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Abstract
Bundling techniques provide a visual simplification of a graph drawing or trail set, by spatially grouping similar graph edges
or trails. This way, the structure of the visualization becomes simpler and thereby easier to comprehend in terms of assessing
relations that are encoded by such paths, such as finding groups of strongly interrelated nodes in a graph, finding connections
between spatial regions on a map linked by a number of vehicle trails, or discerning the motion structure of a set of objects by
analyzing their paths. In this state of the art report, we aim to improve the understanding of graph and trail bundling via the
following main contributions. First, we propose a data-based taxonomy that organizes bundling methods on the type of data
they work on (graphs vs trails, which we refer to as paths). Based on a formal definition of path bundling, we propose a generic
framework that describes the typical steps of all bundling algorithms in terms of high-level operations and show how existing
method classes implement these steps. Next, we propose a description of tasks that bundling aims to address. Finally, we provide
a wide set of example applications of bundling techniques and relate these to the above-mentioned taxonomies. Through these
contributions, we aim to help both researchers and users to understand the bundling landscape as well as its technicalities.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computing Methodologies—
Picture/Image Generation; I.3.6 [Computer Graphics]: Computing Methodologies—Methodology and Techniques

1. Introduction

Bundling techniques provide a visual simplification of a graph
drawing or a set of trails, by spatially grouping graph edges or
trails (which we next globally call paths). This way, the structure
of the visualization becomes simpler and thereby easier to com-
prehend in terms of assessing relations that are encoded by such
paths, such as finding groups of strongly interrelated nodes in a
graph drawing, finding connections between spatial regions on a
map linked by a number of vehicle trails, or discerning the motion
structure of a set of objects by analyzing their trajectories. Bundling
techniques started with graph simplification by edge concentra-
tion [New89] in 1989 and extensions of Sankey graphs [Tuf92].
Graph drawing simplification has since then been a major focus of
edge bundling, a term introduced by Dickerson et al. for the reduc-
tion of clutter in a graph drawing via node placement [DEGM03].
The method was next extended to handle hierarchical graphs drawn
in 2D [Hol06] and 3D [CC07, GBE08]; general graphs [HVW09,
DMW07]; spatial trail sets in 2D [CZQ∗08,EHP∗11,LBA10b] and
on curved surfaces [LBA10b]; sequence graphs [HET13] and dy-
namic graphs and eye tracks [NEH12, HEF∗14]; directed graphs
[SHH11, Mou15, PHT15]; attributed graphs [TE10, PHT15]; par-
allel coordinate plots [MM08, PBO∗14, PW16]; multidimensional
projections [MCMT14, RFFT17]; and 3D vector and tensor fields
[YWSC12,BSL∗14,EBB∗15]. Along the growing interest to apply
bundling for many data types, a wide array of bundling techniques
has been proposed, based on control structures [Hol06], force-

directed models [HVW09, DMW07, NEH12, EBB∗15]; computa-
tional geometry techniques [PXY∗05,CZQ∗08,LBA10b,EHP∗11];
image-based techniques [HET12,BSL∗14,Mou15,vdZCT16]; and
graph simplification techniques [GHNS11, TE10]. Recent devel-
opments using GPU parallelization have made bundling efficiently
applicable to datasets of millions of paths [vdZCT16, LHT17].

Bundling goals largely follow those of early methods for sim-
plifying graph drawings [HMM00]. Since then, bundling has be-
come an established tool for the creation of simplified visualiza-
tions of edge and trail datasets. However, the rapid development of
the field, coupled with the diversity of its application domains, data
types handled (e.g., graphs, vehicle trails, eye tracking data, vector
and tensor fields, all of them attributed or not and time-dependent
or not), and a plethora of algorithmic approaches, make it hard for
users to choose the suitable method for a given use-case, and for re-
searchers to focus on important areas of improvement. Bundling is
featured, though with limited detail, in a survey on image-based in-
formation visualization [Hur15], and has gained a prominent place
in the set of practical clutter-reduction methods for large graph vi-
sualization [SH13]. Another recent survey on large graph visualiza-
tion [LKS∗11] only tangentially touches graph bundling. All above
make the case for a dedicated survey on graph and trail bundling.

These challenges have been acknowledged in a recent work
[ZXYQ13], which, to our knowledge, is the only survey dedi-
cated to bundling so far. Yet, critical elements for understanding
bundling are not covered by [ZXYQ13], such as a large number of
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existing bundling methods; bundling attributed and time-dependent
data; 3D bundling; and interaction techniques for exploring bun-
dled layouts. More generally, the bundling literature lacks a for-
mal discussion on what bundling precisely is and which are its ex-
act advantages and limitations. There is so far no framework that
allows comparing the different algorithmic solutions from a tech-
nical perspective. Relations of bundling with other simplification
techniques such as data clustering [JMF99] and image simplifica-
tion [CM02, SP09] exist but are not fully analyzed. Understanding
these can help simplified graph visualization in general. Finally,
we lack a taxonomy of all bundling methods, including recent and
less mainstream ones. All these issues are frequently mentioned in
recent bundling papers and in discussions in the community. The
general perception is that solving such questions is an important
step to make bundling evolve from a set of ad-hoc techniques to a
more mature sub-field.

In this report, we aim to overcome the above mentioned issues,
by the following contributions:

1. Taxonomy: We propose a data-based taxonomy that organizes
bundling methods on the type of data they work on (graphs vs
trails, which we jointly refer to as paths). We show how this
taxonomy is more clear-cut than the usual technique-based tax-
onomies that group bundling methods into data-driven, geomet-
ric, and image-based (see e.g. [vdZCT16, ZXYQ13, HET12]).
Moreover, our taxonomy helps users choose suitable algorithms
for their data without having to dive into algorithmic details;

2. Framework: We propose a formal definition of path bundling,
which we next specialize for graph and trail bundling. Next, we
propose a generic framework that describes the typical steps
of all bundling methods in terms of high-level operations. We
next show how such methods implement these steps. This helps
one to compare in detail specific steps of specific algorithms,
and complements the above-mentioned high-level taxonomy of
bundling algorithms with technical insights. Our framework
also helps outlining technical limitations of existing algorithms,
suggesting future improvement areas.

3. Task support: As outlined already, comparing bundling tech-
niques is hard. We address this by proposing a description of
tasks that bundling aims to address, following [LPP∗06,BM13].
We discuss how bundling can address these tasks, and also
where salient limitations exist, in terms of the operations of our
proposed framework. We also discuss ways (and challenges) to
compare the results of different bundling methods. By this, we
aim to provide a guide to the practitioner in selecting, customiz-
ing, testing, and possibly extending existing bundling methods
to support optimally a given task set.

4. Applications: Bundling has gone far beyond simplified graph
drawing. We overview a wide set of bundling applications and
relate these to the above-mentioned tasks. By this, we address
limitations of papers which usually focus either on proposing a
new technique or discussing a single application.

We start by introducing the main definitions and notations we
will work with (Sec. 2). Section 3 presents our data-driven tax-
onomy and how existing methods fit in it. Section 4 presents a
bundling framework that unifies the technical explanation, discus-
sion, and comparison of bundling methods. Section 5 discusses how
bundling addresses its main task – clutter reduction – and the fur-
ther sub-tasks it covers. Section 6 presents a sample of bundling
applications that, we argue, covers well the current bundling arena.

Section 7 discusses the main advantages, limitations, and potential
future work in bundling. Section 8 concludes the report.

2. Definitions

Bundling Objectives: Large-scale, strongly connected, real-world
graphs have many more edges than nodes. Hence, classical straight-
line node-link drawings thereof quickly become ineffective for
most, if not all, tasks they address. This is often referred to
as the edge congestion [CR01, WCG03, LKS∗11], visual clutter
[ED07, BVKW11, NEH13], or hairball problem [SH13]. Bundling
is one class of methods that aims to alleviate this problem, along
graph clustering and interaction, as further outlined in Sec. 3.1.

Informally put, bundling trades clutter for overdraw [TE10].
However, although there are tens of papers on bundling in the lit-
erature, there is – interestingly enough – no formal definition of
bundling. We argue that such a definition is needed to be able to
understand the process, compare methods, reason about guaran-
tees and limitations, and push further research. We propose such
a definition next.

Bundling definition: Let G = (V,E ⊂ V ×V ) be a graph with
nodes V = {vi} and edges E = {ei}. Let d be the dimensional-
ity of the drawing space where the bundled visualization will oc-
cur, which is usually 2 or 3. Separately, let T = {ti} be a so-called
trail-set [PXY∗05, ZXYQ13]. A trail ti ⊂ Rd is an oriented curve.
Trails typically describe the motion of shapes in space, e.g. air-
planes [HTC09], eye tracks [PHT15], ships [SWvdW∗11], or per-
sons [NPD16]. However, trails can also be curves unrelated to mo-
tion, e.g. polylines in a parallel coordinate plot (PCP) [Ins09] or
DTI tracts [EBB∗15]. Note that, in graph theory, the term trail has a
different meaning, i.e, a type of walk on a graph in which all edges
are distinct [HHM08]. Let G and T be the spaces of all graphs,
respectively trail-sets.

The key unifying element of graphs and trail-sets is a so-called
drawing operator D. For graphs, D : G → Rd is a typical graph
layout, or graph drawing, method [TBET99]. By analogy, let D(ei)
and D(vi) be the embedding (drawing) of edges ei⊂E, respectively
nodes vi ⊂ V . For trails, the drawing operator is the identity func-
tion, i.e., D(ti) = ti, since trails are already spatially embedded.
Let P denote either a graph G or a trail-set T , called a path-set, and
D(P) the drawing thereof. A path p ∈ P is thus either a graph edge
e or a trail t. Paths can have n additional data attributes, e.g. direc-
tion, weight, timestamps, name, or type [PHT15, DT14]. Hence, a
path p can be seen as a n+d dimensional, with n data dimensions
and d spatial dimensions.

Let D ⊂Rd be the space of all path drawings D(P). Let B : D→
D be an operator denoting the bundling of a path-set; and finally
let B(D(p)) denote the curve representing the bundling of path p.
B is a bundling method if

∀(pi,p j) ∈ P ×P|pi 6= p j ∧κ(pi,p j)< κmax→
δ (B(D(pi)),B(D(p j)))� δ (D(pi),D(p j)). (1)

Here, δ is a distance metric between Rd curves, e.g. the Hausdorff
distance [dBCvKO10]. κ : P×P→R+ is a so-called compatibility
function that captures how dissimilar paths are. That is, low κ val-
ues indicate very similar paths, and high κ values indicate dissimi-
lar paths, respectively. κ must, in any case, account for spatial sim-
ilarity in D(P), i.e., when κ(pi,p j) is small, then δ (D(pi),D(p j))
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is small too. In addition, κ can incorporate any of the other n path
data-attributes mentioned above, i.e., it can model distance in the
n+d layout-plus-attribute space of paths p [PHT15,LHT17]. Only
paths more similar than a threshold κmax should be bundled – oth-
erwise the input drawing D(P) can get too severely distorted to be
of any use. Simply put, Eqn. 1 states that the bundled drawings
B(D(pi)) of highly compatible paths are much spatially closer than
their unbundled drawings D(pi).

Bundling literature often refers to ‘edge bundling’ or ‘graph
bundling’ indiscriminately, even when the actual data being bun-
dled are trail-sets. It is thus important to clarify both differences
and similarities between (the bundling of) graphs and trail-sets:

Graphs vs trail-sets – data differences:

• A graph G does not have a given spatial embedding. Only a graph
drawing does. So, one bundles graph drawings, not graphs. The
distinction is crucial, as the drawing D(G) is an extra degree
of freedom – the same G can have multiple drawings D(G). Of
course, one can use graph information, e.g. edge attributes, to
influence bundling – see discussion of compatibility function κ

above. Yet, having a layout D(G) is mandatory; without it, we
cannot bundle a graph as a non-spatial, abstract, object;

• In contrast to graphs, a trail-set T is always spatially embed-
ded, by definition. This embedding encodes relevant data, e.g.,
geo-positions of vehicle movements, or variable values in a PCP.
Hence, bundling a T is far more delicate than bundling a D(G):
Deforming the former can distort spatially-encoded information;
deforming the latter only distorts decisions of the graph-drawing
algorithm, but none of the raw data G;

• Both graphs G and trail-sets T can be directed or not. However,
most trail-sets are directed, as they represent motion trajectories;

• Nodes vi in a graph G are typically shared by multiple edges ei.
After all, this defines a graph. In contrast, endpoints of trails ti do
not have to match. Hence, a trail-set T is a less structured dataset
than a graph G.

Graphs and trail-sets – bundling similarities:

• Bundling both graph drawings and trail-sets can be expressed
by the same formalism (Eqn. 1). Of course, the meaning of the
functions δ and κ can be different for graphs vs trail-sets, but the
same can hold for two use-cases featuring graphs or trail-sets;

• Given the above, the same algorithm B can be used to bundle
graphs and trail-sets, if it delivers a visual simplification (and
implicitly, path deformation) which is suitable for the problem
at hand. This is well visible in many bundling papers which pro-
pose the same bundling method for both graphs and trail-sets;

• The overarching goal of bundling – reducing clutter in a path
drawing so that its core structure stands out – is common to both
graph drawing and trail-set bundling.

Summarizing: Graphs and trails are completely different data
types – the former is not spatially embedded data (for that, we
need a graph drawing); the latter is spatial by definition. Trails are
typically directed, while graphs may not be. Many algorithms can
technically bundle both graph drawings and trail-sets, the choice
of an algorithm being suitable or not being driven by more sub-
tle application factors like definition of compatibilities, amount of
bundling deformation, and types of emphasized patterns. All these
aspects matter for understanding (and optimally using) bundling, as
we shall see next.

2.1. Bundling requirements

To discuss and compare bundling methods next (Secs. 3,4), we
need a few general requirements on bundling. Distilled from the
bundling techniques reviewed in this paper, these requirements are:

Input: A bundling method B accepts a path-set drawing D(P) as
input – that is, a set of spatial positions connected by curves. This
is in contrast with graph layout methods which typically compute
such positions from a graph G;
Output: The output B(D(P)) of a bundling method is a path
drawing having the same endpoints as the input D(P). No
bundling method that we are aware of (except [YWSC12], see
Sec. 3.3.1.2) changes path endpoints, as these are assumed to con-
tain important information;
Bundle definition: Bundling methods do not explicitly define what
a bundle is. Bundles are defined implicitly, as sets of paths that
share sufficient similarity so as to be represented as a compact
graphical shape. Interestingly, this matches the definition of cluster-
ing [JMF99] or image segmentation [Sze10] – a segment or cluster
shares precisely the same properties. So, bundling can be seen as
a clustering or segmentation of the drawing D(P). A constraining
criterion in the above is that bundles are assumed to be spatially
thin (to reduce edge congestion, see Sec. 2) and reasonably low-
curvature (so as to be easily visually traceable, see Sec. 5);
Density sharpening: All bundling methods we know of aim, im-
plicitly or explicitly, to sharpen the spatial edge density ρ of D(P),
i.e., the number of paths D(p) drawn per unit screen space. Simply
put: In areas where ρ is low (few paths), these paths are shifted to
make extra empty space, which declutters the overall image; paths
are shifted to close regions where ρ is already high (many paths
exist). This essentially trades off clutter for overdraw – the num-
ber of intersections of bundles should be significantly lower than
the number of intersections of input paths. This matches the known
principle of ink minimization in information visualization [Tuf92].
Overall, this makes visual end-to-end tracing of bundles easier than
end-to-end tracing of individual paths;
Scalability: Bundling becomes interesting for large path-sets (tens
of thousands up to millions of paths). For small(er) path sets, clas-
sical graph drawing methods suffice [GN00, HMM00, LKS∗11], as
there are too few edges to create the infamous visual clutter dis-
cussed above. Bundling must thus cope with large path-sets, other-
wise its reason to be is not warranted.

3. Taxonomy of Bundling Methods

3.1. Preliminaries

Graph and trail-set bundling have a long history, stemming from
applications related to the visual simplification and clutter reduc-
tion in the drawing of graphs using node-link diagram metaphors.
We outline next early efforts in the area and how they relate to what
is currently understood by bundling.

Graph simplification: An early approach to simplification and
clutter reduction was to simplify the structure of G, by creat-
ing a smaller G′ (with fewer nodes and/or edges) that captures
the main structure of G. Edge concentration is such a method
[New89] used to simplify Sugiyama-style layouts [STT81]. Here,
edge sets having the same set of start and end nodes are replaced
by a so-called concentration node, which effectively presents a
simple form of polyline-style bundling. Many other graph sim-
plification methods exist, as surveyed in [Sch07]. However, such
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Figure 1: Early techniques related to bundling: Flow map of
French wine exports (Minard, 1864).

methods display a smaller and/or different graph than G, and
as such specific nodes of potential interest are omitted in the
drawing. Finding these requires additional interactive exploration
[AvHK06, AMA08, APP10]. Moreover, most graph simplification
methods do not fit the scope of bundling, as currently understood by
the infovis or graph drawing communities, or as defined in Sec. 2,
so we do not explore these further.

Graph drawing simplification: A separate way was proposed by
methods that change the graph drawing G(D) (as opposed to the
graph G) to reduce clutter. These can be seen as bundling precur-
sors. For example, Brandes et al. use a mix of straight lines and
Bézier splines to draw a general undirected graph where nodes
are train stations and edges are train routes, respectively [BW98].
Spline control points of spatially close train routes are grouped to-
gether. This also introduces the concept of a ‘control mesh’ which
is computed to further bundle edges. Dickerson et al. introduce the
notion of confluent drawing, where “groups of edges are merged
together and drawn as tracks” [DEGM03]. Compared to modern
bundling methods, this approach can only handle a subset of all
possible general graphs. Flow maps extend the idea by hierar-
chically clustering a set of nodes v ∈ V , positions D(v), and di-
rected edges e ∈ E of a graph (V,E) [PXY∗05], yielding organic,
branch-rich images of the graph structure which are similar to early
hand-drawn Sankey diagrams showing flows over a geographical
map (Fig. 1).

Interaction: A third way to alleviate clutter is to use interaction,
e.g. to navigate a simplification hierarchy [DS13,AvHK06,vHP09,
HFM07] or interactively declutter focus areas of interest by remov-
ing or bending drawn edges [WCG03, GKN04, TAvHS06, WC07].
In contrast to bundling, methods offer a local, on-demand, declut-
tering and simplification, rather than a global, automatic, one.

In 2006, several papers that introduce bundling as we under-
stand it today were published. Gansner and Koren’s improved cir-
cular layouts by clustering edges (drawn as straight-lines) based
on spatial proximity, and next bending edges in a cluster towards
the cluster’s centroid line [GK06]. Qu et al. propose bundling for
general straight-line graph drawings using NURBS splines whose
control points are constructed from a Delaunay triangulation of the
graph nodes [QZW06]. Most notably, Holten presented hierarchi-
cal edge bundling which was able, for the first time, to bundle com-
pound graphs of thousands of edges and having arbitrary node lay-
outs [Hol06]. With this, the age of modern bundling had begun.

Taxonomy: We propose a data-based taxonomy that organizes
bundling methods along the type of data they work on – i.e.,
graphs vs trails. We argue that this taxonomy is more clear-cut
than existing technique-based taxonomies that group bundling
methods into data-driven, geometric, and image-based (see e.g.
[vdZCT16, ZXYQ13, HET12]). Moreover, our taxonomy helps
both researchers and users to understand the bundling landscape
without having to dive into the technicalities of specific methods. A
data-based taxonomy (though, a different one) has also been used in
a recent survey to classify graph visualization methods [LKS∗11].

We organize bundling methods based on the type of data they
work on. At the highest level, such data can be split into graphs
(Sec. 3.2) and trail-sets (Sec. 3.3). Further taxonomy levels refine
graphs and trail-sets based on additional data characteristics, such
as type of graph, direction information, time-dependency, and di-
mensionality d of the drawing space (see Tab. 1). The proposed
taxonomy is detailed next.

3.2. Graph Bundling Methods

Graph bundling methods expect as input a graph drawing G(D).
Edges D(e∈G) in such drawings are typically straight lines. When
this is not the case, edge drawings do carry information, so de-
forming them by bundling should be done with great care. Such
cases fit better in the class of trail-set bundling, which is discussed
separately (Sec. 3.3).

3.2.1. Static graphs

Static graphs have nodes V and edges E which do not change in
time. For such graphs, bundling methods can be further classified
as follows.

3.2.1.1. Hierarchical compound graphs Hierarchical com-
pound graphs are graphs G = (V,E) where V are the leafs of a sep-
arate tree T = (V T ,ET ). Such graphs are often encountered in rela-
tional datasets whose items can be organized via a hierarchy, such
as dependencies between software components [Die08]. Edges in
E are typically called associations.

The most famous bundling method for hierarchical compound
graphs is Hierarchical Edge Bundles (HEB) [Hol06]. HEB draws
the tree T using e.g. a radial (also called a chord diagram [Mun14]),
balloon, or treemap layout. In case of the radial layout (Fig. 2a), the
hierarchy T is shown by a technique known as icicle plots [KL83].
This yields a tree drawing D(T ) where nodes v ∈ E that have a
close common ancestor (e.g., father or grandparent) are close to
each other. Next, edges e ∈ E are drawn as B-splines whose con-
trol points are the node positions in D(T ) – in other words, D(T )
serves as a bundling control mesh (see Sec. 3.1). Since control
points are shared, the drawn (curved) edges get closer to each other
than the original straight-line edges, thus the second part of Eqn. 1
is respected.

Given the relation between node closeness in the hierarchy T
and their placement in D(T ), association edges starting or end-
ing in the same subtree of T are bundled together – in other
words, the compatibility function κ(p1,p2) (Eqn. 1) reflects how
close the endpoints of two edges p1 and p2 are in T . HEB is
very simple to implement and scales very well with the sizes of
G and T . HEB has been used in many applications in software
engineering [HvW08, CZH∗08, DT14, RVET14], social sciences
[KS10,JGH11], web ontologies [HdRFH12], text data [CC07], and
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Graph drawings Trail sets
Static Dynamic Static Dynamic

Hierarchical General 3D Sequence Streaming 2D 3D (streaming)
compound undirected directed flowmaps confluent drawing undirected directed PCP

[Hol06, TE10] [HVW09, LBA10b] [SHH11] [PXY∗05] [DEGM03, DEGM05] [CZB11] [HEF∗14] [NEH12] [HET12] [PHT15] [MM08, TA08] [EBB∗15] [HEF∗14]
[PNK10, TDT13] [CZQ∗08, GHNS11] [LDB11] [VBS11] [VBS11, NB13] [BSL∗14] [HET13] [vdZCT16] [LHT17] [HLK∗12, ZYQ∗08] [LBA10a] [HET13]
[HvW08, TA08] [NHE11, LLCM12] [BSV11] [BSV11, BRH∗16] [GBE08] [Han13] [EHP∗11] [Mou15] [PBO∗14, PW16] [YWSC12]

Table 1: Data-based taxonomy of graph and trail-set bundling methods. For space reasons, only the main methods in each class are listed.
Bundling papers that present applications, but do not introduce a new bundling technique, are not listed here.

life sciences [BSL∗14, AP08, EBB∗15]. HEB enhancements that
simplify the bundled drawings [TE10] (Fig. 2c) are further dis-
cussed in Sec. 4.3.3.

The hierarchy T required by HEB can be part of the input data
or can be constructed from this data. For the latter, Jia et al. use
bottom-up graph and data clustering techniques [Sch07, JMF99]
to identify strongly-related node groups, thereby extending HEB
to general attributed graphs. In other words, when T is given, κ

reflects its structure (as explained earlier); while, when T is com-
puted, this is done based on a given κ defined on the data. Other
HEB extensions include the comparison of two hierarchies T1 and
T2. Here, association edges E link leaf pairs in T1 and T2 rather
than leafs in the same tree. Applications include the comparison

a) HEB

c) IBEB

b) hierarchy comparison

d) CodeFlows

e) 3D-HEB

Figure 2: Hierarchical bundling methods.

of two [HvW08] (Fig.2b) or multiple [TA08] software hierarchies
(in a kind of ‘structural diff’ metaphor, Fig. 2d), where T1,T2 are
given by the software structure; comparison of program execution
traces [TDT13]; and linking related items in coordinated multiple
views to show multiple relations and datasets; here, the hierarchies
Ti are computed by similarity-based node clustering, as discussed
earlier. HEB was also used for 3D bundling (Fig. 2e), further de-
tailed in Sec. 3.2.1.3. Image-based simplification of HEB drawings
(Fig. 2c) is further discussed in Sec. 4.3.3.

Pupyrev et al. [PNK10] improve the classical Sugiyama-style
graph drawing algorithm [STT81] for directed acyclic graphs
(DAGs) by bundling the curved edges created by Sugiyama in case
these have the same start and end nodes. Hence κ reflects the sim-
ilarity of endpoints of edges. The method is tested on relatively
small graphs (tens of nodes). Although this method, strictly speak-
ing, requires a DAG (which is more general than the hierarchical
compound graphs required by HEB), we put this method in the
same class as HEB, since the Sugiyama algorithm operates by ex-
tracting a tree from the input DAG.

Hierarchical compound graph bundling methods are arguably the
most successful (and best known) use-case for graph bundling. Key
to this is the ability of bundling to summarize groups of similar re-
lations (edges) and the fact that a hierarchy allows a simple, consis-
tent, and scalable way to compute and/or encode the similarity κ .
However, the quality of drawings produced by such methods visi-
bly depends on the way the tree T is laid out, as this next influences
how bundles are routed. Yet, most papers in this area comment little
on different ways to lay out T , beyond the fact that standard force-
directed or radial tree-drawing algorithms [TBET99] can be used.
As an exception, the original HEB method [Hol06] and several of
its refinements [RVET14, RVT11] propose controlling of the dis-
tances between the circles on which the same-depth-from-leaves
layers of T get laid out, thereby allowing one to spread or com-
press the bundled drawing in the available visual space. However,
which layouts for T are best for certain tasks or drawing styles, is
still a topic for further research study.

3.2.1.2. General graphs General graphs do not have a hierarchy
structure. Bundling methods are further specialized on directed vs
undirected graphs, as follows.

Undirected graphs Undirected graphs are the most general class
of static graphs targeted by bundling. The key challenge here is to
define the compatibility function κ to take into account both spatial
information present in the graph layout D(G) and attribute infor-
mation present in G itself.

Force-directed edge bundling (FDEB, Fig. 4b), the earliest
method in this class, defines κ to include only geometric informa-
tion in D(E) [HVW09]. Given two segments D(e1) and D(e2) rep-
resented the drawings of two edges e1 and e2, κ includes their an-

c© 2017 The Author(s)



A. Lhuillier & C. Hurter & A. Telea / State of the Art in Edge and Trail Bundling Techniques

gle, relative distance in R2, ratio of lengths ‖D(e1)‖ and ‖D(e2)‖,
and skewness (for more details, see Sec. 4.1.2.1). Next, edges are
sampled into sample points xi ∈ D(E), and each xi is iteratively
displaced to get closer to all other sample points x j of compati-
ble edges. Interestingly, FDEB did not cover the case of directed
graphs, although this would have been reasonably easy to do.

Nguyen et al. propose TGI-EB to extend the compatibility mea-
sures in FDEB to account for importance-based compatibility (de-
fined in terms of a function κ based on the Euclidean distance of
n-dimensional edge attributes), and topology compatibility, based
on the position of an edge in the graph G [NHE11]. This richer
palette of compatibilities allows more precise control of which
edges get bundled, which in turn supports application-dependent
analyses and a rich set of drawing styles.

Both FDEB and TGI-EB have no explicit control mesh – edges
are drawn closer to each other rather than to a unique skeleton.
Contrasting this, Geometry-Based Edge Bundling (GBEB, Fig. 4g)
uses the control mesh strategy [CZQ∗08]: Edges in a graph draw-
ing are clustered in a bottom-up fashion, based on the edges’ posi-
tions and orientations, yielding a control mesh whose edges tend to
orthogonally ‘cut’ across regions having many similar-orientation
edges. Mesh-edge intersections are furthered clustered to yield the
shared control points through which the curved edges are finally
routed. GBEB allows control meshes to be generated either auto-
matically or with user input, the latter allowing local spatial control
over which regions of G(D) one wants to bundle. However, it has
been noted that the result quality highly depends on the control
mesh’s quality, which in turn is hard to guarantee [LLCM12].

Luo et al. further refine the idea of control meshes to produce
a so-called ambiguity-free bundling [LLCM12]. They observe that
highly bundled images, such as produced e.g. by HEB or FDEB,
have difficulties in tracing edges end-to-end. To alleviate this, they
propose a simple compatibility κ which is non-null only for edges
sharing a node and which are also close in D(G). They also remove
ambiguities caused by the bundled edges B(D(e)) passing close to
unrelated nodes in D(G) by re-routing (repelling) the former from
the latter. Finally, by using a small number of control points, the
smoothness and low-curvature of edges is favored, which also al-
lows their visual following. To reason about the relative positions of
nodes and edges, a special quadtree, built from node positions, but
storing also which cells are crossed by which edges, is built. The
method produces easy-to-follow bundlings on small graphs (under
hundred nodes and edges). For large graphs (thousands of nodes or
edges), the method is arguably less effective, as its relatively weak
bundling will still cause visual clutter.

Related to [CZQ∗08] and [LLCM12], Winding Roads (WR,
Fig. 4c) computes a control mesh using quadtrees and Voronoi dia-
grams [LBA10b]. WR also supports routing bundles to avoid unre-
lated nodes, being the first general-graph method that demonstrates
such results for relatively large graphs (thousands of edges).

All general-graph methods discussed so far are quite limited in
scalability, either computationally [HVW09, NHE11, CZQ∗08] or
in terms of the largest graph they can bundle with limited clut-
ter [LLCM12]. MINGLE [GHNS11] addresses the former by a
computationally-scalable ink-saving principle, similar to [GK06]:
The ink for drawing a bundle

⋃
i B(D(ei)), i.e. number of pixels

covered by
⋃

i B(D(ei)), should be smaller than the ink used for
drawing the same unbundled edges

⋃
i D(ei). Note that the latter is

roughly equal to ∑i ‖D(ei)‖, as edges overlap very little in a typi-
cal straight-line graph drawing. MINGLE proceeds bottom-up, by
finding close edges (that have a high bundling chance, see Eqn. 1
and related text), and bundle these in a greedy way as long as
ink is saved. The process is repeated recursively by adding parts
of the so far unbundled edges to existing bundle parts. A polyg-
onal control mesh is thus created, based on the centroids of the
edge-sets identified as compatible. The process is very similar to
bottom-up hierarchical clustering using average linkage [JMF99].
MINGLE can bundle graphs of up to a million edges that no other
general-graph method discussed so far can handle. However, it cre-
ates less smooth, and thus harder to visually follow, overall results
(see Fig. 4a).

Directed graphs An already early criticism of general-graph
bundling methods is that they do not take into account edges’ di-
rections: For many applications, finding if two groups of nodes
V1 ⊂ D(G) and V2 ⊂ D(G) are connected by a bundle is not suf-
ficient; we want to specifically see if there are edges from V1 to V2,
or conversely, or both. This is essential when edge directions carry
semantics, such as when exploring a software system’s call graph
to assess modularity [DT14]. A simple way to do this is to color-
code edges using a source-to-destination categorical color gradi-
ent [Hol06, CZH∗08, RVET14]. However, when edges of opposite
directions co-exist in a bundle, color mixing occurs, which makes
the assessment of categorical colors very hard, let alone seeing how
many edges of each direction the bundle has (see further Sec. 4.3.1).

a) FDEB

b) DEB

color:
edge 
direction

color:
edge 
direction

Figure 3: Comparison of FDEB and DEB for the US airlines graph
(|N|=235,|E|=2101). See Sec. 3.2.1.2.

To solve this, methods for directed graphs have been proposed.
Key to these is that the compatibility κ(ei,e j) includes the direc-
tions of edges ei and e j. The first method of this type is Divided
Edge Bundling (DEB) [SHH11]. Simply put, DEB extends FDEB
to incorporate edge direction in κ: Same-direction edges have a
positive κ , while opposed direction ones have a negative κ , respec-
tively. Since FDEB uses κ as the amount to shift edge sample points
during its iterative bundling process (see above in Sec. 3.2.1.2),
same-direction edges are treated as in FDEB, whereas opposed di-
rection ones are repelled from each other. Atop the above, DEB also
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enhances κ to include edge weights, so that more important edges
are bundled less, thus determine the outcoming B(D(E)) more than
less important ones. Finally, DEB adds a connectivity compatibil-
ity term equal to 1/(1+∆(ei,e j)) for two edges ei and e j, where
∆ : E×E→N is the shortest-path distance in G between the nodes
of e1 and e2. Overall, DEB can separate opposed direction edges
quite well, and makes direction color-coding effective; however, in
contrast to undirected methods, e.g. FDEB, DEB takes more screen
space, and thus increases clutter (Fig. 3). Separately, WR (intro-
duced earlier) is refined by using a quadtree-only control mesh, as
opposed to its more general triangle control mesh, to create directed
and orthogonal bundles [LDB11] following the style of metro map
drawing [Wol07].

Flow maps Flow maps can be seen as a particular subcase of di-
rected graphs. More specifically, these are directed acyclic graphs
(DAGs) having a single (or a very few) source node(s). In a trans-
portation or data flow network, they describe how information
flows from the source to reach all nodes in the graph. Since the
source is unique, flow maps do not need to show edge directions
explicitly such as in directed graph bundlings – the direction of data
flow can be inferred by doing a visual path tracing from the source
to every node of interest. Another feature of flow maps is the abil-
ity to show the amout of flow between adjacent nodes, quantified
as the (weighted) number of edges linking such nodes. This allows
discovering how the total amount of data outflowing from a source
is spread over the graph. This is usually done by scaling the thick-
ness of a bundle by the amount of information flowing through it,
a technique pioneered by Sankey diagrams [Tuf92]. The first au-
tomated flow map generation used a straight-line single-level tree
drawing linking a source with all destinations, using edge thick-
nesses to indicate flow amounts [Tob81].

The first, and most known, flow map algorithm using bundling
[PXY∗05] was already mentioned in Sec. 3.1. Given a DAG draw-
ing D(G) and a source node s ∈ G, a spanning tree ST (s,G) ⊂ G
rooted at s is constructed. Next, curved edges linking s to all other
nodes in G are created and routed along ST (s,G), using a con-
trol point technique similar to HEB (Sec. 3.2.1.1). Edge fragments
sharing the same path are coalesced to yield bundles of variable
thickness. Multiple sources si can be treated by superimposing the
flow maps created by each of them – note, though, that this is
not the same as having a true multiple source flow. Verbeek et
al. [VBS11] further reduce the confusing bundle crossings pro-
duced by [PXY∗05], and produce overall lower-curvature bundles,
by using the spiral tree drawing algorithm of Buchin et al. [BSV11]
to compute the skeleton to route edges along. Computation of the
optimal tree is done by moving its nodes to optimize a cost func-
tion that accounts for avoiding obstacles and producing smooth
bundles. Bundled flow maps have been found to scale less well
with respect to the number of trails as compared to other visual-
izations of geographical trail sets, such as OD Maps [WDS10] and
MapTrix [YDGM17].

Confluent drawings Confluent drawings have closely related
aims to flow maps, i.e., show end-to-end relations between nodes
in a graph drawing with as little ambiguity as possible. They in-
herently propose bundling in the sense of merging parts of edges
that (a) simplify the drawing but (b) do not adversely affect the
above-mentioned edge tracing task. Early methods can handle rela-
tively small graphs of a particular category called confluently draw-

able [DEGM03, DEGM05]. Latter methods use a help structure,
the power graph [RRAS08], which can be computed by various
heuristics [DMM∗14, DHRMM13]. In this sense, they resemble
flow maps which also use a tree (e.g. spanning [PXY∗05], Steiner
[BSV11] or spiral [VBS11]) to route edge bundles. In brief, power
graphs provide a way to group nodes and edges in a graph in terms
of how they are connected. Power graph nodes are next used to
route edges between node groups so as to make the group-level in-
terconnections easier separable visually than when using standard
bundling. Although older confluent drawings have been restrictied
to planar graphs, recent work proposed a confluent bundling tech-
nique that can effectively handle general graphs [BRH∗16]. Sep-
arately, the spiral trees in [BSV11] are further refined in [NB13]
to allow for more inflection points along a bundle, which in turn
allows easily tracing bundles end-to-end.

3.2.1.3. 3D graph layouts All bundling techniques discussed so
far expect as input a two-dimensional (2D) graph drawing, i.e.,
D(V )⊂R2. However, graph layouts can also produce 3D node po-
sitions. These are particularly useful when the underlying graph
attributes, or problem to be solved, has a 3D nature. In such cases,
one needs to bundle a 3D graph drawing. In theory, all bundling
methods presented so far could be extended to handle 3D layouts.
However, the many design and implementation decisions they are
based on make this impractical from a computational complexity
and/or implementation simplicity perspective. As such, specific 3D
bundling algorithms have emerged.

A first way to bundle in 3D is to extend HEB [Hol06] to han-
dle 3D node positions [GBE08]. This has a low computational
complexity, but only works for compound graphs, as outlined in
Sec. 3.2.1.1. In [GBE08], the 3D layout is given by a treemap aug-
mented with bar charts to show the structure, respectively qual-
ity metrics, of a software system, a metaphor known as a ‘code
city’ [WL07]. A similar idea, called 3D-HEB, used also to visu-
alize compound graphs from software engineering, is described
in [CZB11] (Fig. 2e). In contrast to [GBE08], the third dimension
is used here to pull the bundles above the 2D treemap layout so
as to reduce occlusion. 3D bundling is used also to visualize bike
journeys in a city [NPD16]: Given two drawings of the same city
map, placed parallel to each other in 3D, straight lines connecting
the start and end of journeys (one end in each map) are bundled to
yield a simplified traffic view.

In contrast to the above, Böttger et al. consider a graph capturing
functional brain connectivity [BSL∗14]. Here, nodes represent 3D
positions in a human brain. Straight-line edges are bundled using
the 3D kernel-density bundling method (KDEEB [HET12]) dis-
cussed next in Sec. 3.3.1.1 adapted to 3D. In contrast to 3D path
bundling (Sec. 3.3.1.2, edge deformation is not a problem, as these
edges represent only abstract connections. The method produces
convincing results, but is relatively slow, due to the high com-
plexity of 3D kernel density estimation. A similar method is pro-
posed in [ZWHK16]. Here, FDEB is used instead of KDEEB for
bundling, and bundling speed is increased by adding a similar edge
pre-clustering step, thereby reducing the number of pairs (pi,p j)
on which the compatibility κ needs to be computed (Eqn. 1).

3.2.2. Dynamic graphs

A dynamic graph G(t) = (V (t),E(t)), t ∈ R+ is a graph where
both nodes and edges are time-dependent. That is, at each mo-
ment t, we have a potentially different graph G(t) to explore. G(t)
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is also called a frame, by analogy with motion video. Two differ-
ent forms of dynamic graphs are known: streaming graphs and se-
quence graphs. The difference between them, and bundling meth-
ods targeted at them, are outlined in Secs. 3.2.2.1 and 3.2.2.2.

However, several aspects are common to bundling both stream-
ing and sequence graphs, so we outline these commonalities first.
First, bundling dynamic graphs is strongly related to drawing dy-
namic graphs [HEW98,SFPY07,BBD∗10]. A recent survey on the
field was proposed by Beck et al. [BBDW14]. Two main classes
of methods exist here: Small multiple methods draw graphs G(ti)
at a user-selected set of sample moments {ti} side-by-side, using
the same visual mapping. To allow comparison, the layout algo-
rithm used to construct D(G(ti)) should be stable – that is, small
changes in G(ti), as opposed to close time moments t j, should
correspond to small changes in the drawing G(ti) as opposed to
D(G(t j)). This requirement is also known as maintaining the user’s
mental map [BBDW14]. Animated methods continuously display
D(G(t)) for ranges of interest of t, again using the same visual
mapping. Layout stability is also required; if met, it allows users to
see changes in areas where D(G(t)) changes and stable data where
the drawing stays unchanged, respectively. Small multiple meth-
ods have the advantage that they allow, in principle, comparing any
two frames G(ti) and G(t j). However, they typically do not scale
to more than a few tens of frames. Animated approaches scale, in
theory, to an unbounded number of frames. However, users cannot
memorize a drawing’s evolution over long periods of time, so com-
paring frames far apart in time requires interactive seek-and-replay
of the animation. Separately, animation should be smooth, as too
many sharp transitions between consecutive frames are perceived
as disruptive.

3.2.2.1. Streaming graphs In a streaming graph G= (V,E), each
edge ei ∈ E has a so-called lifetime [tstart

i , tend
i ], of duration λ j =

tend
i −tstart

i , where tstart
i < tend

i . That, is, ei exists only between tstart
i

and tend
i . The dynamic graph G(t) thus contains all edges ei ∈ E

that are alive at t, i.e. for which tstart
i ≤ t ≤ tend

i . The same holds
for the streaming graph’s nodes vi ∈ V . Streaming graphs can be
available in an online manner – that is, one does not know upfront
all moments tstart

i and tend
i .

Nguyen et al. proposes StreamEB to deal with streaming graphs.
Given two edges ei and e j of a streaming graph, StreamEB ex-
tends the TGI-EB method for undirected graphs [NHE11] to add to
the compatibility κ a temporal term, based on the lifetime overlap
|tstart

i − tstart
j | · |tend

i − tend
j | and the duration difference |λi−λ j| of

the two edges. After this, FDEB is applied on all edges falling in
a time-window [t, t +∆t] that slides to cover the entire time-range
of G(t). Here, ∆t is a time interval small enough so G(t) doesn
not exhibit too many changes, but large enough to show enough
interesting changes to the user. If the speed of change of G(t) is
small in comparison with the speed of advancing of the sliding win-
dow, and the underlying static bundling method B(·) being used is
continuous (in a Cauchy or Lipschitz sense) with respect to small
changes in the graph, i.e. adding or removing a few edges from
D(G) only slightly changes B(D(G)), then the dynamic bundling
B(·, t) proposed by StreamEB will also be continuous in time. As
explained earlier, this is a desirable property for maintaining the
user’s mental map. However successful in this respect, StreamEB
has a very high computational cost: Stable bundling static meth-
ods, such as FDEB [HVW09] or GBEB [CZQ∗08] are quite expen-

sive, as already explained. Faster bundling algorithms, e.g. MIN-
GLE [GHNS11] or [LBA10b, EHP∗11] are significantly more sen-
sitive with respect to small changes in the input graph drawing.
These problems are solved by more recent bundling methods for
dynamic graphs and trail-sets, see Sec. 3.3.2.

3.2.2.2. Sequence graphs Sequence graphs are, as their name
says, ordered sets G = {Gi} of static graphs Gi = (V i,E i). In con-
trast to streaming graphs, edges Ei do not have a lifetime, but be-
long to a single frame i. They typically capture a system’s structure
at several discrete time moments ti. Well-known examples are the
set of call graphs mined from the several revisions of software sys-
tem stored in a software repository [DT14, RVET14]. In practice,
the frames Gi are usually not unrelated, but have nodes and edges
which capture the evolution in time of the same items. For instance,
two edges ei

a ∈ E i and ei+1
b ∈ E i+1 can represent the same call rela-

tion in two consecutive frames of a software system. Such links re-
lating information between different sequence frames can be mod-
eled by a so-called correspondence function c : E i→{E i+1}. Here,
c(e ∈ E i) yields an edge e′ ∈ E i+1 which logically corresponds to
e, if such an edge exists in E i+1, or the empty set, if there is no cor-
respondence, i.e. if e disappears in the transition from Gi to Gi+1.

Sequence graphs can be bundled by using the sliding-window
technique in StreamEB described earlier. A much simpler and faster
method is proposed in [HET13]: A static bundling method is ap-
plied to each Gi independently, yielding a sequence of bundled lay-
outs {B(Gi)}. Next, for each e ∈ Gi, if c(e) 6=∅, the bundled edge
B(D(e)), represented as a polyline, is linearly interpolated towards
B(D(c(e))), else B(D(e)) is interpolated towards the straight-line
segment linking the endpoints of D(e) and the interpolated edge
drawing is faded out. This signals that e disappears from Gi to Gi+1.
A symmetric procedure is applied to interpolate edges that appear
from Gi to Gi+1. Linear interpolation guarantees smooth (piecewise
first-order continuous) changes in the bundled edges’ positions and
opacities, which preserves the mental map. To account for changes
in the node set V i, a single global layout of the union graph ∪iGi

is done upfront, so node positions D(V i) do not change. If a stable
static bundling technique B is used, the method thus guarantees that
big changes in the visualization correspond to appearing (progres-
sively bundled) and disappearing (progressively unbundled) edges.
Edges that do not appear nor disappear move less in the dynamic
bundling. Hence, the amount of visual change encodes well the
amount of change in the graph. However simple and scalable, this
method cannot directly handle streaming graphs, where edges have
arbitrary lifetimes, and no explicit frames nor inter-frame corre-
spondence data exists. Hanjalić further adapted this method for the
visualization of code clones from software repositories [Han13].

3.3. Trail-set Bundling Methods

As introduced in Sec. 2, trail-sets consist of (typically non-straight)
oriented curves t that describe the motion of objects in Euclidean
R2 or R3 space. Hence, trail-set bundling methods have extra infor-
mation and constraints to consider as compared to graph bundling
methods. Conversely, the only family of graph bundling methods
that uses graph-specific information not present in trail-sets are
the hierarchical ones (Sec. 3.2.1.1). Hence, apart from hierarchi-
cal graph bundling, trail-set bundling can be seen as a superset of
general graph bundling – one can use trail-set bundling methods
to bundle general graph drawings, but, in general, not conversely.
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Figure 4: General undirected (a-h) and directed (i-k) bundling methods, US migrations dataset (|N|=1715,|E|=9780). See Sec. 3.2.1.2.
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We next group trail-set bundling methods based on the data type
they work on.

3.3.1. Static trail-sets

Static trail-sets are trails which do not change in time. However,
time information can be present on such trails, e.g., the time mo-
ments when a vehicle has reached each point of a trail t [HTC09,
SWvdW∗11, SHVDWVW16]. We distinguish the bundling of 2D
vs 3D trail sets, as follows.

3.3.1.1. 2D trail-sets 2D trail sets can be further classified in
undirected and directed ones, as follows.

Undirected trails: Kernel density estimation edge bundling
(KDEEB, Fig.4d) [HET12] observed, first, that a bundled draw-
ing B(D(T )) has a locally either lower (outside bundles) or higher
(within bundles) spatial trail density than the unbundled draw-
ing D(T ). Hence, B can be cast as a density-sharpening operator,
like the well-known mean shift [CM02]. Following this analogy,
bundling consists of repeatedly computing the gradient of the den-
sity of D(T ) and shifting trails D(t) upstream in this gradient until
convergence (tight bundles) has been achieved. The method par-
allelizes well on graphics hardware (GPUs), leading performance
increases of over one magnitude order as compared to all earlier
general-graph bundling methods. KDEEB also opened the area of
so-called image-based bundling methods, where B is implemented
via image processing operations, as opposed to purely geometry
techniques as in earlier methods (see further Sec. 4.1.2.2).

Skeleton-Based Edge Bundling (SBEB, Fig. 4e) is another
image-based method [EHP∗11]. SBEB computes a kernel density
estimation of the drawing D(T ) using GPU texture splatting. Next,
the KDE map is segmented to obtain a morphologically dilated ver-
sion Ddil(T ) of D(T ) [Har94]. Following the observation that bun-
dles should gather trails towards their local center, 2D medial axes,
or skeletons [SP09], of Ddil(T ) are next computed, and trails in
B(T ) are attracted to the skeleton. SBEB yields smooth and highly-
branching bundles, following known properties of 2D medial axes.
However, the method relies on a pre-clustering of similar trails in
B(T ), which is a relatively expensive and parameter-sensitive step.

Directed trails: Following the need outlined by DEB
(Sec. 3.2.1.2), directional bundling is also considered, espe-
cially for trails capturing vehicle motion, where it is very important
to distinguish opposite flows. Attribute-Driven Edge Bundling
(ADEB, Fig. 4m) extends KDEEB by taking edge attributes
(direction and/or time) in the definition of the compatibility κ ,
while keeping KDEEB’s high speed [PHT15]. Histogram Edge
Bundling (HistEB, Fig. 4f) also performs directional bundling,
but computes κ by binning the tangent direction space of trails
t and applying KDEEB to each bin separately [Mou15]. CUDA
Universal Bundling (CUBu, Fig. 4h,k,l) further enhances KDEEB
and ADEB by proposing a far more efficient density estimation,
also implemented on the GPU, making it possible for the first
time to bundle sets of up to a million trails at interactive fram-
erates [vdZCT16]. Separately, Texture Edge Bundling (TEB)
proposes a GPU-based implementation making heavy use of tex-
ture synthesis and processing, optimized for web access [WYY15].
Lastly, Fast Fourier Transform Edge Bundling (FFTEB, Fig. 4i,n)
refines CUBu to use the FFT for an even more efficient KDE,
allowing one to bundle trail-sets whose sampling does not fit in the
GPU memory [LHT17]. With this, bundling can now effectively
handle ‘big data’ collections.

Parallel Coordinate Plots: Parallel coordinate plots (PCPs)
[Ins09] can be seen as trail-sets Given a n-dimensional dataset of
N observations xi, each trail ti has n control points representing
the n attribute values of observation xi. For large N, PCPs suffer
from the same clutter as large straight-line graph or trail-set draw-
ings. Bundling can effectively reduce this and also help one to find
clusters of similar observations easier [HLK∗12,HvW10]. For this,
Zhou et al. used a method similar to FDEB (Sec. 3.2.1.2), where
PCP trail compatibility (κ , Eqn. 1) considers PCP trail distance and
angular similarity [ZYQ∗08]. In contrast to FDEB, the bundling
solution is not computed by iterative gradient descent of the cost
function κ , but by linear programming. Illustrative parallel coor-
dinates (IPCs) bundle PCPs by first clustering D(T ) via k-means,
and next bundle the trails ti in the same cluster as B-splines [PT97]
which use shared control points computed from the cluster’s av-
erage trail [MM08]. More recently, Palmas et al. bundle PCPs by
explicitly computing averages for each PCP axis and next linking
these, for neighbor axes, by compact tubes, whose widths indicate
the number of bundled lines [PBO∗14]. This produces a highly
summarized, but largely clutter-free, visualization, which reminds
the code flow metaphor used in [TA08] (see also Sec. 3.2.1.1). A
variant of this technique is also available for Continuous Parallel
Coordinates (CPCs), where the trail density is drawn instead of in-
dividual trails [PW16], much like it was used elsewhere to show
vessel routes [SWvdW∗11].

Bundling is not the only way to reduce clutter and enhance PCP
readability. PCP trails can be rendered as smooth cubic curves, al-
lowing one to trace them end-to-end easier [GK03]. Alternatively,
parametric transformations can be used to yield similar smooth
curves [MW02]. While yielding smooth curves similar to bundles,
these techniques do not explicitly aim at grouping PCP trails fol-
lowing the bundling definition in Eqn. 1.

3.3.1.2. 3D trail-sets 3D trail sets are spatial curves embedded in
R3. A good example are Diffusion Tensor Imaging (DTI) trails,
or tracts, that show anatomical brain structures [ALLF07]. DTI
tracts form a highly complex 3D structure consisting of multi-
ply intersecting surfaces, fanning out into many-direction fibers,
so abstraction of such visualizations is highly needed to reveal the
brain’s white matter structure [TWHW07]. Originally done by fiber
clustering [MVvW05], bundling offers advantages in terms of a
finer-level simplification control. For this, Everts et al. [EBB∗15]
adapt the compatibility κ and iterative bundling process pro-
posed by FDEB (Sec. 3.2.1.2) to include nearest-neighbor distance
minxi∈ti,x j∈t j ‖xi − x j‖ between two tracts ti and t j in D(T ). A
similar approach is illustrated in [Tel15] (Ch. 7), where KDEEB
(Sec. 3.3.1.1) is used to bundle DTI fibers by constraining motion
to follow the DTI field anisotropy. Trail bundling is also used to
bundle 3D streamlines for multiscale flow visualization [YWSC12]
and 3D geographical routes over a height map [TP15]. A salient dif-
ference of this use-case as compared to most other bundling cases
discussed here is that a streamline’s endpoints are not fixed, as they
do not represent important spatial information that needs to be pre-
served in the visualization. Compared to 3D graph bundling, addi-
tional care is taken by all 3D trail approaches above to constrain
trail displacement so as to respect, as much as possible, the origi-
nal data – zones of high linear or planar anisotropy for DTI fields,
tancency to the flow for vector fields, and trail fit to a 3D landscape
for geographical routes, respectively.
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Besides true 3D bundling, methods also exist that bundle trails
defined over a curved surface. WR extends the 2D bundling pro-
posed in [LBA10b] to cover the case of 3D trails representing flight
routes [LBA10a]. The bundles are displayed over the surface of the
Earth, offering a better estimation of distances than when a 2D car-
tographic projection is used. A good review of the challenges of 3D
geospatial trail visualization, including a discussion of bundling, is
given in [BTD12]. 3D trail bundling is also prominently featured in
a review of visualization methods for climate networks [NBD∗15].

3.3.2. Dynamic Trail Sets

Dynamic trail sets parallel the concept of streaming graphs
(Sec. 3.2.2.1) but add explicit spatial information along trails. Ex-
amples are paths of vehicles over a given space-time range, such as
ships [SWvdW∗11, SHVDWVW16], airplanes [HTC09, EHP∗11,
HEF∗14], or eye tracks [PHT15]. Compared to static trail bundling,
one wants here to show how the set of trails being live at a
given time moment changes in time. For this, Hurter et al. extend
KDEEB (Sec. 3.3.1.1) to use the sliding time-window technique
of StreamEB (Sec. 3.2.2.1) [HET13]. Compared to StreamEB, this
approach is much faster, as it continuously bundles, in a loop,
the trails present in the current time-window, rather than restating
bundling from scratch each time the window is shifted. The method
is extended to cover use-cases considering eye tracking trails, and
animation to show point-like textures flowing in the direction of the
trails ti, to indicate direction [HEF∗14, KvdZT14].

4. Bundling Framework

Given their large number and diversity, comparing all bundling
methods listed in Sec. 3 from a technical viewpoint is clearly chal-
lenging. Yet, this is necessary for developers interested to under-
stand how such methods work, and for researchers who aim to
extend existing methods. To help this, we propose next a generic
bundling framework. Our framework, which is based on the nota-
tions introduced in Sec. 2, describes the main steps and technical
choices of most bundling methods, and outlines specific advantages
and limitations of such choices. The framework has four steps (see
Fig. 5). It starts with either a graph G or a trail-set T . In the former
case, a graph layout method is used to construct a graph drawing;
in the latter case, the trail-set is its own drawing, as explained in
Sec. 2. The bundling proper thus starts having a path-set drawing
D(P) as input. Next, the similarity functions κ and δ must be de-
fined (Sec. 4.1). Having these, a bundling operator B can be defined
following Eqn. 1 and applied on D(P) to yield the bundled drawing
B(D(P)), as discussed in Sec. 4.2. Finally, this drawing is visually
explored (Sec. 4.3).

4.1. Similarity Definition

To bundle a path-set, we need, first and foremost, to specify which
edges are compatible (to be bundled), and how much to bundle.

trail-set T

path-set drawing

D(P) Bundling

B

Visual

exploration

κ,δSimilarity

definition

graph G Graph

layout

bundled drawing

B(D(P))

Figure 5: Bundling framework steps.

These steps are achieved by defining the functions κ and δ , re-
spectively (see Eqn. 1 and related text). As explained in Sec. 2, κ

can account for similarities in the data (e.g. graph structure and
trail attributes), and must in any case account for similarities in the
drawing. These two components of κ are discussed next.

4.1.1. Data-based similarities

Given two paths pi and p j , data-based similarity quantifies the dif-
ference between pi and p j over the space of all possible paths. This
can be done in several ways, as follows.

Structure-based: In contrast to trail-sets, graphs have additional
structure (topology). This structure can be used to define the
similarity of edges. For instance, hierarchical bundling methods
(Sec. 3.2.1.1) use the explicit structure of the graph’s hierarchy
to define edge similarity in terms of distance, in this hierarchy, of
the nodes of the two edges pi and p j . Intuitively put, edges that
start and end at nodes which are close in the hierarchy, are deemed
to be close, and thus bundled. Other methods extract such struc-
tural data from the input graph, and use it to define edge similarity.
These include flow maps which extract a tree (spanning [PXY∗05],
Steiner [BSV11] or spiral [VBS11]); and confluent drawings,
which compute a power graph to find out which edges in the orig-
inal graph are strongly related [DMM∗14, DHRMM13, BRH∗16].
Separately, TGI-EB [NHE11] adds new graph-theoretic metrics to
define edge compatibility, such as the centrality of edges in a graph
[WF94, vHW08], or the fact that edges belong to the same clus-
ter in a simplified version of the graph. Similarly, DEB [SHH11]
proposes a connectivity term based on the graph-theoretic distance
between the endpoints of two edges. A similar term, called trace
compatibility, appears in StreamEB [NEH12]. Finally, StreamEB
introduces a so-called ego compatibility: For a node v ∈V , ego(v)
is defined as a small neighborhood in G of v, nodes and edges in-
cluded. For an edge e = (vi,v j), ego(e) = ego(vi ∪ v j). Next, the
ego compatibility of two edges ei and e j is a decreasing function of
ego(ei)∩ego(e j). This prevents bundling edges which link weakly-
connected communities in G.

Structure-based similarity serves two independent goals. First,
it allows specifying which edges are compatible from an applica-
tion perspective, and thus may end in the same bundle, as outlined
above. Separately, it allows constructing groups of possibly com-
patible edges which are next examined for actual bundling. This es-
sentially reduces the bundling complexity from analyzing all edge
pairs in G to only analyzing pairs within a cluster. Clustering can be
done using k cores [BE05], see [NHE11]; bottom-up hierarchical
aggregation [dHINM04], see [TE10,EHP∗11,ZWHK16]; k means,
see [PT97]; or kd-trees, see [GHNS11].

Attribute based: When edge or trail data attributes are available,
these can be used to compute additional similarity terms. This is
important when one does not want to bundle edges of different
types together. Good examples are software engineering graphs
which contain edges of various kinds, such as inheritance, call,
or dependency [CZH∗08, RVET14, DT14]; and airline trail-sets
which contain trails representing flights with different IDs or types
[HCGT14]. Each edge type has a different meaning, so edges of
different types should arguably not be bundled together. To model
this, a simple similarity function based on the edge’s categori-
cal attribute ‘type’ can be used [RVET14, TE10]. Edges can also
have quantitative attributes, such as duration and starting-time for
calls in program traces [TDT13, KTD13], or timestamps for eye
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tracks [PHT15] which can be used to define similarities. Sepa-
rately, for dynamic path-sets, time provides an additional compat-
ibility factor, used to bundle only paths that fall within the same
(usually small) time-window [NEH12, HEF∗14, KvdZT14]. This
makes bundling computationally and visually scalable to very large
streaming datasets.

4.1.2. Drawing-based similarities

While incorporating data-based similarity in the compatibility κ is
optional, all bundling methods must account for the spatial similar-
ity of paths to bundle. This can be done by using either geometric
methods (Sec. 4.1.2.1) or image-based methods (Sec. 4.1.2.2).

4.1.2.1. Geometric-based similarity: These methods use a
piecewise-polygonal sampled representation of the path drawings
D(p) to evaluate their similarity. As such, various aspects of a
curve can be taken into account. Let di ⊂ Rd and d j ⊂ Rd be two
such polyline path drawings. Similarity δ typically is a product
(or, in [NEH12], a weighted sum) of the following terms:

Distance: First, the distance between di and d j is considered, as
one does not want to bundle far-away path drawings (see Eqn. 1
and related text). In turn, this distance can be computed as the sum
of distances of the closest endpoints of di and d j [GHNS11]; or the
distance between the midpoints of di and d j (see FDEB [HVW09]
and its refinements [NEH12, NHE11, BSL∗14, ZWHK16], and
WR [LBA10b]). However simple, such similarities cannot be used
for trail bundling, as trails are usualy not straight lines.

Angle: The absolute value of the cosine of the angle formed by
the straight-line segments di and d j is used to prevent bundling of
orthogonal edges [HVW09, NHE11, NEH12]. This idea is refined
by DEB [SHH11] to consider the actual signed angle, which allows
directional bundling.

Scale: The length difference of the two segments di and d j is
used to prevent bundling very long and very short edges, and
therefore minimizes the deformation of the latter, which are best
drawn as (almost) straight [HVW09]. The same effect is achieved
by CUBu [vdZCT16] by limiting the deformation factor of paths
based on their length.

Visibility: FDEB proposes that edge-pairs which would create a
skewed parallellogram should be bundled less than those which
create a rectangle [HVW09]. This produces smoother, but less
tight, bundles, and as such this similarity term has not been widely
adopted by later methods.

Area and ink: Compatible edges can also be defined implicitly as
those edges which, when bundled, optimize a global cost func-
tion describing the quality of the bundling B(D(T )). For instance,
Gansner et al. [GK06] recursively cluster paths bottom-up as long
as the resulting bundling improves the usage of the drawing area.
Similarly, MINGLE [GHNS11] groups edges as long as the amount
of ink being used to draw B(D(T )) is lower than the amount used
to draw the unbundled D(T ) (see also Sec. 3.2.1.2). Both methods
are greedy, so they cannot guarantee a global minimum.

4.1.2.2. Image-based similarity: Apart from assessing which
paths can be bundled (κ), one needs to make sure that bundled paths
are closer than the unbundled ones. To measure bundled path dis-
tance, we need thus to define the function δ introduced in Eqn. 1.
As stated there, δ is typically a form of Hausdorff distance: Given

two sampled paths di = (xk
i ) and d j = (xk

j) which are compatible,
i.e. make sense to be bundled, we have

δ (di,d j) = ∑
xk

i ∈di

min
xk

j∈d j

‖xk
i −xk

j‖+ ∑
xk

j∈d j

min
xk

i ∈di

‖xk
i −xk

j‖. (2)

If we do not know upfront which paths are compatible with each
other, we thus need to find, for each sample point of a path, the
closest sample point of all other paths. While this can be acceler-
ated by using various spatial structures such as kd-trees [GHNS11],
quadtrees [LBA10b], this process is very expensive.

Image-based methods address the evaluation of Eqn. 2 and the
finding of compatible paths (evaluation of κ) by using imaging
and/or GPU methods. The first method in this class is SBEB
[EHP∗11] (Sec. 3.3.1.1). Here, δ (di,d j) is evaluated as the sum
δ (di,S)+δ (d j,S) where S is the medial axis of the group of com-
patible paths that di and d j are part of. Path-to-skeleton distances
are evaluated as

δ (di,S) = ∑
xk

i ∈di

DTS(xk
i ) (3)

where DTS : Z2 → R+ is a pixel map (image) capturing the so-
called Euclidean distance transform of the shape S [FCTB08].
Since there are far fewer clusters (thus skeletons) than paths
in D(T ), and Eqn. 3 can be efficiently implemented using
fast-marching methods [TvW02, Set02], but also GPU methods
[CTMT10], δ can be efficiently computed.

An alternative is proposed by kernel density estimation (KDE)
methods. As stated in Sec. 3.3.1.1, a path density map ρ : Z2 →
R+ is computed from D(T ). Next, path sampling points x j

i are
moved upstream in ∇ρ . This implicitly minimizes δ by gradi-
ent ascent without having to explicitly find closest sample point-
pairs. The basic KDEEB method [HET12] supports only undi-
rected bundling. KDEEB was enhanced by weighting the compu-
tation of ρ by various attributes like path directions and data at-
tributes [PHT15, Mou15, vdZCT16, LHT17]. Moreover, computa-
tion speed-ups of ρ are proposed: CUBu improves with respect
to KDEEB by using a gathering, rather than scattering, convolu-
tion strategy, which parallelizes much more efficiently on GPUs
[vdZCT16]; and FFTEB [LHT17] improves on CUBu by up to an
order of magnitude by executing the convolution in frequency space
(using the properties of the Fast Fourier Transform) rather than in
image space.

4.2. Bundling Operator Definition

Having the functions δ and κ implemented as described in Sec. 4.1,
one can now define the core of a bundling method – the bundling
operator B, i.e., propose an implementation of Eqn. 1. We classify
existing bundling methods in explicit and implicit ones, as follows.

We discuss next implicit methods which define B recursively by
an iterative optimization process. Methods in this class are all force-
directed techniques working in geometry space I ⊂ R2 and image-
based techniques working in discrete image space I ⊂ Z2.
4.2.1. Explicit Methods

Explicit methods compute an intermediary structure I from D(T )
and define B based on I. The structure I is computed typically only
once, after which paths are routed according to it. As such, ex-
plicit methods are in general fast and predictable, but less flexible
in terms of bundling control.
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As already outlined, different types of structured I exist. Hierar-
chical methods use the explicit hierarchy provided by a compound
graph [Hol06, CZH∗08, WL07, GBE08, CZB11] or a tree extracted
from a DAG [PNK10]. General-graph methods extract spanning
trees [PXY∗05], Steiner trees [BSV11], spiral trees [VBS11],
Voronoi diagrams [LBA10b, CZQ∗08], and Delaunay triangula-
tions [QZW06, CZQ∗08]. Once I exists, edges are simply routed
along it, using various forms of smooth curves, e.g. B-splines
[Hol06, WL07, GBE08, CZB11, PT97]; Bézier splines [BW98];
NURBS [QZW06]; and cubic curves [GK03].

4.2.2. Implicit Methods

Implicit methods work in a self-organizing way, without comput-
ing an explicit control structure I upfront. As such, they avoid the
problems of explicit methods due to computation of a suboptimal I
– bundling can ‘self-correct’ itself during the process. These meth-
ods work typically in an iterative way, similar to optimization pro-
cesses which aim to find the extremum of a global cost function.

Force-based techniques are the first, and best known, class
[HVW09, NHE11, NEH12, SHH11, BSL∗14]. They compute the
gradient of a cost function of the form

C(D(T )) = ∑
di∈D(T ),d j∈D(T ),κ(di,d j)<κmin

δ (di,d j), (4)

with δ given by Eqn. 2), and iteratively shift, or advect, sample
points x j

i to minimize C, i.e., yield tight bundles. This idea is very
similar to force-based graph layouts [KKH89], albeit using a dif-
ferent cost function. These methods are much slower than implicit
ones, as the cost C (Eqn.4) has to be recomputed at each iteration,
and computation of δ is expensive, as explained in Sec. 4.1.2.2. Us-
ing spatial search or clustering structures (Sec. 4.1.2) does not alle-
viate this, as path sampling points are continuously changing over
iterations, so such structures would need repeated re-initialization.

Image-based methods are very similar to force-based methods,
with the key difference that the cost computation (Eqn. 4) is much
lower due to the fast GPU-based evaluation of δ (Sec. 4.1.2.2). Var-
ious update ideas are proposed here: Sample points are shifted up-
stream in the gradient of the skeleton’s distance transform ∇DTS
by SBEB; and in the gradient of the density map ∇ρ by KDEEB,
ADEB, CUBu, and FFTEB, respectively. Additionally, recent im-
plicit image-based methods (CUBu,FFTEB) implement B fully on
the GPU (sampling paths di to points x j

i ; computation of the den-
sity map ρ; shifting sample points in ∇ρ; and rendering the final
results). This yields speed-ups of up to two order of magnitude with
respect to earlier image-based methods (KDEEB,ADEB).

Implicit methods add the extra capability of producing multi-
scale bundling in a scale space sense [Koe84]: Given the κmin con-
straint in Eqn. 4, only edges closer than a certain distance δmax are
considered to interact. Setting δmax to small values produces fine-
grained bundles, where the amount of deformation of any path point
is lower than δmax. Setting δmax to large valus produces coarse bun-
dles which exhibit more deformation but reduce clutter more too.
Using a δmax bound also massively reduces the costs of comput-
ing the all-pair path similarities δ (di,d j) to a small subset. Image-
based methods implement multiscale bundling efficiently, as κmax
is essentially controlled by the KDE kernel radius R (Sec. 4.1.2.2).
Multiscale bundling is much harder to achieve by explicit methods,
as these do not provide a continuous parameter to control the scale
of the simplification.

Figure 6: Usage of blending [Hol06]. Left: Drawing B(D(P))
without blending. Right: Same drawing, with blending.

4.3. Bundling Visualization

After bundling B computes a bundled drawing B(D(T )) of a path-
set D(T ), several mechanisms are available for visually present-
ing B(D(T )). These serve multiple purposes: display the bundling,
enhance important structural elements thereof, add attribute data
atop it, further reduce visual clutter, simplify the displayed image,
and ger details on demand. Visualization techniques for bundled
data can be grouped into the following classes: blending, data color
mapping, shading, smoothing and deformation, animation, and in-
teraction, as described next.

4.3.1. Blending

As outlined in Sec. 2, bundling trades clutter for overdraw. Multiple
paths (or path fragments) of D(P) become overlapping in B(D(P)).
However, many tasks require assessing the connection strength, or
number of paths, between groups of nodes or endpoints in P. To
support this, blending can be used: B(D(P)) is drawn using al-
pha blending or variations thereof. This renders bundles containing
many paths more opaque than sparse ones, thereby attracting the
user’s attention more [Hol06]. Essentially, this maps the local bun-
dle density ρ (Sec. 4.1.2.2) to opacity, color, or shading, an idea
pioneerd first by Van Liere and De Leeuw for drawing unbundled
straight-line graphs [vLdL03], and used next in many other con-
texts [SWvdW∗11, SWvdWvW11, LH11]. All examples in Fig. 4
are rendered using density-based blending. Figure 6 shows blend-
ing for a detail of HEB [Hol06].

While conceptually simple, blending requires some care: Simply
drawing the bundled paths B(D(P)) with OpenGL alpha blending
will not work, as the typical resolution of an OpenGL alpha chan-
nel is 8 bits, which can capture only 256 different values. As many
more paths can overlap, the result can easily be fully saturated
(opaque). The solution is to map the local bundled-path density ρ ,
computed using accurate floating-point operations (Sec. 4.1.2.2),
to the 8-bit alpha channel [vdZCT16]. Separately, short paths can
be easily obscured by long ones. The solution to this is to set path
opacity inversely proportional to path length [Hol06, vdZCT16].
Additionally, CUBu [vdZCT16] draws short paths atop longer
ones, so that the former get a fairer chance to stand out in the final
image (Fig. 4k,l). However, this requires sorting paths by length,
which can be costly (O(NlogN) for N paths in D(P)).

4.3.2. Data color mapping

Bundled path colors can map various path attributes, i.e. map data
from P to the color visual variable in B(D(P)) [Ber83]. Data in-
cludes path spatial density (extends the blending idea in Sec. 4.3.1
to multiple-hue colormaps); path start-to-end direction using a
color gradient (Fig. 2a [Hol06], Fig. 11b [CZH∗08]) following
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earlier methods used for the same goal when drawing straight-
line graphs [Die08]; cluster containing the path (Fig. 2c and 8
[EHP∗11]; see also [MM08]); type of path (Fig. 11a [RVET14]);
path spatial orientation, before bundling, using an angle-to-color
map (Fig. 2k-l [vdZCT16] and 4m-n [LHT17], Fig. 14a-c [PHT15]
and 14d [KvdZT14]); and local height along spatial airline trails
[HCGT14]. Path directions are rarely indicated by arrows [RVT11,
CZH∗08], as these clutter quite easily and become hard to discern
when many paths end at the same (small) node, as also discussed
in [HIVWF11].

A serious issue here is color blending: When paths overlap,
what should be the resulting color? This is especially hard to
solve if color maps categorical attributes, which cannot be aver-
aged [TE10]. To date, no conclusive answer exists to this issue.
This is further discussed in [HEF∗14, KvdZT14, vdZCT16].

4.3.3. Shading

Although bundling reduces the visual complexity of a drawing, it is
still hard to discern salient (important) connections, even when us-
ing alpha blending (Sec. 4.3.1). To emphasize the spatial extent of a
bundle (group of spatially close paths in B(D(T ))), pseudo-shading
can be used, whih was pioneered by Image-Based Edge Bundles
(IBEB) [TE10], see Fig. 2c. For this, IBEB, but also WR, SBEB,
and CUBu create a false height map increasing parabolically from
the borders of a bundle to its center, and then shade this by classi-
cal Phong shading, yielding similar effects to the well-known cush-
ion treemaps [VWvdW99]. This allows better visual separation of
crossing bundles, which show up as shaded tubes, based on the lu-
minance variation from the tube borders to their centers, given a
3D stacking effect (see Figs. 2c and 14a,b). To do this, IBEB and

a)

b)

c)

sparse dense

short long

short long

Figure 7: Color mapping and shading using CUBu [vdZCT16].

SBEB need to explicitly cluster the bundled paths, which, as dis-
cussed in Sec. 4, is delicate. The same explicit path clustering is
used by the geometric-shaded bundles in [TDT13] (Fig. 11c). WR
and CUBu do the path grouping implicitly, which makes them the
methods of choice. A different approach is to use bump mapping
to highlight high-density bundles based on the slope of the density
map ρ (Sec. 4.1.2.2). While simple to implement, this yields less
well-separated bundles, and creates artificial visual discontinuities
in their middle [HET12]. Shading and color mapping can be both
combined (Fig. 7): We can use colors to map either local edge den-
sity (Fig. 7a) or edge length (Fig. 7b), thereby emphasizing dense
regions, respectively long edges, respectively. Adding shading to
the latter combines the effects – salient shaded tubes show dense
regions, while color maps edge length, respectively.

4.3.4. Smoothing and deformation

Explicit bundling techniques control well the local curvature
of resulting bundles, as they route the bundled paths along a
precomputed global structure I (Sec. 4.2.1). Implicit techniques
(Sec. 4.2.2) have less control, so they postprocess B(D(T )) to
achieve smoothness. The by far most common way for this is to
apply 1D Laplacian smoothing [HDZ05] on the bundled paths, as
introduced in [HVW09]. This technique is simple, fast (O(N) for a
drawing B(D(T )) sampled with N points), and easily controllable.

Bundling can also include deformation constraints. For in-
stance, SBEB [EHP∗11] can route bundles to avoid landmarks
in the drawing space Z2, by using essentially the same princi-
ple as ‘dust & magnets’ [YMSJ06], but with repulsion instead
of attraction (Fig. 8a). The technique can be easily integrated
in any image-based implicit bundling method, either during the
iterative bundling or as a postprocessing step. WR [LBA10b]
and TGI-EB [NHE11] can include bundle orientation constraints,
yielding results that follow the so-called ‘metro map’ drawing
style (Fig. 8b,c). Other deformation mechanisms support interac-
tive exploration (see Sec. 4.3.6 further).

a)

b) c)

Figure 8: Bundle deformation to (a) avoid landmarks [HET12] and
(b,c) favor orthogonal drawing [LDB11, NHE11].
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4.3.5. Animation

Animation can be used for two main goals. First, it can convey
path directions in a trail-set. For this, small point-like textures, also
called particle systems, encode the local path direction [HIVWF11]
and are drawn at regular intervals along the bundled paths and
temporally shifted in the path direction [HEF∗14, KvdZT14]. This
yields a moving effect along bundles (several such textures coher-
ently move in the same direction) that conveys a bundle’s direc-
tion. This design is related to older methods for visualizing flow
fields [vW02]. Figure 9a shows an example using tapered arrow-
like textures [HIVWF11] that encode path directions. However, as
for data color-mapping (Sec. 4.3.2), animation has the issue that,
if a bundle contains paths having different directions, the result can
show random noise patterns from which we cannot discern the frac-
tion of paths going one way vs the opposite way. Note that this is
not a problem for the underlying technique (IBFV [vW02]) since,
for that case, a 2D vector field has a single data value per location.
Secondly, animation can show changes in a time-dependent path-
set P(t), by interpolating the bundled trails either during keyframes
(for sequence graphs, see Sec. 3.2.2.2) or by continuously morph-
ing a trail-set to account for incoming and leaving trails (for stream-
ing graphs, see Sec. 3.2.2.1). Figure 9b shows three frames from a
bundled sequence-graph depicting code clones between software
components in three revisions of a software system [HET13]. Red
edges show newly appearing clone relations, which are bad for sys-
tem maintenance, and thus should be spotted and removed.

4.3.6. Interaction

Interaction is a key technique to the analysis of bundled drawings.
Following [BM13], interaction allows answering how-type ques-
tions; and enables bundled drawing B(D(P)) to support select, nav-
igate, filter and arrange tasks. Several types of interaction exist in
this context, as follows:

a)

b)

revision 1 revision 2 revision 3

Figure 9: Animation techniques: (a) Textures showing bundle di-
rections [HEF∗14]. (b) Sequence graphs [HET13].

Relaxation: Linear interpolation between the input drawing D(P)
and its bundling B(D(P)) is used by virtually all bundling meth-
ods, starting with [Hol06], to control the bundling ‘tightness’. In-
teractively changing the interpolation parameter to-and-fro allows
users to visually link paths in D(P) and B(D(P)) and thus resolve
(parts of) the bundling ambiguities created by overlap. Similar tech-
niques are used to link items in other visualizations [HTCT14]. Fig-
ure 10a-d shows four frames from a relaxation process;
Lenses: Bundling can be applied (or prevented) locally on D(P).
This way, one can combine views of the unbundled D(P) with
the bundled B(D(P)). This is essentially a local relaxation vari-
ant. Figure 10e-g shows three frames from such a local lens, used
to get detail on a road-traffic dataset [HET11]. Lambert et al. pro-
pose additional variants, such as fisheye and bring & go techniques
[TAvHS06], using GPU-computed splines for interaction fluidity
[LAM10] (Fig. 10h). Techniques such as edge plucking [WC07]
can be easily added. The digging lens [TE10] alleviates occlusion
in shaded-tube bundle renderings (Sec. 4.3.3): Bundles are thinned
close to the interaction focus using image-processing techniques
(Fig. 10i) so that one can see, and bring to front, occluded bundles
from beneath (Fig. 10j).
Brushing: Brushing bundles can reveal aggregated attributes of

the overlapping paths in B(D(P)), thereby alleviating the problem
outlined in Sec. 4.3.2 [CZH∗08, RVET14];
Navigation: HEB-like methods (Sec. 3.2.1.1) can support naviga-
tion of the hierarchy T by interactively collapsing (clustering) or
opening (refining) nodes in T . Such operations trigger the display
of a different set of bundled edges [CZH∗08, RVET14, Han13].

Riche et al. define interactions and design guideline to support
node and edge manipulations in bundled drawings [RDLC12]. Sep-
arately, Luo et al. propose interactive techniques to decrease path
ovelapping issues [LLCM12].

unbundled D(P) bundled B(D(P))

a) b) c) d)

e) f)

i)h)

g)

j)

Figure 10: Interacting with bundled drawings: (a-d) Global bundle
relaxation [HET12] and (e-g) local relaxation [HET11]. (h) Magic
lens [LAM10]. (i,j) Digging lens [TE10].
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5. Task Support

Using bundling fits very well into Shneiderman’s “overview first,
zoom and filter, then details-on-demand" [Shn96] metaphor. The
key task a bundled drawing B(D(P)) supports is to present an
overview of D(P) – thus, implicitly of P too – which trades off clut-
ter for overdraw. If users find interesting patterns in it, they can next
zoom and filter on such patterns, and next get details on demand
on them using the interaction techniques discussed in Sec. 4.3.6.
We analyze this further by first discussing how bundling reduces
clutter (Sec. 5.1). Next, we detail the tasks supported by bundled
drawings (Sec. 5.2).

5.1. Bundling Clutter Reduction Taxonomy

To understand how (well) bundling reduces clutter, we analyze
it following Ellis and Dix’s clutter reduction taxonomy [ED07].
From all clutter reduction techniques (see [ED07], Tab. 1), bundling
uses path ( [ED07] refer to ‘point/line’; as our input is a (possibly
curved) path drawing D(P), we use the term path) displacement,
clustering, and opacity techniques. Indeed, B displaces paths to cre-
ate path-clusters and renders them using opacity. Separately, Tab. 3
in [ED07] outlines eight key benefits given by clutter reduction.
Table 2, columns 2 . . .4 lists them, showing how opacity, cluster-
ing and displacement contribute to each. Column 5 in Tab. 2 shows
our (arguably subjective) view on how well bundling does this, as
detailed below.
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avoids overlap partly possibly X partly
keeps spatial information X partly 7 partly
can be localized X 7 X partly
is scalable 7 X 7 X
is adjustable X X possibly X
can show path attributes 7 partly X X
can discriminate paths X X possibly partly
can see overlap density X possibly 7 X

Table 2: Bundling compared with opacity, clustering, and displace-
ment techniques vs yielded clutter-reduction benefits [ED07].

a) Avoids overlap: Bundling avoids overlap of coarse-scale pat-
terns: Take a set of unbundled, but highly-similar, paths H ⊂D(P).
Following Eqn. 1, their bundling B(H) contains much closer paths
(cf. the spatial distance δ ) than H. Hence, for two such disjoint
sets Hi and H j of D(P), the chance that their bundled versions
B(Hi) and B(H j) overlap is (much) smaller than that of the un-
bundled sets Hi and H j to overlap. Bundling yields more overlap
of compatible edges (cf. the compatibility κ), but less overlap for
incompatible ones;
b) Keeps spatial information: B does not change path endpoints,
so this type of spatial information is kept. Spatial information
of other path points is distorted. However, bundle scale control
(Sec. 4.2.2), smoothing (Sec. 4.3.4), and relaxation (Sec. 4.3.6)
limit the deformation amount;
c) Can be localized: In general, clutter is locally inversely pro-
portional to the bundling amount: Strongly bundled areas exhibit
less clutter than weakly bundled ones, assuming an input D(P)
with uniform spatial clutter distribution. Hence, local control of the
bundling amount can localize the presence of clutter [HET11];

d) Is scalable: Image-based bundling is clearly scalable to large
million-size path-sets (Sec. 4.1.2.2);
e) Is adjustable: Bundles can be widely adjusted in terms of path
similarity, tightness, smoothness, shape, obstacle avoidance, and
visual appearance (Sec. 4);
f) Can show path attributes: Bundling can show path local den-
sity, direction, and several other data attributes, either implicitly
(by their presence in the compatibility κ (Sec. 2)) or explicitly (by
mapping them to opacity, color, shading, and animation (Sec. 4.3));
g) Can discriminate paths: Directional and confluent bundling
techniques do precisely that, favoring different types of paths to
discriminate [PNK10, SHH11, LLCM12, ZYC∗08, BISP16];
h) Can show overlap density: Virtually all bundling techniques
map local bundled-path density to opacity or color to show pre-
cisely that (Sec. 4.3.1,4.3.2).

Overall, we see that bundling supports well the intended benefits
of clutter reduction mentioned in [ED07]. This helps understand-
ing next which tasks bundling can support, and how much. For in-
stance, [ED07] (Sec. 3) mentions that the ‘avoid overlap’ benefit
supports the ability to see and identify patterns [AS94]; ‘being lo-
calized’ helps examining small details while keeping context.

5.2. Task Taxonomy

We analyze which tasks bundling supports using two well-known
taxonomies, as follows.

A) Lee et al. [LPP∗06]: Bundling focuses on links and clusters.
For these data types, bundling supports:

a) Path following: Specific bundling techniques support path fol-
lowing, see Sec. 5.1, point (g);
b) Edge density visualization: Bundling clearly covers this, see
Sec. 5.1, point (h);
c) Identify edge clusters: If edge (or, more generally, path) simi-
larity can be captured by a function κ , then bundling does this by
default, see its definition (Eqn. 1);
d) Identify strongly connected cliques: This is indeed possible.
See Sec. 5.1, point (a), last sentence;
e) Overview: As already explained, B can be seen as a coarsen-
ing/simplification operator that keeps and enhances the core struc-
ture of a drawing D(P);
f) Find patterns: Since B enhances the density distribution of
D(P), it follows that patterns which are (vaguely) visible in D(P)
will only become clearer in B(D(P)). For a formal discussion, see
[CM02]; for practical examples, see e.g. Sec. 6.2. Yet, the converse
is not always true: A D(P) having no salient patterns can yield a
B(D(P)) showing false patterns (see next Sec. 7.2.2);
g) Compare flows: Directional bundling combined with direc-
tional coloring supports this task, see e.g. Fig. 4k-n.

B) Brehmer and Munzer [BM13]: Following this typology,
bundling can:

a) answer the why part of queries related to the above tasks (A).
This is typically done by interaction, see Sec. 4.3.6;
b) identify, compare and summarize: Bundling hepls finding
salient connection patterns; comparing path-sets from a sequence
or stream (Secs. 3.2.2.2, 3.2.2.1, 3.3.2) and summarizing complex
path drawings D(P), as clear from all discussions so far;
c) present, discover and enjoy: Bundling can e.g. present big
worldwide flight datasets [KvdZT14]; help discover user patterns
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a) b)

c) d)

Figure 11: Bundling in program comprehension. See Sec. 6.1.

in eye-track data [PHT15]; and enjoy organic presentations of com-
plex, abstract data (see [Tel15], cover). In this typology, how tasks
answered by bundling are summed up as encoding, aggregating
and recording.

6. Applications

We next illustrate the application of graph and trail bundling in
several application areas – software engineering (Sec. 6.1), vehicle
trajectory analysis (Sec. 6.2), eye track analysis (Sec. 6.3), multi-
dimensional visualization (Sec. 6.4), and vector and tensor field vi-
sualization (Sec. 6.5). For each area, we outline a few relevant use-
cases, including the goals to be addressed, examples of bundling
results, and outline some limitations.

6.1. Software engineering and data mining

Some of the earliest applications of graph bundling emerged from
program comprehension. A key aim of program comprehension
is to help developers understand the structure and execution of
large programs. This helps various types of maintenance, such as
discovering and fixing performance problems and bugs, refactor-
ing the software, and recovering its architecture [CHK∗01]. Static
and dynamic program mining produces a wealth of data, of which
an important component are attributed compound graphs, whose
nodes describe software entities (e.g. methods, classes, and pack-
ages) and edges describe inter-entity relations (e.g. call, inherit,
data transfer, compilation dependency) [EN08, CZvD∗09]. Such
graphs can have up to hundreds of thousands of nodes and edges,
so displaying them using classical straight-line node-link drawings

is not effective [TEHR09]. Drawing software graphs is an impor-
tant subfield of software visualization, for which good surveys ex-
ist [Kos03, Die08]. Bundling produces simplified drawings, where
tasks such as finding how groups of related software entities (e.g.,
in the same package) are connected with other similar groups.

Early applications include the simplified visualization of rela-
tively small state diagrams, based on a DAG layout, such as the
bundling method of Pupyrev et al. [PNK10] (Fig. 11d, see also
Sec. 3.2.1.1). HEB yielded a major breakthrough, allowing tens of
thousands of edges to be bundled [HvW08]. The original method
(Fig. 2a) was next enhanced to handle graphs of hundreds of thou-
sands of elements by allowing for interactive opening and col-
lapsing of hierarchy nodes and automatic aggregation of children
edges [TEHR09, RVET14]. Besides using a radial layout for the
graph nodes, treemaps were also used, with edges bundled in 3D
(Fig. 2e [WL07,CZB11]). The main advantage here is that treemap
cells can be used to show more data, such as software metrics, than
the (small) cells in a radial icicle plot. Another extension allowed
for the comparison of two code bases [HvW08] or multiple versions
of the same code base [TA08] (Figs. 2b,d). The key task here is to
find how elements in one code base correspond to the other one, and
thus spot structural changes. HEB was also used to visualize code
duplication (clones) in a software system [VT14,RVET14] and how
these evolve in time [Han13, HEF∗14]. This supports the planning
of clone removal with minimal impact on system architecture.

HEB-like bundling has also been used to visualize program ex-
ecution, e.g. to compare two or more traces of a program [TDT13]
(to detect anomalous behavior) or to visualize the behavior of
multi-threaded programs [KTD13] (to find performance problems).
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In data mining, Bothorel et al. [BSH13] used a general-graph
bundling method (KDEEB) to display frequent itemsets. These
are arranged on multiple (rather than a single) circular layout,
so as to minimize edge lengths. Bundling was used to high-
light groups of strongly-connected itemsets (Fig. 12). The method
was found to help knowledge engineers in extracting association
rules from the itemsets.

Figure 12: Nested circular layout and KDEEB bundling for fre-
quent itemsets [BSH13].

6.2. Vehicle trajectory analysis

Vehicle trajectory analysis is important in many applications
such as air-traffic [WHS90], nautical vessel [SWvdW∗11, SWvd-
WvW11, SHVDWVW16], and roadmap [TP15] planning and con-
trol. Early on, bundling was used to simplify the depiction of large
trail-sets so as to help inferring the main vehicle routes over a coun-
try [HVW09]. This use-case, as well as the US airlines dataset fea-
tured in [HVW09] (Fig. 3), stayed visible in most trail-bundling
papers since then [CZQ∗08, LBA10b, EHP∗11, GHNS11, HET12,
vdZCT16, LHT17]. To support source-to-target trail analysis, di-
rectional bundling methods were proposed [SHH11, Mou15].

d

Figure 13: Aircraft trail analysis. (a-c) Raw trails, directional
bundling over France, and zoom-in over Paris area [PHT15]. (d)
Worldwide flights [KvdZT14].

Hurter et al. [HEF∗14] extend the above to handle streaming
trail-sets, obtained from monitoring flights over a given spatial re-
gion over a period of time (US territory, 6 days). The obtained
animation allows the detection of variations in position and den-
sity of the main flight routes depending on the time of the day,
and comparing same-time patterns over several days. Recently, this
method was extended, by using the fast GPU-based CUBu tech-
nique [vdZCT16], to visualize around 800K flights collected from
the entire world over June 2013 [KvdZT14], see Fig. 13d. Given the
streaming nature of [HEF∗14], this approach can be used to visu-
alize large-scale trail-sets that evolve over unbounded time ranges.
A more involved use-case is described in [PHT15]. The data con-
sists of 24 hours of flight traffic over France (18K trails). The bun-
dled visualization (Fig. 13a-c) helps air-traffic controllers to cross-
reference actual flows with known theoretical air routes (on a global
scale) and theoretical approach routes to the Paris airports (locally).
This way, problems can be spotted early on, and traffic planning can
be adjusted next.

a) b)

c)

Figure 14: 3D bundling of 2000 worldwide flight trails (a), and de-
tail (b) [LBA10a]; Bundling commuter trails along the Swiss road
network [TP15] (detail top-right).

For the same use-case (worldwide flight analysis), Lambert et
al. [LBA10b] extend WR to bundle 2000 flight trails over the Earth
surface. They show how 3D bundling is superior to bundling on a
2D map for assessing flight lengths and for more exact trail-to-trail
distance assessment (Fig. 14a,b). Finally, Vector Maps [TP15] bun-
dle commuter paths on the 3D Swiss road network. The key parts of
the road network are used as a ‘skeleton’ to attract bundles. The vi-
sualization shows which main routes (e.g. highways) are important
for which parts of the traffic (Fig. 14c).

6.3. Eye-track analysis

Eye tracking delivers datasets consisting of 2D points (so-called
fixation points of the human gaze) linked by transitions (called sac-
cades) [TWK∗10]. Analyzing such tracks is important for many
applications, e.g. assessing user performance when using new in-
terfaces [ CFL10, KPAA10] and finding how users read a display
and whether they do it efficiently [SL87, KRDC97]. An important
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a) b)

c) d)

Figure 15: PCP bundling with four methods. (a) [MM08], (b) [HLK∗12], (c) [ZYQ∗08], (d) [PBO∗14].

b)

c) d)
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L2
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a)

Figure 16: Bundled eye-tracking trails of novice (a) and expert (b)
users in a multitask experiment [PHT15]. (c) Visual analysis of pi-
lot eye-tracking data with dynamic bundling [HEF∗14].

part of the analysis of eye trails is detecting the so-called fixation
areas (FA’s), defined as groups of many close fixation points; and
finding how FA’s are linked by saccades.

Trail bundling perfectly suits such tasks. Recent works in eye-
tracking also strongly consider bundling as a viable solution to
reduce clutter induced by the large amount of ocular trail sets
[BKR∗14]. Application-wise, ADEB [PHT15] was used to show
how bundled trails can be used to assess the proficiency of users
(Fig. 16a,b). Here, the ocular behavior of a novice and expert user
during a multi-task experiment are compared. The background im-
age shows the GUI that the users had to monitor and interact with
during the experiment. From this, the authors show how and where
the expert performed better, which can lead to improvements in
either the training procedure or the GUI being proposed to users.
Separately, Hurter et al. considered the time information present in
eye trails, by bundling only trails that are compatible with respect
to occurring close to each other in time using a streaming method
[HEF∗14]. Figure 16c,d shows how dynamic bundling highlights
salient eye-movement patterns of an aircraft pilot during a landing
sequence. the background images show actual views from the cock-
pit, with dashboard instruments in focus. Bundles show the pilot’s

so called main visual strategies during landing. This helps pilots
to analyze and correct their behavior (improves training) but also
designers of new aircraft landing-assisting cockpit instruments in
finding if such instruments have been effectively used by pilots.

6.4. Multidimensional data exploration

Multidimensional data exploration is a very challenging field:
Datasets whose samples have many dimensions (tens or even hun-
dreds) have to be mapped to 2D or 3D. Relevant tasks include find-
ing groups of similar samples, outlier samples, and correlations and
trends of subsets of the existing dimensions.

Such data can be visualized by Parallel Coordinate Plots (PCPs)
(see Sec. 3.3.1.1). As explained there, PCPs for thousands of sam-
ples or more quickly become cluttered. Bundling can help here,
much in the same way it helps declutter straight-line graph draw-
ings. Figure 15 shows four bundling methods for PCPs discussed
in Sec. 3.3.1.1. As visible, each method targets different tasks: Mc-
Donnell et al. (Fig. 15a) separate the data into compact clusters,
emphasizing data cluster differences (which sample groups are dif-
ferent). Coloring and shading are very similar to IBEB [TE10]
(Sec. 4.3.3). Heinrich et al. (Fig. 15b) emphasize the continuity
of the PCP polylines, helping end-to-end tracing, as opposed to all
other methods. Zhou et al. offer a proposition similar to [MM08],
but with less overlap. Finally, Palmas et al. offer the strongest clut-
ter reduction (but overdraw increase) (Fig. 15d). Their visual de-
sign is very similar to HEB [Hol06] – just as HEB lets one see how
groups of nodes in a graph are connected, so do they show how
ranges of variables occur together in a multidimensional dataset.

Dimensionality-reduction (DR) methods are another way to dis-
play high-dimensional data. Given an n-dimensional dataset, a DR
method creates a 2D scatterplot where inter-point distances re-
flect the corresponding nD distances [SVPM14]. It is well known
that DR techniques cannot perfectly map nD distances to 2D. So,
ways are needed to assess errors in such 2D scatterplots. Mar-
tins et al. classify such errors into false neighbors (points too
close in 2D vs nD and missing neighbors (points too far in 2D
vs nD) [MCMT14, MMT15]. They next extend these notions to
groups (clusters) of points representing concepts. Bundling, done
with CUBu [vdZCT16] helps showing missing (group) neighbors:
All 2D scatterplot point-pairs which are farther apart, as com-
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pared to their nD counterparts, than a given value, are connected
by edges, whose opacity reflects the 2D-nD distancec discrepancy.
Next, these edges are bundled. This effectively shows which zones
in a DR plot miss information, and where this information is. For
example, in Fig. 17a, bundles show that many of the elements of the
group Γle f t in the scatterplot miss neighbors which the DR method
erroneously places in group Γtop, but miss no neighbors with re-
spect to the group Γbottom. Bundling is also used to compare two
plots created by different DR methods.

a) b)

Γ
top

Γ
bottom

Figure 17: a) Visualizing errors in multidimensional projections
[MCMT14]. b) Visualizing learning in a neural network [RFFT17].

Bundling is also used to visualize training of artificial deep
neural networks (DNNs). Understanding how such networks learn
from examples is notoriously hard, as they usually operate as black
boxes [MPG∗14]. Rauber et al. [RFFT17] use bundling to help this:
Imagine that all neurons of a DNN are points in nD space, with co-
ordinates given by their so-called activations. Such a DNN is typi-
cally trained by feeding it a sequence of N examples. Hence, acti-
vations change with each learned example. This can be visualized
by projecting all neuron activations to 2D (using the well-known
t-SNE DR technique [vdMH08]) and next constructing trails link-
ing the N 2D positions of the same neuron. This yields a streaming
trail-set, which next can be bundled, as in Fig. 17b. Here, lumi-
nance encodes training time, and color encodes neurons special-
ized for the same task (in [RFFT17], this is classifying images).
The bundle structure, highlighted by the arrows, shows how origi-
nally untrained neurons (image center, dark) progressively diverge
from each other. This serves in assessing the training performance:
For a DNN, we want indeed that neurons progressively differentiate
from each other and specialize for doing different tasks.

6.5. Vector and Tensor Fields

Trail bundling has also been used to simplify displays of vector
and tensor fields. For vector fields, Yu et al. [YWSC12] bundle 2D
and 3D streamlines to produce simplified visualizations of the re-
spective fields. The tasks addressed cover reduction of clutter and
occlusion (in 3D) and easily spotting salient field patterns such as
separatrices, laminar flow regions, and turbulent regions [PVH∗03].
Compared to other hierarchical vector field simplification meth-
ods [TvW99], this approach can better capture salient vector field
structures at similar levels of detail. It is however important to
note that bundling is done here purely to find groups of very sim-
ilar streamlines (following a similarity definition analogous to δ ,
Eqn. 2). After such groups are found, an actual physically correct
streamline best representing each group is rendered. Thus, no geo-
metric deformation takes place.

Böttger et al. [BSL∗14] bundle 3D trails to help neuroscientists
visualize brain connectivity captured by fMRI techniques. The in-
put data is a graph G, with nodes V representing 3D locations in the
brain and edges E linking locations that are related with respect to
function. Straight-line drawings of G produces highly cluttered pic-
tures (Fig. 18c). KDEEB bundling (adapted to 3D) on G massively
reduces occlusion and allows one to see how groups of spatially
close nodes inter-relate (Fig. 18d). For this use-case, edge deforma-
tion is not an issue, as edges only carry connectivity information.

a) b)

c) d)c) d)

e) f)

Figure 18: Vector and tensor fields. 3D streamlines, raw (a) and (b)
bundled [YWSC12]. Functional brain connectivity [BSL∗14], (c)
raw and (d) bundled. DTI tracts [EBB∗15], (e) raw and (f) bundled.

Bundling is also applied to Diffusion Tensor Imaging (DTI)
fields. From these fields, trail (or tract) sets indicating the locations
of important white-matter neural fibers are extracted by tractogra-
phy [AP08]. Rendering the raw tracts yields relatively cluttered im-
ages, depending on actual tract extraction settings (Fig. 18d). Everts
et al. bundle tracts (for details, see Sec. 3.3.1.2) to yield simplified,
less cluttered, images (Fig. 18e). Tracts are next colored to indi-
cate 3D orientation (for details, see [Tel15], Ch. 7). In contrast to
[BSL∗14], deformations are now constrained, as actual track loca-
tions are important. The bundled views are typically used to assess
how (strongly) different anatomical regions in the brain are con-
nected, which can next help planning minimally disruptive surgery.

7. Discussion

We now discuss several aspects related to the state of graph and trail
bundling. We focus on current capabilities (Sec. 7.1) and challenges
(Sec. 7.2), and also outline gaps and future work directions.

7.1. Current State of Bundling

Bundling methods have become quite mature and widely used since
their inception over a decade ago. Several aspects are relevant here:
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Scalability: We distinguish five ‘generations’ of bundling tech-
niques. Pre-HEB bundling techniques were able to handle graphs
of hundreds of edges and worked solely on the CPU [New89,
BW98, DEGM03, PXY∗05]. Following HEB [Hol06], the sec-
ond generation targeted graphs and trail-sets having thousands
(up to roughly 10K) paths; MINGLE [GHNS11] is an exception
here, as it targeted graphs up to 1 million edges. These tech-
niques worked mostly geometrically [HVW09, NEH12, CZQ∗08,
NHE11, LLCM12, SHH11] and on the CPU. Starting with SBEB
[EHP∗11] and KDEEB [HET12], third-generation techniques are
image-based, using a mixed CPU-GPU implementation to mas-
sively parallelize both similarity computation (Sec. 4.1.2.2) and
the bundling itself (Sec. 4.2, and can bundle tens of thousands
of paths in seconds [LBA10b, LBA10a, Mou15]. Fifth-generation
techniques work solely on the GPU, can handle multiple GPUs
(CUBu [vdZCT16]), can bundle up to a million paths in sub-
second time, and remove GPU RAM limitations by data stream-
ing(FFTEB [LHT17]). With even faster and larger-memory GPUs
emerging continuously, we believe that the scalability problem of
path bundling has been sufficiently addressed, so that bundling can
approach ‘big data’ sets.

Data coverage: Following our taxonomy in Sec. 3, bundling meth-
ods can cover a wide spectrum of data types: graph drawings
(trees, compound, DAGs, general oriented or not); 2D trails (ve-
hicle movements, eye tracks, streamlines); and 3D trails (vehicle
movements, DTI fibers, streamlines). All these can be either at-
tributed (with several attributes per path) or not, and time depen-
dent or not (see also Tab. 1). As such, we believe that most data
types amenable to bundling are covered by existing methods.

Adoption: The development of bundling techniques has grown
parallel to widening their application. Bundling has been arguably
best accepted in software engineering and geospatial trail analysis
(Sec. 6). Other salient application fields are eye-tracking analysis,
DTI tract visualization, and network visualization. Several mature
software tools offer bundling, e.g. GraphViz [G∗17], Tulip [A∗17],
Gephi [Gep17], D3 [Bos17], and Protégé [T∗17, HdRFH12]. Yet,
except a few methods like HEB [Hol06], FDEB [HVW09], and
MINGLE [GHNS11], most other bundling methods have still not
been integrated in such mainstream packages.

7.2. Bundling Challenges

Despite its success, bundling techniques haves still unsolved chal-
lenges. Of these, we discuss next the quality assessment of bundled
drawings (Sec. 7.2.1), the issue of faithfulness, or how much infor-
mation is kept (or not) in a bundled drawing (Sec. 7.2.1), and how
one can control the result of bundling (Sec. 7.2.3).

7.2.1. Quality assessment

There is no accepted way to measure the quality of a bundling.
The problem core is that it is hard to define objective criteria
for what a ‘good’ bundling is. Quality metrics have been dis-
cussed, and advocated for, since long in information visualiza-
tion [Bra97, MHNW97, EG06]. Closer to our scope, these include
the ink-ratio and ‘lie factor’ of a visualization [Tuf92]; defining
visual clutter [ED07]; and measuring edge congestion [CR01],
edge crossings [KPS14], readability [DS09, EHKN15], aesthetics
[PCJ95, WPCM02], and faithfulness [NEH13, NEH17] in graph
visualizations. However, no such set of metrics fully covers path
bundling. For bundled drawings quality, only a handful of studies

exist, touching upon the visual navigability of small bundled draw-
ings [PNK10], comparing the effectiveness of bundled vs unbun-
dled drawings [TEHR09], studying the comprehensibility [MD12]
and ambiguity [BRH∗16] of bundled drawings, and visualizing
edge deformation [HET12].

Quality assessment can be approached by defining what qual-
ity is. Following well-established principles in software engineer-
ing [Ken03], we can define the quality of a bundled drawing by ei-
ther measuring its ‘fitness for purpose’ (how well it helps solving a
certain problem) or by comparing it to a ground-truth whose quality
is known. Both paths have, however, challenges, as outlined next.

Fitness for purpose: To quantify this, we need first to define what
the goal(s) of a bundled drawing are. Section 5.2 outlines the tasks
that bundling aims to cover. This (or a similar) proposal could be
next used to scope, and assess the value of, their contributions. This
can be done by user studies where the percentage, correctness, and
time of completing, a given task is measured. Besides the know
challenges that organizing large-scale user studies (and generaliz-
ing their results) have, an extra difficulty is that the same method
B can generate a wealth of different drawing styles from the same
dataset D(P), see e.g. [vdZCT16]. The data-based taxonomy pro-
posed in Sec. 3 can help here in narrowing the focus of methods to
be compared against each other based on the type of input data they
work on.

Ground truth comparison: Quality can be measured by comput-
ing the difference between a bundling B(D(P)) produced by the
method under study and a so-called ground truth Bg(D(P)), i.e., a
bundled drawing known to be good for a certain task. Most exist-
ing bundling papers do this implicitly, by comparing their results
with earlier methods on the same dataset D(P). Yet, in most (if not
all) cases, the comparison is only visual, such as shown in Fig. 4.
This can be improved by using quantitative metrics to compare two
bundled images, e.g. by measuring their Hausdorff distance, or met-
rics to assess global quality parameters of a drawing B(D(P)), e.g.
amount of overdraw, spread of path displacements, spatial path-
density distribution, amount of overlap of different-direction bun-
dles, amount of bundle crossings, and bundle curvature distribu-
tion. We can next infer good values for such metrics e.g. by ex-
trapolating from the graph-drawing and graph-aesthetic principles
mentioned earlier, and compare actual metric values with the de-
sired good values. Another way to measure quality is to compare
B(D(P)) with the unbundled drawing D(P), using a similar set of
quality metrics. A good bundling is, in this case, one that increases
the metrics’ values.

A separate problem for ground truth comparison is that there
is, so far, no established benchmark of graphs and trail-sets (and
bundling method implementations) that the infovis community
could use. Creating such a benchmark is reasonably easy and
should be highly useful for the community. A starting point for
graphs (including node layouts) can be the well-known Florida
collection [DH11].

7.2.2. Bundling faithfulness

A separate issue regards the information alteration or loss produced
by bundling, or the so-called faithfulness of the produced drawings
[NEH13,NEH17]. Simply put, we need to measure (a) how much of
the original information conveyed by D(P) is kept by B(D(P)), and
(b) how much incorrect information B(D(P)) adds as compared to

c© 2017 The Author(s)
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D(P). In other words, we need to measure the precision and recall
for B. The above are related to the concept of inferrence affordance
that measures the informational equivalence of two displays [SL87,
CFL10, TWK∗10] – in our case, D(P) and B(D(P)).

Concerning (a), it is clear that bundling looses some of the infor-
mation present in the original D(P). This is a higher problem for
trail-sets than for graphs, since the former contain relevant spatial
information. To assess this, we can measure (1) the amount of trail
distortion created by B, i.e., ∑pi∈D(P) δ (pi,B(pi)), with δ given by
Eqn. 2. Next, depending on the task, we can decide whether this
amount is acceptable or not. To help this, distortion can be visual-
ized on B(D(P)) [HET12]. When distortion is too large, relaxation
can be used (Sec. 4.3.6), or bundling can be selectively stopped
when it reaches a (local or global) maximum value. Further, a ratio
of clutter reduction to amount of distortion can be computed, anal-
ogously to Tufte’s ink-space ratio [Tuf92] to measure the faithful-
ness of B. Another way to increase faithfulness is to animate D(P)
towards B(D(P)) during the bundling [HEF∗14]. This helps users
match the input and output of B, thus reducing the information loss.

Concerning (b), it has been shown that, for some datasets,
bundling can yield false insights. Figure 19 illustrates this for
KDEEB [HET12]: A random graph whose nodes and edges are
uniformly spread over a 2D region is bundled. The result shows
emerging structures which, however, do not reflect any actual
patterns in the input data. This effect is mainly due to the fact
that implicit bundling methods expect that their input has salient
structures; when this is not the case, the bundling’s underly-
ing density-sharpening principle (Sec. 2) will simply accentuate
small-scale noise.

a) b)

Figure 19: Pseudo-random graph (a) and its KDEEB bundling (b).
Red dots represents graph nodes [HET12].

7.2.3. Bundling control

Controlling bundling methods is our final challenge. Earlier
bundling methods have a relatively small, and intuitive, set of pa-
rameters. For instance, HEB (Sec. 3.2.1.1) allows controlling the
strength of bundling, the amount of relaxation, detection of the
common ancestor in the hierarchy that bundles are routed through,
and type of edge blending (for full details, we refer to [Hol06]).
Recent bundling methods have a higher number of parameters.
For instance, CUBu (Sec. 3.3.1.1) allows controlling the resolu-
tion of the image used for kernel density estimation, radius of
the kernel, number of sampling points along paths, advection step
size, number of bundling iterations, directional bundling style, type
of bundle shading, and offers additionally four drawing styles

(full details in [vdZCT16]). Concerning parameters, we see the
following challenges:

Semantics: Existing parameters have semantics which are typi-
cally bound to a specific bundling technique. This makes it hard for
users to reproduce results when changing techniques. Our mathe-
matical framework presented in this survey helps this by identify-
ing parameters having identical meanings over different methods,
but of course cannot fully solve the problem. A promising direc-
tion would be to provide parameters linked to user tasks rather than
method technicalities. For instance, if one wants to bundle trails so
that a given subset thereof is easily followable, the method could
automatically select suitable technical parameter values.

Impact: Changing any of the many bundling parameters produces
a different result. While reasonable parameter presets exist, these
are not always optimal for all datasets and/or visual insights sought.
This issue is less critical with modern bundling methods which
work near-real-time (Sec. 3.3.1.1), as trial-and-error parameter ex-
ploration is less costly. Still, supporting users to express their in-
terest more effectively, by offering high(er) level parameter con-
trol, similar to work done elsewhere in infovis [SvW08,SvW09], is
a potential improvement direction for bundling. Another solution
would be setting parameter values based on the characteristics of
the input data D(P) to bundle.

Coupling: The same bundling result can be, usually, obtained
by setting different parameters to different values. For example,
the same bundle tightness in implicit methods [HVW09, HET12,
Mou15, vdZCT16] can be obtained by changing either the number
of bundling iterations or the advection step size. We call such pa-
rameters coupled. Few papers discuss coupling, making the param-
eter space unnecessarily large. This can be alleviated by grouping
coupled parameters under a single high-level parameter, similarly
to the idea discussed above for impact.

8. Conclusion

We have presented a survey of the state-of-the-art in graph and trail
bundling techniques. We organize such techniques via a data-based
taxonomy, which allows readers to find the types of techniques that
best fit their specific data at hand. Next, we propose a mathemat-
ical framework to define bundling, which allows one to compare
specific technical aspects of the different existing bundling algo-
rithms in a detailed way. Based on this framework, we discuss
a wide set of bundling techniques, spanning the whole spectrum
present in the literature. We next discuss how bundling supports
clutter reduction and proposed a taxonomy for the tasks it supports.
We present a wide sample of applications that rely on bundling
from five domains (software engineering, vehicle trajectory anal-
ysis, eye track analysis, multidimensional data visualization, and
vector and tensor visualization). Finally, we outline the key aspects
which modern bundling methods have solved and also the main
open issues the field has, thereby highlighting important directions
for future research.

We believe our survey systematizes and clarifies several so-far
open points in the bundling literature and will serve both practition-
ers in understanding how to choose, parameterize, and use bundling
techniques to solve concrete problems, and also researchers to com-
pare, discuss, understand, and refine future bundling algorithms.

c© 2017 The Author(s)
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