monitoring agent detects cells whose value is greater than a given threshold. It
then forms clusters of contiguous cells and draws the smallest surrounding circle
(see Figure 18). Towards the end of this step, intersecting circles are merged.
Temporary route networks are then created in those circles.

4.2 Design of a Local Route Network in High Complexity
Areas

Nomenclature

t A time value. For each trajectory, t is normalized to belong to [0, 1].

i Aircraft identifier.

N Number of aircraft.

pi(t) Position vector of the aircraft i at the time t.
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vi(t) Speed vector of the aircraft i at the time t.

ai(t) Acceleration vector of the aircraft i at the time t.

li Length of the trajectory i.

Ω Space in which density is computed.

x Position in the space Ω.

d(x) Density value at the position x, computed using a kernel density esti-
mator.

H(Ω) Entropy computed for the probability density function d(x).

Kh Scaled kernel of bandwidth h used to compute the probability density
function.

ηi(t) Move to apply to one position pi(t) in order to minimize entropy of the
set of trajectories.

Structuring traffic on a route network is a way to reduce complexity at the
cost of flight efficiency. To achieve this, bundling methods can be used to merge
trajectories into flows. In this case, bundling is used to create a temporary route
structure from a set of aircraft trajectories in order to oblige aircraft to follow a
route network. Several bundling methods have been developed [20, 29] for data
visualization purpose. They bundle similar trajectories into a network of major
aircraft flows to visualize them, but does not guarantee that bundled trajectories
are geometrically correct (flyable) without excessive curvature. Puechmorel and
Nicol [31, 32] developed a method to bundle trajectories by minimizing entropy
of curves. This method produces geometrically correct (flyable) trajectories.

In information theory, entropy measures complexity of a system. If an event
has a high probability of occurrence, occurrence of this event does not add much
information to the system. In other words, a system in which some events occur
with a high probability is less complex than a system with many equiprobable
events. Applied to aircraft trajectories, if all aircraft use the same route, the
system is less complex than if all trajectories differ.

A probability density can be computed from a set of aircraft trajectories.
Entropy can be computed from this probability density. If aircraft share portions
of their trajectories because they follow a route network, entropy value is lower
than if trajectories are spread evenly in the airspace. Reciprocally, minimizing
entropy of the probability density of a set of trajectory will bundle trajectories
into a route network. Puechmorel and Nicol [31] used a gradient descent method
to minimize this entropy by deforming trajectories in order to bundle them.

The trajectory of an aircraft i can be represented as a curve defined by a
function pi(t) that returns aircraft position from arc length. The time samples
t are normalized to belong to the interval [0, 1]. Speed vi(t) and acceleration
ai(t) are then the first and second derivative of pi(t).
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Entropy of a probability distribution measures its concentration and is max-
imized on unbounded interval by uniform distributions. Shannon entropy, from
information theory, is applied to discrete probability distributions. By anal-
ogy, entropy H can also be computed for a continuous probability density d(x),
where x is a point of a space Ω:

H(Ω) = −
∫

Ω
d(x) log(d(x)) dx . (19)

An example of entropy computed for a discrete probability distribution is shown
in Table 3.

Thus, one can measure entropy based on the density of traffic: if trajectories
are structured on a route network, the density is locally concentrated and the
entropy based on traffic density is low. Otherwise, if traffic is unstructured and
all aircraft choose a different route, entropy will be high. Therefore, measuring
and minimizing entropy based on density enables to structure traffic in order to
bundle trajectories.

In this case, to measure traffic density, a kernel density estimator is used
to get a continuous probability density. This method estimates a continuous
density as the average of a set of kernel functions centered on the data sample.
In our case aircraft positions pi(t) are extracted along the trajectories, then a
2D kernel is centered on each position. An Epanechnikov kernel Kh(x) was
chosen. For N trajectories, the density d(x) is given by the following function:

d(x) = 1
N

N∑
i=1

∫ 1

0
Kh(‖x− pi(t)‖) dt (20)

Kh(u) = 2
πh2

(
1−

(u
h

)2
)

1{|u|<h} , (21)

where h is the bandwidth of the kernel, which defines its size. The parameter
h must be chosen large enough such that the resulting probability density is
smooth, the representation of each trajectory being continuous in the resulting
probability density, but not too large such that individual trajectories are still
distinct. The kernel bandwidth also affect the number of resulting flows. A large
bandwidth (several tens of nautical miles) tends to bundle all the trajectories in
a single flow. A narrow bandwidth (a few miles or less) tend to create several
flows distant from each others, since kernels from different trajectories do not
intersect. In our implementation we chose to sample trajectories every 40 s and
to use a bandwidth of 5NM. An example of density computed from a set of
trajectories is shown in Figure 19.

Yet, computing a density map this way gives too much importance to por-
tions of trajectories while aircraft are slower, as when they take off and land.
Thus, density must take velocity into account:

d(x) = 1∑N
i=1 li

N∑
i=1

∫ 1

0
Kh(‖x− pi(t)‖)‖vi(t)‖ dt , (22)
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Figure 19: Density computed from a set of trajectories, used in the entropy
minimization process. Trajectories are in black. Lighter areas represent low
density, darker ones represent high density.

where li is the length of trajectory pi.
To bundle those trajectories, entropy must be minimized by using a gradient

descent method. The first order variation of the entropy given by (19) defines
the movement ηi(t) to apply to each point pi(t) of trajectories [31], ()N being
the component of the vector normal to the trajectory and K ′

h(u) the derivative
of the kernel function:

ηi(t) =
∫

Ω

(
pi(t)− x
‖pi(t)− x‖

)
N
K ′
h(‖pi(t)− x‖) log d(x) dx‖vi(t)‖ (23a)

−
(∫

Ω
Kh(‖pi(t)− x‖) log d(x) dx

)(
ai(t)
‖vi(t)‖

)
N

(23b)

+
(∫

Ω
d(x) log d(x) dx

)(
ai(t)
‖vi(t)‖

)
N

. (23c)

A detailed explanation of the behavior of (23) can be found in [32]. The
general result of (23) is a minimization of the entropy. The line (23a) results
in a local maximization of the density. The lines (23b) and (23c) tend to mini-
mize trajectory curvature by moving each point pi(t) along the normal vector,
resulting in the minimization of the total trajectory length.

To implement this method, the convergence monitoring agent first samples
trajectories inside each regulated circular area that is detected during the previ-
ous step of the algorithm, described in Section 4.1 (see Figure 18). The samples
are extracted every 40 s. Then, the agent computes the density map, using a
bandwidth of 5NM for the kernel function, in such a way that trajectories rep-
resentation are continuous in the density map (kernels centered on successive
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samples overlap). Each sample, except the first and last one of every trajectory,
is moved according to (23). A coefficient is applied to reduce movements and
avoid divergence caused by too large displacements. The computations for each
sample can be done in parallel, since it relies only on density map.

The two last steps (computing density map and moving points) are done
iteratively until convergence is observed (maximum movement of a waypoint
during an iteration is lower than a given threshold) or when a maximum number
of iterations is reached.

The resulting sample positions define the waypoints of the portion of the
temporary flight plans that are sent back to aircraft.

4.3 Results
A test scenario was built to validate the method. Three parallel routes of
100NM and spaced by 5NM are crossed by another one, causing convergence.
The intersection of those trajectories is detected as an area to regulate (circle in
Figure 20). Trajectories are then bundled in this area by the entropy minimiza-
tion algorithm. Entropy of the resulting trajectories is lower inside the circular
area than in the initial situation according to (23). Density is maximized be-
cause all the trajectories are bundled. Curvature is at the same time minimized:
trajectories are straightened and no excessive curvature appear.

New flight plans are sent back to aircraft, which follow them. As shown
in Figure 16, the conflict resolution algorithm detailed in Section 3 works in
parallel with the trajectory bundling agent. Aircraft compute and broadcast
trajectories avoiding conflicts. The trajectory bundling agent creates temporary
route networks in high complexity areas, and sends new flight plans to aircraft.
Then aircraft update their trajectories according to these flight plans and update
speed changes in order to avoid conflicts. New trajectories are broadcast, and
the process is repeated until the end of the simulation.

4.4 Future works
This method gives promising results for elaborating temporary local route net-
works. Trajectories are correctly aggregated to form simpler paths. Yet, two
aspects have to be improved in future work.

Firstly, since entropy measure is based on density, aircraft heading is not
taken into account. In this 2D modeling, two trajectories that form an obtuse
angle are then aggregated into a single path, leading to a face-to-face conflict.
In an operational context, this type of conflict do not appear, two aircraft with
an opposite heading fly at different altitudes. An improvement of this algorithm
would be to implement this type of behavior.

Secondly, in this implementation, the choice has been made to centralize
decision process. A central monitoring agent was introduced into the multi-
agent system described in Section 3. The lifecycle of this agent is divided into
three steps. The convergence map is computed during the perception step.
Detection of zones to regulate and aggregation of trajectories are done during
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Figure 20: Results of the third algorithm. Top: initial scenario, central trajec-
tories are 100NM long, and spaced by 5NM. Center: aggregated flight plans,
area to regulate represented by the circle. Bottom: aircraft following new flight
plans.
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the decision step. New flight plans are sent back to aircraft in messages during
action step.

This architecture improves the time of convergence but one of the main
assets of multi-agent systems is lost: it relies on a single agent to take all the
decisions. This process could be decentralized at aircraft level: convergence can
be computed by each aircraft along its trajectory and distributed by messages
in order to collaboratively compute the whole convergence map. The same
principle can be applied to trajectory modification process but will need further
investigations.

5 Conclusion
In this article, three decentralized methods enabling to organize some aspects of
air traffic were presented. The algorithms described in Section 2 aims at solving
conflicts on a highly structured route network (Miles-in-Trail). The algorithm
described in Section 3 aims at reducing the number of conflicts in a general traffic
configuration. The algorithm described in Section 4 creates temporary route
networks where traffic complexity increases locally. While being promising,
these methods can be improved to fulfill operational requirements.

Thanks to the ability of multi-agent systems to integrate non-cooperative
agents and to recover from disruptive events, they offer a good framework to mix
human-controlled traffic with an automated one. Eventually, these algorithms
could then collaborate with humans in air traffic management applications.
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Table 1: Performances of the first algorithm (average values of 10 runs).
λ = 140 s λ = 110 s

Decision process Dis-
abled

En-
abled

Disabled for 10% of
aircraft

Dis-
abled

En-
abled

Disabled for 10% of
aircraft

Number of aircraft 51.2 51.3 52.2 65 65 66.6

Number of conflicts 16.8 10.3 8.6 27 18.7 20.1

Minimum distance (NM) 0.03 2.99 0.22 0.0 2.28 0.0

Average distance (NM) 2.31 4.47 4.3 2.33 4.49 4.25

Number of conflicts < 4NM 13.5 1 1.3 21.7 1.1 3.4

Average number of speed
changes

0 410 370 0 503 470

Average distance to optimal
speed (%)

0 1.2 1.1 0 1.4 1.3
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Table 2: Performances of the second algorithm (average values of 10 runs).
λ = 140 s λ = 110 s Real traffic

Decision process Dis-
abled

En-
abled

Disabled for
10% of
aircraft

Dis-
abled

En-
abled

Disabled for
10% of
aircraft

Dis-
abled

En-
abled

Disabled for
10% of
aircraft

Number of aircraft 51.2 51.1 51.3 65 65 65.8 465 465 465

Number of
conflicts

16.8 2.3 2.7 27 6.9 10.7 444 256.5 275.9

Minimum distance
(NM)

0.03 0.04 0.01 0.0 0.02 0.0 0.0 0.0 0.0

Average distance
(NM)

2.31 2.28 2.08 2.33 2.86 2.5 2.5 2.29 2.36

Number of
conflicts < 4NM

13.5 1.5 2 21.7 4.2 7.4 342 216.9 227.9

Average number of
speed changes

0 11.5 11.2 0 27.8 23.2 0 28.6 25.8

Average distance
to optimal speed

(%)

0 1.4 1.4 0 2.3 2.3 0 2.4 2.2
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Table 3: Example of entropy computed from two discrete probability distri-
butions, using Equation (19). Entropy is maximized when all the events are
equiprobable.

x 1 2 3 4 5 Entropy

Non-equiprobability d(x) 0.8 0.05 0.05 0.05 0.05 0.78

Equiprobability d(x) 0.2 0.2 0.2 0.2 0.2 1.61
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