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MINLP in Air Traffic Management:
Aircraft conflict avoidance

Sonia Cafieri

ENAC, University of Toulouse, F-31055 Toulouse, France

1 Introduction

Air Traffic Management (ATM) represents a domain of emerging and chal-
lenging applications of MINLP. A number of problems arising in ATM lead
naturally to optimization problems whose efficient and reliable solution con-
stitutes a key ingredient to ensure air traffic safety [11]. The air-traffic level
currently attained in Europe is around tens of thousands of flights per day,
and it is expected to furtherly grow on the world scale during the next 20
years. Increasing levels of traffic raises the problem of increasing the capac-
ity of air sectors by better managing the air traffic. This needs increasing
the level of automation in ATM, as pointed out in the context of the major
projects Single European Sky ATM Research (SESAR) [24] in Europe and
Next Generation Air Transportation System (NextGen) [15] in the United
States, that are aimed at designing the future ATM systems. Aircraft con-
flict detection and resolution in en-route flights, and the related problem
of conflict-free aircraft trajectory planning, constitute prominent examples
of problems that urgently need to be addressed to ensure a higher level of
automation in ATM, and consequently more efficiency and safety in air traf-
fic. These problems still deserve investigation from both the identification of
suitable mathematical models and the development of efficient and reliable
solution methods and algorithms. Mixed-Integer Nonlinear Programming
formulations appear particularly suitable, as they allow us to simultaneously
consider continuous as well as discrete decision-making variables and model-
ing the complex nonlinear processes characterizing ATM systems.
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In the following, we focus on aircraft conflict detection and resolution for
en-route flights. The aim of this chapter is to present and discuss the use
of mixed-integer optimization for this real-life application, with an emphasis
on MINLP modeling.

Aircraft conflict avoidance is described in Section2 and the main ap-
proaches based on MINLP are recalled. In Section 3 the main ingredients and
issues of mathematical MINLP modeling are discussed. Section 4 presents a
brief overview of solution approaches. Section 5 draws a few conclusions.

2 Aircraft conflict avoidance

Aircraft sharing the same airspace are said to be potentially in conflict when
they are too close to each other according to their predicted trajectories,
i.e., their relative horizontal and vertical distances do not satisfy two given
safety-distance constraints. More precisely, the standard separation norms
in the en-route airspace are 5 NM horizontally and 1000 ft vertically (1NM
(nautical mile)= 1852 m; 1ft (feet)= 0.3048 m). One can then imagine an
aircraft as the center of a cylinder of 5 NM radius and 1000 ft height: it
is conflict-free if there is no other aircraft entering this protection volume.
When a loss of separation occurs, aircraft have to be separated by performing
suitable maneuvers. Aircraft conflicts resolution, also referred to as aircraft
deconfliction, is the problem of providing, starting from an initial configura-
tion given by aircraft trajectories (positions, heading angles), and velocities,
a new conflict-free configuration. In general, a selected portion of the airspace
is observed over a given time horizon, then the process is restarted on the
next time window. We consider the case of en-route cruise flights, at a tac-
tical level, i.e., potential conflicts are resolved a few minutes before the loss
of separation potentially occurs.

The main challenge is to propose mathematical formulations that are able
to model the complex choices characterizing the target problem without as-
suming any unrealistic simplifying hypotheses, and that are amenable to be
solved by efficient algorithms. The underlying problem is an optimization
problem, as conflict avoidance may be performed deviating as little as pos-
sible from the original aircraft flight plan, i.e., minimizing the impact of the
separation maneuvers on the flight efficiency.

Modeling aircraft conflict avoidance is strictly dependent on the separa-
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tion maneuver chosen to solve conflicts. The most common way to achieve
separation, that represents the separation maneuver usually exploited by air
traffic controllers, is based on changing either the trajectory (heading) or
the flight level of the aircraft involved in a conflict. Alternatively, conflict
avoidance can be performed through aircraft velocity regulation, keeping the
predicted trajectories. The European aeronautical project ERASMUS [6]
in recent years promoted the idea of subliminal control, according to which
velocity regulation should be performed in such a way that aircraft speeds
are modified only in a small range (namely, from -6% to +3%) around the
original speed. A subliminal speed control is considered promising in view of
a future, more automated ATM system, thanks to its limited impact on the
workload of air traffic controllers.

Various models and solution strategies have been proposed for the un-
derlying optimization problem. A survey up to the year 2000 can be found
in [17]. Since then, numerous other approaches have been introduced and
mixed-integer linear and nonlinear optimization is appearing a powerful frame-
work for mathematically modeling aircraft deconfliction. Pallottino et al. in
[19] and Richards and How [22] in 2002 first proposed geometrical construc-
tions to model aircraft separation using either velocity or trajectory changes.
They obtained mixed-integer linear programming (MILP) models that, even
though characterized by quite stringent hypothesis, have the advantage to be
solved by any state-of-the-art MILP solver. A mixed-integer linear model for
conflict resolution by velocity and altitude changes is proposed in [2]. The
main drawback of this approach is that altitude changes are not preferred as
they are uncomfortable for passengers and fuel consumptive. In [3] a non-
linear model is developed starting from the geometrical construction in [19].
The authors propose a sequential linear solution approach for its solution.
The same authors develop a Variable Neighborhood Search heuristic in [4].
In [26] a model is proposed based on speed control and flight-level assign-
ments for conflict resolution over predefined routes, while the authors in [10]
propose a MINLP coming from a combination of velocity control and heading
angle control methods. In [8] a MINLP model based on velocity changes is
proposed, as well as deterministic solution approaches. The speed regulation
strategy is also the basis of mixed-integer linear and nonlinear models pro-
posed in [20, 21] for the related problem of minimization of potential conflicts.
A number of contributions also come from the related problem of conflict-free
trajectory planning (i.e., finding trajectories such that aircraft are separated
all along their path, a priori in long-term strategical planning or in tactical
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phases of flights). In [9, 23] mixed-integer models are proposed for trajectory
planning problems, that are solved through heuristic approaches. Interest-
ing MINLP problems also come from mixed-integer optimal control models
for conflict-free trajectories planning and conflicts resolution, where typical
discretization steps lead to the solution of MINLP problems, see e.g. [5].

3 MINLP modeling

As for many real-life applications, aircraft conflict avoidance is quite chal-
lenging in that a successful model should exhibit a good trade-off between
being adherent to realistic constraints and amenable to be computationally
treated.

The focus of this section is on MINLP formulations. We provide an
overview of the main formulation elements, pointing out different possible
choices and discussing some modeling issues. We mainly refer to the MINLP
model in [8], and variants therein.

We assume that aircraft are represented by points moving at constant
speed along linear trajectories at the same altitude and are able to change
instantaneously their course and speed. Thus, the focus is on the two-
dimensional space and only the horizontal separation has to be ensured.

The choice of the separation maneuvers to solve conflicts directly affects
the choice of the decision variables. Thus, the main decision variables in a
conflict avoidance model may include aircraft velocities, heading angles, or
flight levels, according to the chosen separation maneuvers. These variables
are in general continuous variables, typically bounded because of operational
constraints: aircraft velocity cannot be reduced to zero and it is limited by
the aircraft engine, and trajectories presenting sharp turns may be not fea-
sible for the aircraft. Referring to modeling based on velocity regulation [8],
we consider, as main decision variables, speed variations qi for each aircraft
i ∈ A, bounded in the interval [−6%,+3%] of the original aircraft speed vi,
according to the ERASMUS directives. The actual aircraft speed is then qivi.
A few authors consider alternatively instants when aircraft cross intersection
points as main continuous variables [21]. Integer, and in particular binary,
variables usually come from the need to express combinatorial decisions char-
acterizing the problem: typically, the choice among possible scenarios or that
of an order for aircraft to perform their maneuver or to arrive at a given point
of the airspace. In that sense, the problem can naturally be modeled as a
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mixed-integer program.
Different cost functions can be identified as the objective of the optimiza-

tion in the considered framework. In general, the aim is to achieve deconflic-
tion in such a way that aircraft deviate as less as possible from their original
flight plan. In modeling based on speed regulation, this corresponds to min-
imizing the aircraft speed changes; when trajectory changes (heading) are
performed, the aircraft flight on a deviated trajectory has to be minimized.
This is in turn related to the minimization of time delays due to deconflict-
ing maneuvers. On the other hand, the minimization of fuel consumption,
associated with the changes imposed to aircraft to ensure their separation,
is important for airline companies and is valued in the context of sustainable
environment. In our example using speed regulation, we minimize the speed
variations over the set of all aircraft:

min
∑
i∈A

(qi − 1)2. (1)

This shows that one can reasonably model the objective using functions with
“desirable” properties, like convexity, and in general amenable to be com-
putationally treated. The main difficulties come in fact from modeling the
aircraft separation condition, as discussed below.

The constraints that definitely characterize the aircraft conflict avoidance
problem are separation constraints. They have to be expressed for pairs of
aircraft, so their number rapidly increases with the number n of aircraft.
These constraints, in the general form g(t) ≥ 0 ∀t, are in principle nonconvex
constraints expressed by relations involving state variables, like positions and
velocities, and depending on time t, although they are often reformulated into
a different form. The aircraft separation between two aircraft i and j at time
t is expressed by the condition

||xr
ij(t)|| ≥ d ∀t (2)

where d is the minimum required separation distance (5 NM for en-route
flights), xr

ij(t) = xi(t) − xj(t) is a vector representing the relative distance
between aircraft i and j, and we use the Euclidean norm. Notice that a few
already mentioned approaches (see [19]), express separation in a different
way, looking at the geometry of the problem when the trajectories are inter-
secting straight lines. Such approaches require a few hypothesis and lead to
“OR” constraints to take into account different possible configurations. In the
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following, we use (2) to express separation. A reformulation can be provided
([8]) to find an expression not explicitly dependent on the time, and numeri-
cally treatable. We can assume that uniform motion laws apply, so that the
relative distance of aircraft i and j is expressed as the sum of their relative
initial position and the product of their relative speed vr

ij by the time:

xr
ij(t) = xr0

ij + vr
ij t ∀t,

that, substituting into (2) and squaring, gives

‖vr
ij‖2 t2 + 2(xr0

ij · vr
ij) t + (‖xr0

ij ‖2 − d2) ≥ 0 ∀t. (3)

The study of (3) and its associated equation can provide interesting insights
to model aircraft separation. Let us consider the equation associated with
(3). It is a quadratic equation in t. Its graph is a parabola that, as ‖vr

ij‖2 > 0,
has a minimum point and opens upward. The discriminant ∆ is defined as:

∆ = (xr0
ij · vr

ij)
2 − ‖vr

ij‖2(‖xr0
ij ‖2 − d2) (4)

If ∆ < 0 there are no solutions of the quadratic equation and aircraft are
not in conflict, while if ∆ ≥ 0 there are two solutions, eventually coincident
(entry and exit points from the protection zone). If the two roots t′ and t

′′
are

both negative, then the conflict is over (it happened in the past). So, there
is no conflict when the discriminant is negative or when the discriminant is
positive and the two roots are negative (see [7, 14]). Binary variables and
disjunctive constraints can then be introduced to model separation taking
into account these possible scenarios.
Also, one can look at the sign of the scalar product xr0

ij · vr
ij to infer which

kind of angle the vectors form. When the scalar product xr0
ij ·vr

ij is negative,
then aircraft flying on straight-line trajectories are converging, potentially
generating a conflict, while they are diverging when the product is positive.
This last condition can be used in conjunction with other ones, like the
condition on ∆ [7].

Again considering (3), we can observe that, by differentiation, the mini-
mum occurs at:

tmij = −
vr
ij · xr0

ij

‖vr
ij‖2

. (5)

So, tmij represents the time of closest separation for aircraft i and j: it is a
worst-case, and aircraft are further apart for times greater than tmij . Thus,
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by substituting into (3), we obtain:

‖xr0
ij ‖2 −

(vr
ij · xr0

ij )2

‖vr
ij‖2

− d2 ≥ 0 (6)

that represents a separation condition in the considered time window (0, T ).
In [8], separation is imposed through this condition (6) when tmij ∈ (0, T ), and

‖xr0
ij ‖ ≥ d, ‖xr0

ij + vr
ij T‖ ≥ d (separation at the initial time and at the time

horizon). Through the above transformation, we have obtained a nonlinear
expression (6), but not depending on time anymore. Notice that constraint
(6) has to be imposed, for each i and j, when tmij > 0. This condition
requires us to introduce a binary variable, and corresponding constraints
(yij, and constraints (11), in the formulation below), to check such condition
and impose separation when this variable takes value 1. Finally, we obtain
the following MINLP formulation:

min
∑
i∈A

(qi − 1)2 (7)

s.t. ‖vr
ij‖ = ‖viqi − vjqj‖ ∀i, j ∈ A, i < j (8)

yij

(
‖xr0

ij ‖2 −
(vr

ij ·x
r0
ij )

2

‖vr
ij‖2

− d2
)
≥ 0 ∀i, j ∈ A, i < j (9)

tmij = − (vr
ij ·x

r0
ij )

‖vr
ij‖2

∀i, j ∈ A, i < j (10)

tmij (2yij − 1) ≥ 0 ∀i, j ∈ A, i < j (11)

‖xr0
ij ‖2 ≥ d2 ∀i, j ∈ A, i < j (12)

‖xr0
ij + vr

ij T‖2 ≥ d2 ∀i, j ∈ A, i < j (13)

yij ∈ {0, 1} ∀i, j ∈ A, i < j (14)

0.94 ≤ qi ≤ 1.03 ∀i ∈ A (15)

where bounds on qi take into account the limitation on speed variation for a
subliminal control. We remark that the most of constraints, (8) to (14), are
on pairs of aircraft, so there are n(n− 1)/2 of each one of these constraints.
The main nonlinearities come from squares and products of continuous vari-
ables and of binary and continuous variables, for which linearizations like
Fortet’s linearization can be computed [13].

It is worth noticing that this kind of model, like the most of the models
in the literature, considers only one maneuver per aircraft, and maneuvers
performed simultaneously by all aircraft in the airspace to be deconflicted.
A more flexible model can be developed, on the one hand allowing different
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kinds of maneuvers, combining for example velocity and heading changes (see
e.g.[10]), and on the other hand modeling different scenarios where aircraft
perform their maneuvers at different times instead of simultaneously. Evi-
dently, new (mainly, integer) variables and constraints have to be added to
the formulation to accommodate these new model features.

In order to model the problem in such a way that separation maneuvers
are not performed simultaneously, we introduce for each aircraft i a time t1i
and a time t2i when the aircraft can modify its speed and respectively go
back to its original speed. These times represent new (continuous) variables
of the problem. As no conditions are imposed on the order of execution of
separation maneuvers, and consequently, for each pair of aircraft i,j, on the
order of times t1 and t2 for i and j, the idea is to handle different possible time
configurations for pairs of aircraft. These configurations, for a pair i, j ∈ A,
correspond to all possible permutations of t1 and t2 for the two aircraft of
the pair (six configurations per pair). For example, supposing that aircraft
i is the first to start its maneuver (changing its speed from the initial vi
to viqi), that then j starts flying with modified speed, and then i ends its
maneuver while j is still flying with modified speed, then the sequence of
times is t1i , t

1
j , t

2
i , t

2
j , with 0 ≤ t1i ≤ t1j ≤ t2i ≤ t2j ≤ T . We then introduce, for

each pair i, j ∈ A, binary variables z`ij to identify the configuration ` holding
(` ∈ {1, . . . , 6}), i.e., the sequence of times. For example, z1ij identifies the
first configuration:

z1ij =

{
1 if t1i ≤ t1j and t1j ≤ t2i and t2i ≤ t2j
0 otherwise

Then, the idea is to deal with the different time windows, in each configura-
tion, where each aircraft flies either with its original (known) speed or with a
changed speed. For example, in the first configuration the time windows are
from 0 to t1i , from t1i to t1j , from t1j to t2i , from t2i to t2j and from t2j to T , and
aircraft i flies with a modified speed in the second and third time window.
As we consider instantaneous speed changes, aircraft speeds are piecewise
constant in time windows.

Dealing with time windows means to impose separation conditions like (6)
in each time window, for each pair of aircraft, in each possible configuration.
This makes the number of variables and constraints significantly growing with
respect to the above model. First, constraints have to be added to the model
to identify, for each pair i, j ∈ A, which is the current time configuration
(i.e., which is the order of times t1 and t2 for i and j). Then, for each time
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window, further constraints express the size of the time window, the initial
position and the speed of each aircraft, and finally the separation condition.
The reader is referred to [8] for the whole detailed model. Here we focus
on constraints expressing time configurations, as they can be formulated in
different ways, thus showing the interest of reformulations in mathemati-
cal programming formulations [18] in the considered context. Following the
definition, the first time configuration for a pair i, j ∈ A is expressed by:

z1ij(t
1
i − t1j) ≤ 0, z1ij(t

1
j − t2i ) ≤ 0, z1ij(t

2
i − t2j) ≤ 0

and similarly for the other five configurations, for each i, j ∈ A. To elimi-
nate the nonlinearities given by the products between continuous and binary
variables (t and z respectively), these are easily reformulated using big M
constraints:

t1i ≤ t1j + M(1− z1ij), t1j ≤ t2i + M(1− z1ij), t2i ≤ t2j + M(1− z1ij)

t1j ≤ t1i + M(1− z2ij), t1i ≤ t2i + M(1− z2ij), t2j ≤ t2j + M(1− z2ij)

t1i ≤ t2i + M(1− z3ij), t2i ≤ t1j + M(1− z3ij), t1j ≤ t2j + M(1− z3ij)

t1j ≤ t2j + M(1− z4ij), t2j ≤ t1i + M(1− z4ij), t1i ≤ t2i + M(1− z4ij)

t1i ≤ t1j + M(1− z5ij), t1j ≤ t2j + M(1− z5ij), t2j ≤ t2i + M(1− z5ij)

t1j ≤ t1i + M(1− z6ij), t1i ≤ t2j + M(1− z6ij), t2j ≤ t2i + M(1− z6ij)

Taking into account all pairs i, j ∈ A, this gives 18n(n − 1)/2 constraints.
Interestingly, the value of constant M , usually difficult to choose, in this case
can be chosen using the time horizon T , which represents an upper bound
on the length of all time intervals. The above constraints can be furtherly
reformulated, again using a big M approach where the constant M can be
chosen using the time horizon T , but using a different formulation with new
variables pij (one variable for each pair i, j and for each time window) [1]:

−M +M(z1ij + z3ij + z5ij) ≤ p1ij − t1i ≤ M −M(z1ij + z3ij + z5ij)

−M +M(z2ij + z4ij + z6ij) ≤ p1ij − t1j ≤ M −M(z2ij + z4ij + z6ij)

−M +M(z2ij + z6ij) ≤ p2ij − t1i ≤ M −M(z2ij + z6ij)

−M +M(z1ij + z5ij) ≤ p2ij − t1j ≤ M −M(z1ij + z5ij)

−M +Mz3ij ≤ p2ij − t2i ≤ M −Mz3ij

−M +Mz4ij ≤ p2ij − t2j ≤ M −Mz4ij
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−M +M(z1ij + z2ij) ≤ p3ij − t2i ≤ M −M(z1ij + z2ij)

−M +Mz3ij ≤ p3ij − t1j ≤ M −Mz3ij

−M +Mz4ij ≤ p3ij − t1i ≤ M −Mz4ij

−M +M(z5ij + z6ij) ≤ p3ij − t2j ≤ M −M(z5ij + z6ij)

−M +M(z1ij + z2ij + z3ij) ≤ p4ij − t2j ≤ M −M(z1ij + z2ij + z3ij)

−M +M(z4ij + z5ij + z6ij) ≤ p4ij − t2i ≤ M −M(z4ij + z5ij + z6ij)

with

0 = p0ij ≤ p1ij ≤ p2ij ≤ p3ij ≤ p4ij ≤ p5ij = T.

Taking into account all pairs i, j ∈ A, this gives 12n(n − 1)/2 constraints,
which also give the sizes of time intervals (directly obtained by pij values),
that in the prior formulation requires adding specific constraints.

Summarizing, MINLP formulations for the aircraft conflict avoidance
problem are generally characterized by:

- a number of variables and constraints rapidly growing with the number
n of aircraft and generally leading to large-scale problems. In some
cases, a suitable pre-processing, able to identify pairs of aircraft whose
trajectories remain separated regardless of other separation maneuvers
in the airspace, can help reducing the size of the problem to be solved;

- integer, and in particular binary, variables, due to the combinatorial na-
ture of the problem. The number of integer variables is strictly related
to the generality and flexibility of the chosen model;

- continuous variables often bounded on the basis of operational con-
straints, that restricts their degree of freedom;

- nonlinearities appearing in the objective(s) and constraints. They are
mainly related to modeling separation conditions on the one hand, and
to logical choices (using binary variables) on the other hand. Thus,
nonlinearities come specially from products of continuous as well as
continuous and binary variables, from trigonometric functions when
angles have to be decided, and from “OR” constraints. This clearly af-
fects the complexity of the solution process, and reveals the importance
of reformulations and of the choice of an appropriate solver.
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4 Solution approaches

While a thorough discussion of solution approaches for aircraft deconfliction
via MINLP is out of the scope of this chapter, we recall in this section the
main approaches and issues related to the numerical solution of the consid-
ered application.

Deterministic approaches to compute a global solution, mainly based on
Branch-and-Bound methods, are applied e.g. in [19, 2, 10, 8, 5]. On simpler
models with linear formulations, solutions are efficiently obtained using state-
of-the-art solvers [19, 2]. The global exact solution is evidently more difficult
to compute for complex mixed-integer nonlinear models, mainly due to the
nonconvexity of the region described by aircraft separation constraints. Note
that, as these constraints are indexed on all pairs of aircraft, their number
rapidly grows with the number n of aircraft. Furthermore, remark that for the
considered application a feasible solution is not guaranteed to exist. This is
specially related to the tight bounds that are often imposed on decision vari-
ables (speeds, angles) because of aerodynamical and operational limitations,
thus restricting the freedom to find a feasible solution. Results are obtained
for small to medium-scale instances in moderate computing time [8, 5], using
global optimization engines like COUENNE. These results demonstrate that the
aforementioned MINLP formulations behave reasonably well for the consid-
ered application and are amenable to be solved by general-purpose solvers for
MINLP. The proposed reformulation of the separation condition to avoid the
dependence on time, on the one hand, enables to avoid a time discretization,
and on the other hand is flexible enough to potentially be used in differ-
ent models (e.g., also based on aircraft angle modifications). In other cases,
like in [3], the proposed complex model cannot be solved by general-purpose
MINLP solvers, and a sequence of linear approximations based on Taylor
polynomials is used instead.

Alternatively, some authors resort to heuristics [4, 9, 23], and are able to
solve large instances, though obtaining feasible (if any) but not guaranteed
global optimal solutions. More specifically, a Variable Neighborhood Search
metaheuristic is proposed in [4], while a simulated annealing and, respec-
tively, a genetic algorithm tailored to the problem are used in [9, 23] for
the related problem of trajectory planning. Finally, in [8], besides the exact
solution of the whole MINLP, a heuristic is proposed, based on exact solu-
tions of subproblems that are represented by clusters of conflicting aircraft.
This kind of hybrid solution strategies appears to be promising and deserves
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further developments.

5 Conclusion

We presented an application of MINLP arising in Air Traffic Management,
namely aircraft conflict avoidance for en-route flights. We primarily focused
on modeling aspects, specific to the considered application, emphasizing the
role of MINLP. It appears that the considered application is challenging and
leaves room to further interesting developments using mixed-integer opti-
mization.

Current research is specially addressed to efficiently solving large-scale
instances, and to incorporate in the problem formulation objectives which
are relevant for a sustainable environment [25], as well as the uncertainty
affecting the aircraft motion (see, e.g., [16, 21]).
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