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In-flight loss-of-control (LOC-I) still poses a severe threat to today's commercial aviation. Hence, we review the literature for non-linear analysis and control methods of LOC-I and upset recovery. Using state-of-the-art methods such as continuation theory and reachability estimation, we sketch an analysis of an aircraft's flight envelope in terms of its trim conditions and propose control approaches both within and outside the envelope.

INTRODUCTION

Over the past three decades, in-flight loss-of-control events (LOC-I) have remained the foremost cause of fatal accidents [START_REF] Boeing | Statistical Summary of Commercial Jet Airplane Accidents[END_REF][START_REF] Boeing | Statistical Summary of Commercial Jet Airplane Accidents[END_REF][START_REF] Boeing | Statistical Summary of Commercial Jet Airplane Accidents[END_REF]. With a contribution of almost 50 % of fatalities in civil aviation while representing less than a tenth of the total accidents 1 , the International Air Transport Association (IATA, 2015a) lists LOC-I as "highest risk to aviation safety." In response, aircraft manufacturers, commercial airlines, and national and international authorities and association have provided procedures and trainings for flight crews in order to tackle-or even avoid-events of LOC-I (Carbaugh et al., 2008;IATA, 2015b).

The Federal Aviation Administration (FAA, 2016) defines LOC-I flight events as deviation from the desired flight condition, "often" leading to upsets characterized by unstable, highly non-linear behaviour of the aircraft aerodynamic system, such as stall, spin, and post-stall rotations [START_REF] Chambers | Aerodynamic Characteristics of Airplanes at High Angles of Attack[END_REF]. Control approaches for upset recovery include throttle-only control [START_REF] Burcham | Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane[END_REF][START_REF] Burcham | Manual Throttles-Only Control Effectiveness for Emergency Flight Control of Transport Aircraft[END_REF][START_REF] Urnes Sr | Flight Control for Multi-engine UAV Aircraft using Propulsion Control[END_REF] in case of hydraulic failures of the control surfaces, linear-optimal control [START_REF] Chang | Aircraft Trim Recovery from Highly Nonlinear Upset Conditions[END_REF], L 1 adaptive control [START_REF] Xargay | L 1 adaptive controller for multi-input multi-output systems in the presence of nonlinear unmatched uncertainties[END_REF], state-based switching control [START_REF] Engelbrecht | A Multi-mode Upset Recovery Flight Control System for Large Transport Aircraft[END_REF], non-linear dynamic inversion [START_REF] Stepanyan | Stall Recovery Guidance Algorithms Based on Constrained Control Approaches[END_REF], and Lyapunov-based control [START_REF] Engelbrecht | Automatic Flight Envelope Recovery for Large Transport Aircraft[END_REF].

Several LOC-I prevention and upset recovery systems were designed [START_REF] Engelbrecht | A Multi-mode Upset Recovery Flight Control System for Large Transport Aircraft[END_REF][START_REF] Engelbrecht | Automatic Flight Envelope Recovery for Large Transport Aircraft[END_REF]Stepanyan et al., 2016a,b;[START_REF] Tekles | Design of a Flight Envelope Protection System for NASA's Transport Class Model[END_REF] for the NASA generic transport model (GTM; [START_REF] Jordan | AirSTAR: A UAV Platform for Flight Dynamics and Control System Testing[END_REF] and evaluated in pilot-in-the-loop simulations (Cunning-1 Counting both fatal and non-fatal accidents. ham et al., 2011;[START_REF] Crespo | Analysis of Control Strategies for Aircraft Flight Upset Recovery[END_REF][START_REF] Richards | Vehicle Upset Detection and Recovery for Onboard Guidance and Control[END_REF] and in-flight tests [START_REF] Gregory | Flight Test of L 1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work[END_REF]. The GTM, a down-scaled model of a typical transport aircraft has been studied exhaustively [START_REF] Foster | Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions[END_REF][START_REF] Frink | Computational Aerodynamic Modeling Tools for Aircraft Loss of Control[END_REF] and provides an open-source six-degree-of-freedom model for MATLAB/Simulink (NASA, 2016).

For the analysis of non-linear regimes, two disparate methods have recently been applied: bifurcation and reachability analysis. The first has been developed from the mathematical continuation and bifurcation theory to a stateof-the-art analysis tool for trim conditions and periodical orbits of the non-linear aircraft dynamics (cf. [START_REF] Caroll | Bifurcation Analysis of Nonlinear Aircraft Dynamics[END_REF][START_REF] Jahnke | Application of Dynamical Systems Theory to Nonlinear Aircraft Dynamics[END_REF][START_REF] Goman | Application of bifurcation methods to nonlinear flight dynamics problems[END_REF][START_REF] Kwatny | Nonlinear Analysis of Aircraft Loss of Control[END_REF][START_REF] Engelbrecht | Automatic Flight Envelope Recovery for Large Transport Aircraft[END_REF] for more than thirty years now. The second, on the other hand, is a relatively new technique based on hybrid system theory, where sub-sets of the state space are evolved over time, determining possible violations of predefined constraints (e.g., [START_REF] Lombaerts | Safe maneuvering envelope estimation based on a physical approach[END_REF][START_REF] Mcdonough | Recoverable sets of initial conditions and their use for aircraft flight planning after a loss of control event[END_REF][START_REF] Mcdonough | Fast Computable Recoverable Sets and Their Use for Aircraft Loss-of-Control Handling[END_REF]. A particular form of reachability analysis is the computation of control-invariant sub-sets, or safe sets [START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF][START_REF] Tedrake | LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification[END_REF][START_REF] Chakraborty | Nonlinear region of attraction analysis for flight control verification and validation[END_REF].

The CONVEX thesis 2 aims to contribute to LOC-I handling by design, implementation, and flight-test evaluation of non-linear upset recovery for micro air vehicle (MAV) while benefiting from the experimental gestalt of an MAV. In this paper, we present and propose first steps towards non-linear upset recovery control, including but not limited to formal definitions and a brief introduction to continuation and bifurcation theory; a non-linear analysis of trim conditions within, but undesired equilibria and periodic orbits beyond the flight envelope; and control strategies for both stable flight and upset recovery.

DEFINITIONS

The flight dynamics of an aircraft are commonly given by a system of first-order differential equations d dt

X = f (X, U ) (1) 
of the states X and inputs U : the state vector at time t is then given by X = [ V, γ, χ, θ, φ, ψ, p, q, r, x g , y g , z g ] , T

(2) where V , γ, χ representing the aircraft's velocity (flightpath), θ, φ, ψ the aircraft's attitude with respect to the normal earth-fixed axes, p, q, r the aircraft's angular rates with respect to the body-fixed axes, and x g , y g , z g the aircraft's position in the normal earth-fixed reference system; the control inputs to the aircraft are further given by the input vector

U = [ η, ξ, ζ, T ] , T (3) 
with elevator, aileron, and rudder deflections η, ξ, ζ and thrust T .

The state space is the subset of all possible states, X ⊆ R n , (4) and we define the flight envelope as set of desired states X E ⊂ X as well as the set of viable control inputs, U ⊂ R m .

Finally, we have the (controlled) flow of the system (1) as

φ(X 0 , u(•) , t) = x(t) (5) for u : t → U and x(•) is solution to the initial value problem ẋ(t) = f (x(t) , u(t)) with x(0) = X 0 .
The safe set of X is then the largest control-invariant set, i.e.

X safe = {X ∈ X |∃u(•) ∈ U . ∀t ≥ 0. φ u (X, t) ∈ X E } . (6) 
Given an initial state X 0 outside the flight envelope, i.e. X 0 ∈ X -X E , upset recovery is formally given as the task to find a control law u : R → U such that for a t R > 0, φ(X 0 , u(•) , t) ∈ X E for all t > t R . Candidate upset recovery approaches can be evaluated by the time of recovery t R , the initial set of states X 0 ⊆ X -X E which can be recovered by the control law u(•, •) in time t R ≤ tR , and the undesired region of the state-space intersected by the controlled flow, that is φ(X

0 , u(•) , [0, t R ]) ⊆ X -X E .
3. CONTINUATION AND BIFURCATION [START_REF] Crawford | Introduction to bifurcation theory[END_REF] relates a bifurcation point to a significant change in the dynamics of a system. Here, given a dynamic system similar to (1) Ẋ = f (X, µ) , (7) where X denotes the state vector again and λ the continuation parameters, which may include state variables, control inputs, system parameters, and external influences [START_REF] Kwatny | Nonlinear Analysis of Aircraft Loss of Control[END_REF]. Recalling that any point (X * , µ * ) is an equilibrium if and only if

f (X * , µ * ) = 0, (8) 
it is furthermore a bifurcation point if at least one real eigenvalue λ-or complex-conjugated pair-crosses the imaginary axis, i.e. λ(X * , µ * ) = 0. By continuation of the parameters µ, bifurcation analysis discusses creation, vanishing, and changes of stability of the branches of equilibria of (7) as function of µ * .

TRIM CONDITION ANALYSIS

In [START_REF] Kwatny | Nonlinear Analysis of Aircraft Loss of Control[END_REF], the longitudinal trim conditions of the GTM have been analyzed. By assuming a considerably damped pitch motion, that is q = 0, the system dynamics of f are restricted to speed V and flight-path angle γ as states, elevator η and thrust T as inputs, and the angle of attack α as output. A trim condition is given by

(V * , γ * , η * , T * ) if and only if f V,γ (V * , γ * , η * , T * ) = 0.
(9) As obtained from Fig. 1, for speeds greater than a certain speed V there are two trim conditions at low and high angle of attack, respectively. While there are no trim conditions for V < V , at V = V the trim conditions diminish to a single one. In other words, for flights slower than V there are no conditions, and thus no angle of attack, to maintain trimmed flight. Recall that is just the definition of stall, i.e. V ≡ V Stall , and the stall speed varies with the flight-path angle γ. As for V > V Stall (γ) there are two branches of trim conditions, the condition at V Stall (γ) is a bifurcation point and maneuverability of the system is lowered [START_REF] Berg | Unfolding the zero structure of a linear control system[END_REF][START_REF] Kwatny | Nonlinear Analysis of Aircraft Loss of Control[END_REF].

While the limits of elevator deflection and thrust obviously restrict the achievable trim conditions, we define without loss of generality the flight envelope around the set of (viable) trim conditions,

X trim = (V, γ) ∈ X ∃ (η, T ) ∈ U . f V,γ (V, γ, η, T ) = 0 .
(10) Hence, the stall trim conditions constitute a boundary of the flight envelope.

LQR SAFE SET ANALYSIS

The system can be linearized at a reasonable large number of trim conditions. Thus, one can easily derive a set of linear controllers for stable flight in the flight envelope.

Let K i be a linear-optimal regulator (LQR) and S i the corresponding solution to the algebraic Riccati equation for a linearization of f V,γ around a trim condition (X * i , U * i ). We can employ S i for a quadratic Lyapunov-candidate function [START_REF] Tedrake | LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification[END_REF]) [START_REF] Slotine | Applied Nonlinear Control[END_REF]. Thus, X stable i is safe in the sense of (6). ).

V i = 1 2 XT S i X > 0, X = 0, (11) 
X = X -X * i , to have X stable i = X ∈ X V i X ≤ ρ i with ρ i > 0 being a stable neighbourhood of X * i if and only if d dt V i = XT S i f X * i + X, U * i -K i X < 0 (12) for all X ∈ X stable i -{X * i } (Slotine
Introducing a polynomial, positive semi-definite Lagrange multiplier h ∈ K [X] Tedrake et al. reduce ( 12) to a sumof-squares problem [START_REF] Parillo | Semidefinite programming relaxations for semialgebraic problems[END_REF]:

XT S i f + h X ρ i -V i X ≤ -X 2 2 , ( 13 
)
where • 2 denotes the L 2 -norm and > 0. Here, ρ i -V i (•) equals the signed distance to ∂X stable i and with h(•) ≥ 0 for all X = 0 compensates for non-negative derivatives of V i outside the stable neighbourhood. Hence finding a Langrange multiplier proofs the stability of X * i in X stable i by the linear controller K i . Outside the flight envelope, and beyond the stall speed in particular, control of the aircraft may be restricted by limited control effectiveness [START_REF] Kwatny | Nonlinear Analysis of Aircraft Loss of Control[END_REF] and non-linear modes like periodic orbits. In order to tackle these, we propose a further, non-linear analysis; eventually, we will develop a selecting approach of suitable trim conditions on the boundary of the flight envelope and a flight control law for recovery from an upset condition to the respective trim condition.

Except for [START_REF] Xargay | L 1 adaptive controller for multi-input multi-output systems in the presence of nonlinear unmatched uncertainties[END_REF], uncertainties of the underlying aerodynamic model or in the outputs are not considered in the literature reviewed. Hence a first step towards an upset recovery law is to estimate the effects of uncertainties to the flight envelope as defined in (10).

CONCLUSION

In this paper, we have reviewed recent LOC-I prevention and upset recovery approaches, various linear and nonlinear control methods, and analysis techniques such as bifurcation and reachability. We have then formally defined an aircraft dynamic system, its state space, and the flight envelope. By considering the non-linear analysis of the generic transport model by [START_REF] Kwatny | Nonlinear Analysis of Aircraft Loss of Control[END_REF] we have exemplary shown the results of bifurcation theory and continuation and discussed the outcomes.

Along the branch of level flight trim conditions, we have derived linear-quadratic optimal regulators (LQR) around selected trim conditions and computed the safe sets as stable neighbourhoods of the trim conditions for the linear controlled system. We thus have proposed a control approach based on the bifurcation analysis and reachability.

As argued, further analysis of the non-linear dynamics are required; in particular, uncertainties need to be taken into account before any control law can be designed and implemented to an MAV. We also expect further analysis to give insights on suitable recovery approaches which are able to control the aircraft outside the flight envelope.

  Fig. 1. Trim conditions obtained for level flight and varying speed, with respect to angle of attack, elevator deflection, and thrust. At stall speed, a saddle-node bifurcation occurs ( ) which depends on the respective flight-path angle ().

Fig. 2 .

 2 Fig. 2. Safe sets of LQR control at selected trim conditions ( ) at level flight and low angle of attack.

Command based On Non-linear piloting to bring an aerial Vehicle back in its flight Envelope X E ; PhD thesis of the first author.

Appendix A. PHUGOID DYNAMICS

In this paper, we were discussing the phugoid dynamics of the GTM adapted from [START_REF] Kwatny | Nonlinear Analysis of Aircraft Loss of Control[END_REF],

where S and c a are wing area and aerodynamic mean chord; C D , C L , C X , C Z , C m are the aerodynamic coefficients of drag, lift, force body x-axis, force body z-axis, and moment body y-axis, respectively, as functions of angle of attack, elevator deflection, and pitch rate; x ref cg , z ref cg , x cg , z cg are the reference and actual position of the center of gravity with respect to x and z; and l t is the engine's displacement along the z-axis.

A.1 Restricted longitudinal model

To reduce the number of states, we consider the phugoid motion to be damped-either a priori or by a suitable damping system in inner-loop-and q ≡ 0 ( [START_REF] Kwatny | Nonlinear Analysis of Aircraft Loss of Control[END_REF]. For the trim condition we then get M = I y q = 0 (A.2) in addition to V = γ = 0 at (V * , γ * , η * , T * , α * ).

A.2 Linear control approach

For design and analysis of linear control, we can assume an inner controller of the angle of attack and neglect the effect of the elevator to the lift and drag coefficients. We thus get the phugoid dynamics around a trim condition

where T , α are inputs to the inner system.

A.3 Aerodynamic coefficients

Using the MATLAB Curve fitting toolbox, the aerodynamic coefficients of the generic transport model in the body axis system has been fitted to the polynomials C X (α, η) = -0.0186 + 0.2413α -0.0135η + 1.4957α 2 + 0.1849αη -0.0941η 2 -7.4482α 3 -0.2617α 2 η + 0.2723αη 2 + 4.5867α 4 + 0.0628α 3 η -0.2583α 2 η 2 (A.4) C Z (α, η) = -0.0418 -5.2246α -0.4420η + 3.6670α 2 + 0.0866αη -0.2135η 2 + 8.7973α 3 + 0.5947α 2 η -0.0499αη 2 -6.8839α 4 -0.3686α 3 η + 0.3358α 2 η 2 (A.5) C m (α, η) = + 0.1866 -1.5743α -1.7199η + 2.1987α 2 + 0.0662αη -0.6995η 2 -4.4762α 3 + 3.1578α 2 η + 0.1736αη 2 + 2.2467α 4 -1.7551α 3 η + 0.7337α 2 η 2 (A.6) and the lift and drag coefficients can be calculated by rotation, C L (α, η) = -C Z (α, η) cos α + C X (α, η) sin α, (A.7) C D (α, η) = -C Z (α, η) sin α -C X (α, η) cos α, (A.8) from body to air-path axis system.