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ABSTRACT

Edge bundling techniques provide a visual simplification of cluttered
graph drawings or trail sets. While many bundling techniques exist,
only few recent ones can handle large datasets and also allow selec-
tive bundling based on edge attributes. We present a new technique
that improves on both above points, in terms of increasing both the
scalability and computational speed of bundling, while keeping the
quality of the results on par with state-of-the-art techniques. For
this, we shift the bundling process from the image space to the spec-
tral (frequency) space, thereby increasing computational speed. We
address scalability by proposing a data streaming process that al-
lows bundling of extremely large datasets with limited GPU mem-
ory. We demonstrate our technique on several real-world datasets
and by comparing it with state-of-the-art bundling methods.

Index Terms: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation; I.3.6 [Computing Methodolo-
gies]: Computer Graphics—Methodology and Techniques

1 INTRODUCTION

In recent years, edge bundling techniques have become increas-
ingly popular in information visualization for the exploration of large
graphs and trail sets. Bundling addresses the exploration of such
data by simplifying their display by visually aggregating close (and
related) edges. This way, clutter is traded off to overdraw, which
yields images where the main connectivity patterns in a dataset are
denser and separated by more whitespace, thus easier to spot.

Many bundling techniques have been proposed in the last decade.
Yet, bundling truly large datasets is still challenging, due to two fac-
tors: computational speed and data volume. Computational speed
has been addressed by parallelizing bundling on the GPU [19, 38,
30], using variants of the mean shift operator, which convolves the
graph drawing with a distance kernel [4]. However, the large amount
of overdraw occurring when doing the convolution strongly limits
throughput. Also, the most efficient approaches work entirely on the
GPU [38]. This restricts the types of data attributes that can be effi-
ciently used to control the bundling. Also, the maximal data volume
is limited by the available GPU video (VRAM) memory.

In this paper, we propose a technique that addresses the joint
edge-bundling challenges of computational speed and data volume,
as follows. First, we re-cast bundling from convolving in the im-
age domain to the frequency domain, using the Fast Fourier Trans-
form (FFT), which gives the name to our technique, FFTEB. FFTEB
significantly reduces the convolution cost that dominates all image-
based edge bundling techniques. It also allows to formulate direc-
tional and attribute-based edge bundling with a lower computational
complexity than existing methods. Secondly, we present a streaming
scheme that allows efficient transfer of data between the CPU and
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GPU. This makes edge bundling scalable to very large datasets, be-
yond what current methods can (efficiently) handle. Overall, FFTEB
produces similar-quality results as state-of-the-art bundling methods,
while allowing one to bundle faster, as well as bundle much larger
datasets, than it has done ever before. We compare our results with
nine well-known edge-bundling methods on a set of graphs ranging
from thousands up to a million edges, and edge-sampling resolution
up to a billion sample points.

The structure of this paper is as follows. Section 2 overviews ex-
isting bundling techniques, with a focus on recent image-based tech-
niques that we aim to surpass in terms of scalability and speed. Sec-
tion 3 presents the mathematical model, design rationale, and imple-
mentation details of FFTEB. Section 4 presents results of FFTEB on
very large datasets and compares it with existing bundling methods.
Section 5 compares our scalability with recent bundling techniques
and also discusses our method. Section 6 concludes the paper.

2 RELATED WORK

We refine the formal model proposed in [19] to describe edge
bundling as follows. Let G = (V,E) be a graph with nodes V = {vi}
and edges E = {ei}. Let D : E → R2 be a drawing operator. In
this notation, D(e) is the drawing of an edge e of G, which is a
straight line (for a typical graph drawing) or a planar curve (if the
input dataset is a trail set). As a shortcut, let D(G) be the drawing
of the entire graph G, and let D ⊂ R2 be the space of all such graph
drawings. Let B : D → D be an operator that denotes the bundling
process for a whole graph; and finally let B(D(e)) denote the curve
representing the bundling of edge e. B is a typical EB algorithm if

∀(ei ∈ G,ej ∈ G)|κ(ei,e j)< κmax→
δ (B(D(ei)),B(D(e j)))� δ (D(ei),D(e j)). (1)

Here, δ is a distance function between curves in R2, such as the
Haussdorff distance. κ : G×G → R+ is a so-called compatibil-
ity function that captures how dissimilar edges are. κ accounts
for spatial similarity in D(G), i.e., κ(ei,e j) is proportional with
δ (D(ei),D(e j)), but can also incorporate other edge properties, such
as directions or data attributes [30]. Only edges that are more simi-
lar than a threshold κmax should be bundled. Essentially, Eqn.1 states
that, for compatible edges, their bundled drawings are spatially much
closer than their unbundled drawings.

As outlined in Sec. 1, EB reduces edge-edge clutter in a graph
drawing D(G) by grouping compatible edges into spatially compact
and thin bundles. This eases the visual detection of coarse-scale con-
nectivity patterns in the drawing and supports tasks such as finding
node-groups which are connected to each other by edge-groups (bun-
dles) [12, 36]. Similar simplification strategies exist, e.g., map gen-
eralization in cartography [3]. Clutter causes and reduction strategies
are discussed by Ellis and Dix [9] and Zhou et al. [41].

Edge bundling is part of a larger family of graph (drawing)
simplification techniques. These can be organized in three types vs
the edge-grouping procedure being used [25], as follows.
Data-based methods: Such methods reduce clutter by drawing a
simpler graph G′ obtained by either filtering away, or by aggregat-
ing, edges from G. Edge clustering methods are described by Ellis
and Dix [9]. Interactive methods, such as NodeTrix, compact dense



subgraphs into matrix representations [15, 14]. Ploceus displays
networks using different perspectives, abstraction levels, and edge
semantics [27]. Filtering can be done by user queries based on
multivariate criteria or by automated methods based on edge metrics
such as centrality [39] or spanning trees [24]. Such methods are not
in our scope, as edge bundling simplifies D(G) rather than G itself.
Geometry-based methods: Early EB methods implement Eqn. 1
by using various computational geometry techniques to both assess
inter-edge distances (δ in Eqn. 1) and to route the bundled edges.
Dickerson et al. merge edges by reducing non-planar graphs to
planar ones [7]. Flow maps use a binary clustering of D(G) to route
curved edges along [31]. Flow map control-meshes are used to
cluster and route curved edges [34, 42]. Holten generalized this idea
by routing edges of compound graphs along the graph’s hierarchy
drawing [16]. Gansner and Koren bundle edges in a circular node
layout by area optimization metrics [13]. Edge routing can also
use Delaunay triangulations (Geometry-Based Edge Bundling
(GBEB) [6]) and Voronoi diagrams (Winding Roads (WR) [22, 21])
based on the node positions. The most popular geometric methods
are force-based techniques that use a force field designed to equal
the gradient of a quality function to optimize(Force-Directed Edge
Bundling (FDEB) [17] and [8]), and have been adapted to separate
bundles running in opposite directions [35]. A major issue of
geometric techniques is computational complexity. To reduce
this, graph optimization techniques [33] and multilevel clustering
numerical methods have been proposed (MINGLE, [12]).
Image-based methods: Recent methods compute B (Eqn. 1) via
image-processing operations, which efficiently parallelize on the
GPU. Skeleton-based edge bundling (SBEB [11]) use the GPU-
computed medial axes of the thresholded distance-transform of D(G)
as bundling cues to yield strongly ramified bundles. Recent meth-
ods use the mean-shift principle [4]: The drawing D(G) is seen as
an edge-density field ρ , and B amounts to shifting edges D(e) up-
stream in ∇ρ . Mean shift maps to simple GPU-parallelizable 2D im-
age processing operations. Kernel density estimation edge-bundling
(KDEEB [19, 20]) methods offer speed-ups of up to two orders of
magnitude compared to geometric methods, e.g. FDEB. Recent ex-
tensions include directional bundling, based on edge-direction his-
tograms (3DHEB [29]); and attribute-driven bundling (ADEB [30])
which defines κ using any edge attributes. CUBu implements the
full mean-shift on the GPU, with careful optimizations, yielding
the fastest existing EB method [38]. KDE methods have also been
used to bundle dynamic graphs [23, 20] and 3D fibers [2]. Besides
very fast bundling, image-based methods offer new ways to visualize
D(G), e.g. pseudo-shading the edge density ρ to highlight important
bundles [22, 12, 19]; drawing bundles as compact shapes emphasized
by shaded cushions [36, 11, 38]; and using animated textures to con-
vey edge directions for static and dynamic graphs [20].

3 FFTEB FRAMEWORK

We next describe our FFTEB method for bundling very large graphs
using the spectral domain. Section 3.1 outlines the KDEEB tech-
nique which we are inspired from, and outlines related scalability is-
sues. Section 3.2 introduces our method. Sections 3.3 and 3.4 cover
implementation details and our proposed GPU streaming technique
for handling very large datasets, respectively.

3.1 Kernel Density Bundling

Kernel density bundling (KDE) methods first compute an edge-
density map ρ : R2→R+ by convolving all edges e in a given graph
drawing D(G) with a decaying radial kernel K : R2→R+ of support
radius h, typically Gaussian or Epanechnikov (parabolic) [10]:

ρ(x ∈ R2) = ∑
y∈D(G)|‖x−y‖≤h

K (y−x) . (2)

Next, all points x ∈ D(G) are advected in the gradient of ρ with a
small distance ε , to yield a new drawing

Dnew(G) =

{
xnew = x+ ε

∇ρ

‖∇ρ‖

∣∣∣∣x ∈ D(G)

}
, (3)

Next, a 1D Laplacian smoothing pass is applied over all edges
e ∈ Dnew(G), needed to regularize the estimation of ∇ρ . The
process is repeated a small number of I iterations (typically around
10) to yield the final bundled drawing B(D(G)). All above steps can
be efficiently done on the GPU: Eqn. 2 maps to convolving D(G)
with a 2D texture encoding K; Eqn. 3 and the Laplacian smoothing
map to simple computations done on a point-sampling of D(G). The
drawing D(G) is resampled at each iteration to ensure a good spatial
sample density, needed for a good estimation of ρ by Eqn. 2. The
final bundled graph is drawn using an opacity map given by ρ , to
emphasize high-density bundles. For details, we refer to [19, 38].

Performance: The complexity of KDE bundling strongly depends
on the chosen computational model. Consider bundling a graph
D(G) having N sampling points, using I bundling iterations, a kernel
K of diameter h pixels, and an image of R× R pixels. KDEEB
implements Eqn. 2 by splatting (scattering) K over all sample points
of D(G), yielding a complexity of O(INh2) [19]. As h should be
proportional to R to ensure good results, the complexity becomes
O(INR2). CUBu speeds this up by about 50 times by using a gath-
ering strategy where Eqn. 2 is evaluated at each image point based
on nearby sampling points [38]. Additionally, the 2D convolution
in Eqn. 2 is split into two 1D convolutions, since the kernel K
is separable, i.e., K(x ∈ R,y ∈ R) can be written as the product
Kx(x)Ky(y) of two 1D kernels Kx and Ky. This yields a complexity
of O(I(N +R2h)). Given the relation of h with R, this is equivalent
to O(I(N+R3)) worst-case. The cubic complexity in image size cre-
ates serious scalability issues when creating high-resolution bundled
images. For instance, CUBu requires over 0.7 seconds to bundle a
graph of about 4M sample points on a modern GPU (NVidia GTX
690) at 20482 screen resolution. Bundling a graph of one million
edges (not huge by nowadays big data standards), each sampled with
50 points on average, would cost CUBu over eight seconds. These
are too slow rates if we aim at interactive exploration of large graphs.

Attribute-driven bundling: As outlined in Sec. 2, a high-interest
case for bundling concerns datasets where the edge compatibility κ

is a function of both spatial position and data attributes of edges.
Examples of such methods are ADEB [30] which defines edge com-
patibility based on directions and/or data attributes, and CUBu [38],
which defines edge compatibility based on directions only. These
methods essentially replace Eqn. 2 with

ρ(x ∈ D(G)) = ∑
y∈D(G)|‖x−y‖≤h

κ(a(x),a(y)) ·K(y−x) (4)

where a : E→ Rm is a m-dimensional attribute defined on the graph
edges, and κ : Rm×Rm → R is a compatibility function that tells
how similar two such attributes are. Setting a to the tangent vector
of an edge and κ to the scalar product over R2 yields directional
bundling [30, 38]. However, Eqn. 4 is not always separable in two
1D convolutions as Eqn. 2 was. Hence, the cost of ADEB’s and
CUBu’s attribute-driven bundling is O(I(N +R2h) (cost of comput-
ing the undirected density map, needed for shading) plus O(INh2)
(cost of Eqn. 4, identical to KDEEB), i.e. a total of O(I(NR2 +R3)).
The speed of CUBu is thus largely lost for attribute-driven bundling.

3.2 Fourier Transform Approach

To address the scalability issues outlined above, we exploit the prop-
erties of the convolution theorem: If f and g are integrable functions
with Fourier transforms F [ f ] and F [g] respectively, the Fourier
transform of the convolution f ∗ g equals the product of the Fourier



transforms of f and g, i.e.

F [ f ∗g] = F [ f ] ·F [g]. (5)

If we note that the density ρ in Eqn. 2 is nothing but the convolution
K ∗D(G), we derive from Eqns. 2 and 5 that

ρ(x) = F−1[F [D(G)] ·F [K]](x), (6)

where F−1 denotes the inverse Fourier transform and · denotes
point-wise signal multiplication.

Performance: Equation 6 can be implemented on the GPU more
efficiently than Eqn. 2. First, we note that Eqn. 2 needed to find all
points y ∈ D(G) within a radius h from every image pixel x. For
this, CUBu computes a special map recording the number of sample
points of D(G) falling over each pixel x, and this computation
needs atomic write operations to parallelize ([38], Sec. 3.1). In
contrast, Eqn. 6 only reads and writes every image pixel once.
Secondly, approximating F with the Discrete Fourier Transform
[5] for an input image of R2 pixels requires a spectral map of only
((R− 1)/2)2 pixels – which is roughly four times less than the
image size needed for Eqn. 2. Overall, computing ρ with Eqn. 6
requires a direct and an inverse Fourier transform for each of
the I bundling iterations, followed by a simple point-wise signal
multiplication. Using the CUFFT CUDA library for FFT com-
putations, this amounts to O(R2 logR) operations per input image
of R× R pixels [32] per iteration, thus a total FFTEB complex-
ity of O(I(N+R2 logR)), which is lower than CUBu’s O(I(N+R3)).

Attribute-driven bundling: Our FFT approach becomes even more
valuable for attribute-driven bundling, if we restrict κ to be bi-linear.
Directional bundling, where κ is a scalar product, meets this condi-
tion. In detail, from Eqn. 4, we compute the gradient

∇ρ(x ∈ D(G)) = ∑
y∈D(G)|‖x−y‖≤h

κ(a(x),a(y)) ·∇K(y−x). (7)

As κ is bi-linear, we can simplify Eqn. 7 to

∇ρ(x ∈ D(G)) =

(
κ

(
a(x), ∑

y∈D(G)|‖x−y‖≤h
a(y) ·∇xK(y−x)

)
,

κ

(
a(x), ∑

y∈D(G)|‖x−y‖≤h
a(y) ·∇yK(y−x)

))
.

(8)

Using the convolution theorem (Eqn. 5), we can rewrite Eqn. 8 as

∇ρ(x ∈ D(G)) =

(
κ

(
a(x),F−1 [F [a] ·F [∇xK]] (x)

)
,

κ

(
a(x),F−1 [F [a] ·F

[
∇yK

]]
(x)

))
, (9)

where F [a] is the Fourier transform of the attribute signal a de-
fined over D(G). Several differences between this model and CUBu
and ADEB exist, as follows. First, Eqn. 9 has the same complexity
as Eqn. 6, i.e., O(I(N + R2 logR)), which is smaller than CUBu-

directional and ADEB’s O(I(NR2 +R3)) (see Sec. 3.1). In particu-
lar, the costly NR2 term in the latter is not present in our formula-
tion. This is due to the efficiency of FFT-based convolution, which
is higher than classical convolution for non-separable large kernels,
and also due to the bi-linearity property of κ . Secondly, our choice of
compatible functions is more flexible than ADEB – for example, for
directional bundling, we can use the scalar product of edge tangents
(like CUBu) which attracts compatible edges and repels incompati-
ble ones. In ADEB, only the attraction part was present.

3.3 Implementation Details
FFTEB’s pipeline is similar to KDEEB (Fig. 1). In detail, the m
scalar components (a1, . . . ,am) of a are stored in m floating-point
textures, and a DFT F [ai] is computed for each. The kernel gra-
dient DFT F [∇K] is computed once as it does not change during
bundling. Next, the point-wise products of each F [ai] and the two
components F [∇xK] and F [∇yK] (with K repeated to reach the
same size as ρ) are computed, yielding 2m textures. The inverse
Fourier transform of each such texture is next computed, yielding an-
other 2m textures. Next, ∇ρ is computed (Eqn. 9) by evaluating two
m-dimensional compatibilities of κ(a) with the two corresponding
m-dimensional components of the convolutions of a with the kernel
gradient components ∇xK and ∇yK, respectively. Finally, we apply
advection (Eqn. 3), Laplacian smoothing, and resampling of D(G)
as in Sec. 3.1. We implement all above in NVidia’s CUDA using the
CUFFT library for fast computation of direct and inverse DFT’s. An
implementation of FFTEB is provided at [26].

Bundled edges are rendered as curves colored by the value of
one attribute interest, using the pseudo-shading based on the den-
sity map height described in [38]. We additionally emphasize impor-
tant (high-density) bundles by scaling the thickness of each drawn
bundled edge with the local density value ρ(x). This way, impor-
tant bundles are rendered both thicker and with a more prominent
shading. This lets us quickly discover these even in complex visual-
izations, as we shall see in Sec. 4.1.

3.4 Scalability and Streaming
As outlined in Sec. 1, GPU-based bundling is challenged by large
graphs. Consider the amazon graph [12, 38], which has over 900K
edges. A dense point sampling of this graph at a resolution of 20002

pixels (1 sample point every few pixels) easily yields N > 1 billion
points. Per point, we need to store at least its two floating-point
coordinates (8 bytes of storage), yielding a total need for at least 8GB
VRAM. Edge attributes a(x) add extra storage. Such large datasets
do not fit in the VRAM of current consumer-grade graphics cards.

We address this data volume challenge by a simple but efficient
streaming scheme for FFTEB bundling, as follows. We divide the
sampled edges of D(G), which is stored on the CPU, into C chunks
ci, each having roughly N/C sample points, so that a chunk fits in
the available VRAM. We next stream each chunk to the GPU, and
accumulate its density-map gradient ∇ρi (computed as described in
Sec. 3.2), in a global gradient map ∇ρ . After all chunks have added
their contribution to ∇ρ , we stream them again, one by one, to the
GPU, to advect, smooth, and resample their edges. After a chunk is
processed, we stream its new sample points back to the CPU to make
space for the next chunk. This process requires 2C CPU-to-GPU and

Figure 1: Flowchart of FFTEB.



C GPU-to-CPU chunk transfers, i.e. a total data transfer of sizes 2N
(CPU-to-GPU) and N (GPU-to-CPU), respectively. Compared to the
case where the entire sampled graph fits in VRAM, we thus pay only
an extra cost of size N per iteration. Examples of using streaming
for very large graphs and streaming performance considerations are
given in Secs. 4.4 and 5, respectively.
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Figure 2: FFTEB undirected and directional bundling of four datasets.

3.5 Simple Bundling Example
Similarly to the tests used by ADEB [30], we illustrate FFTEB via
four simple datasets bundled using the undirected, respectively, di-
rectional compatibility criteria (Fig. 2). Edges are color-coded to
indicate direction. Each dataset has 2000 edges. As visible, undi-
rected bundling (middle row) creates patterns which do not convey
an intuitive simplification of the data – for instance, the undirected
bundlings of the two directions, butterfly, and interlaced datasets
look very similar, while the corresponding datasets are quite differ-
ent. The bottom row shows the FFTEB directional bundling, using
the scalar product on R2 as compatibility function. As visible, the
bundled graphs now capture well the structure of the input datasets.
Overall, thus, FFTEB reaches the same bundling quality as ADEB.

4 EXAMPLE APPLICATIONS

We next illustrate FFTEB with three studies: bundling quality as a
function of resolution (Sec. 4.2); attributed-driven bundling of eye-
tracking data (Sec. 4.3); and directional bundling of huge graphs that
do not fit in VRAM using streaming (Sec. 4.4). These use-cases out-
line together the three main capabilities of FFTEB – computational
speed, handling attributed graphs, and handling large data volumes.

4.1 Comparison
Figure 4 compares the undirected FFTEB bundling with eight
other well-known bundling methods (FDEB, WR, KDEEB, SBEB,
3DHEB, GBEB, CUBu, and MINGLE). As datasets, we used the
US migrations (9780 edges) and net50 (928K edges). For the rela-
tively small US migrations dataset, FFTEB produces results which
are very similar in terms of positions and structure of the main bun-
dles to FDEB, KDEEB, 3DHEB, and CUBu. The small differences
are explained by different parameter values used for the kernel size,
amount of Laplacian smoothing, advection speed, and shading style
(which are not exactly replicable from the aforementioned papers).
These similarities are expected, as FFTEB shares the same bundling
principle with all the named methods. SBEB and GBEB produce, as
expected, different results since they use a different model for edge
routing. For the much larger net50 dataset, FFTEB again produces

results which are very similar with KDEEB and CUBu, and notably a
much stronger simplification of the graph structure than KDEEB and
MINGLE. This is explained by the fact that, for this example, both
FFTEB and CUBu use a kernel size h (Eqn. 2) about three times
larger than KDEEB. In turn, this is due the quadratic complexity of
KDEEB in h (Sec. 3.1), which makes this method impracticable for
strongly simplifying very large graphs like net50. The lower simpli-
fication of MINGLE is explained by its decision to bundle an edge
with maximally k = 10 nearest neighbors thereof (see [12], Sec. 4).
As noted there, using higher bundling factors does not decrease the
saved ink to draw the bundled graph. However, this also decreases
the amount of simplification one can achieve.

Figure 5 compares both the directional and undirected FFTEB
bundling with the respective variants of CUBu for the France air-
lines dataset. We see that FFTEB and CUBu methods deliver similar
results, which is explained by the fact that they use the same un-
derlying algorithm (kernel density bundling, explained in Sec. 3.1).
In theory the two bundling results should be the same but further
investigation should be done to validate this theoretical hypothesis.
The differences may come from the data transformation accuracy
between spectral and image space. The less wiggling bundles in
FFTEB allow a better end-to-end tracing of directed bundles, see
e.g. the marked details in Figs. 5e,f. As before, such differences
are explained by small parameter-value differences, and should not
be interpreted as an inherent higher-quality of the FFTEB method.
The rightmost images (Figs. 5c,f) show a strong simplification of
the directional and undirected FFTEB bundlings, done by rendering
the respective bundled graphs with an opacity proportional to the lo-
cal edge-density and by setting edge line-widths to the same density
(Sec. 3.3). This both reduces clutter caused by spurious edges or
low-importance bundles and emphasizes the largest bundles in the
graph.

4.2 Bundling Quality vs Resolution

As stated in Sec. 3.2, FFTEB’s complexity is O(I(N +R2 logR)) for
N samples, I iterations, and a resolution of R×R pixels. Clearly, R
has the highest influence on computational speed. It seems tempt-
ing to use lower resolutions R to accelerate computations. How-
ever, for very large graphs, this can create problems in distin-
guishing finer-scale details, as discussed next. To study the effect
of R on the results, we consider the amazon graph, that contains
records of over 900K co-purchase relations between 520K items on
amazon.com [12]. We bundle this graph at three different resolutions
(R2 ∈ {1002,4002,10002} pixels). We set the kernel size h (Eqn. 2)
to a value of R/10, following [19, 30, 38], and also adapt the sam-
pling step of edges to be about 3 pixels for each R value, again in
line with earlier studies [38].

Figure 3 shows the original unbundled graph and bundling re-
sults using MINGLE, KDEEB, CUBu, and FFTEB. As visible, both
MINGLE and KDEEB do not achieve much in terms of highlighting
structure in the bundled result, apart from being able to show high-
density areas. As explained in Sec. 4.1 for the net50 graph, such
limitations are due to their relative low bundling strength, which is in
turn justified by computational cost (KDEEB) and the desire to min-
imize edge bending (MINGLE), respectively. For large graphs like
amazon, such constraints are not very effective. The density-based
shading of CUBu highlights quite well the most important (densest)
bundles at a resolution of 5002 pixels (Fig. 3d). At similar resolu-
tions, FFTEB and CUBu generate quite similar results, which is not
surprising, given that they are based on the same kernel-density pro-
cess (Eqns. 2, 3). The last three images, computed with FFTEB show
the added-value of using a high resolution: Consider, for instance,
two points A and B which appear to be part of the same bundle. Us-
ing low-to-middle resolution bundlings (Figs. 3d-f) lets one see a
path c between A and B indicated by the respective red dotted lines.
However, when we increase the resolution, we see that c actually
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Figure 3: Bundling of amazon graph [12] for different screen resolutions R and total number of edge sampling points N. Colors map edge density.

splits in two paths c1 and c2 (Fig. 3g), where c2 is a shorter path con-
necting A and B which was not visible at lower resolutions. Hence,
high resolutions are needed to obtain detailed bundling insights for
very large graphs. Since FFTEB scales better than all other recent
fast bundling methods in terms of high resolution R and graph size
(number of sample points N), this method is clearly more suitable
for generating such detailed images. We further present figures to
support this higher scalability of FFTEB in Sec. 5.

4.3 Attribute-Driven Bundling
Our next study considers a dataset containing eye tracking data. In
the underlying use-case, described in full detail in [30, 18], an eye
tracker was used to record the motion of the eyes of a pilot that looks
at a plane’s cockpit dashboard while performing a landing manoeu-
vre in a flight simulator. The recorded data can be represented as
a graph where vertices are points to which the eyes where drawn
(so-called fixation points), and the connecting edges indicate eye-
movement between the vertices (so-called saccades). As detailed in
[18], the aim of analyzing such data is to detect high-level repeti-
tive patterns in the eye movement, which in turn let one understand
how well the subject visually scanned the dashboard instruments to

perform the required maneouvres. Drawing the raw saccades be-
tween fixation points generates a completely cluttered image, from
which high-level connections or connection patterns between fixa-
tion points cannot be inferred (Fig. 6a). Undirected bundling can be
used to reduce clutter and extract a few simple eye-motion patterns
from the data (Fig. 6b). However, such an image is actually sim-
plifying too much, as it bundles together saccades that run in oppo-
site directions. Directional bundling corrects this by separating sac-
cades that link the same spatial areas but have opposing directions.
Figure 6c,d show the results of ADEB and CUBu for directional
bundling. While these images show more detail than undirected
bundling, as explained above, they still suffer from a certain amount
of clutter, visible in terms of stray saccades which have not been
bundled succesfully. The explanation of these is technical: Since
ADEB and CUBu do not scale very well for directional bundling, as
explained earlier and also detailed by timings in Sec. 5.1, the num-
ber of sample points N and the kernel size h cannot be too high if
we want to obtain a high bundling speed. Hence, trails which are
too far away will not be bundled, and will appear as stray curves. In
contrast, FFTEB allows using large values for N and h without sacri-
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datasets. See Sec. 4.1.
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Figure 5: Comparison of directional and undirected FFTEB with the corresponding CUBu variants for the France airlines dataset. See Sec. 4.1.

ficing performance (see Sec. 5.1 further for performance figures). In
turn, this allows a tighter bundling that yields cleaner, more simpli-
fied, images – compare Fig. 6e with Fig. 6c,d. We should stress that
FFTEB’s higher quality bundling is a consequence of its ability to
use parameter ranges for which earlier methods become impractical,
and not a result of it using a different bundling heuristic – for the
same parameter values, FFTEB, ADEB, and CUBu yield very simi-
lar images, up to local differences caused by implementation details.

Figure 6f shows a further variation of attribute-based bundling
done with FFTEB. Here, the edge similarity κ (Eqn. 7) combines
both direction and time-information from the trails, each having the
same weight. That is, trails are bundled if they run in similar direc-
tions and at similar time instants. The result is visually quite similar
to the direction-only bundling. This tells us that eye saccades that run
in different directions in the image, i.e. present in different bundles,
occur at quite different moments during the recorded sequence – if
not, then such trails would be bundled together due to their high time
similarity, and thus Fig. 6f would look quite different from Fig. 6e.

4.4 Very Large Directional Graph Bundling

Our last study shows how FFTEB (directionally) bundles very large
graphs whose point-samplings do not fit in VRAM. For this, we use a
migrations graph of 600K edges that describes the relocation of peo-
ple in the US over one year [37]. Sampling this graph at a screen res-
olution of 10002 pixels, using the sampling step constraints of KDE-
based methods discussed earlier, yields over 63 billion points. This
is three orders of magnitude larger than the largest sampled graph
we know to have been bundled ([38], amazon graph, 19M sample
points). While earlier bundling techniques considered subsets of this
graph ([12], 9660 edges; [38, 22, 17], 9780 edges; [6], 9798 edges),
this is the first time the entire dataset is bundled. Also, this is the
largest example of directional bundling known to us so far (600K
edges vs worldflights graph in [38], 26K edges). Our 63 billion point
sampling requires over 15GB of memory, so the streaming feature of

FFTEB is needed to handle this dataset on any current GPU. Perfor-
mance considerations for this graph are discussed in Sec. 5.

Figure 7(top) shows the large US migrations graph bundled by
FFTEB, with edge density encoded into bundle width and edge di-
rections encoded by colors. The image reveals three main migratory
west-to-east fluxes (Fig. 7, thick green bundles WE) and two main
fluxes in the opposite direction (Fig. 7, thick purple bundles EW). On
the vertical direction, we find that the eastern half of the country has
much more migration than the western half. For the former, migra-
tion can be summarized by a flow going to Texas (Fig. 7, red bundle
T), two flows ending in Florida (Fig. 7, red bundles F1 and F2); and
one flow leaving Florida towards the Minnesota and New York areas
(Fig. 7, blue branching bundle F3). As visible, FFTEB can succes-
fully produce an image that conveys a simplified, yet clear, view of
the main migratory patterns in this very large dataset.

As a comparison, Figure 7(bottom) shows the small US migra-
tions graph, directionally bundled by FFTEB. This is the same graph
as used in Fig. 4a-h (9780 edges), but bundled directionally this time.
As visible, the small bundled graph conveys a quite different insight
from the full graph: The overall picture in terms of connection pat-
terns is different, and the distribution of bundle thicknesses is very
different. This indicates that a subsampled graph cannot always con-
vey the same insight as the full graph. Hence, using an entire, non-
subsampled dataset is the best option to avoid such subsampling is-
sues. The added-value of FFTEB becomes clear here, as our method
lets us do this even for very large graphs (large N values).

5 DISCUSSION

We next discuss several aspects of FFTEB. First, we compare in
Sec. 5.1 the computational performance of FFTEB with the fastest-
known bundling techniques we know – KDEEB, CUBu, and ADEB.
As a benchmark, we use the six graphs in Tab. 1, which appear in
all recent bundling papers. In Sec. 5.2, we analyze FFTEB’s perfor-
mance as a function of its two free parameters – image resoluton R
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Figure 6: Bundling of eye trails for airline pilot training. See Sec. 4.3.
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Figure 7: Top: Directional bundling, large US migration graph [37]
(600K edges, 63 billion sampling points). Bottom: Bundling of the
much smaller migration graph (9780 edges, 290K sampling points).

and graph sample-size N. We summarize the advantages and limita-
tions of FFTEB in Sec. 5.3

5.1 Perfomance Comparison

For a start, we must note that the compared bundling methods treat
attributed graphs differently. KDEEB cannot do attribute-based
bundling. CUBu offers attribute-based bundling in terms of edge
directions, apart from undirected bundling. FFTEB does attribute-
based bundling by definition. For a fair comparison, we thus
compare KDEEB (which does no attribute-based bundling) with
FFTEB (for which we set the compatibility function κ (Eqn. 9) to
identity to emulate undirected bundling) and with CUBu (undirected

version); and separately ADEB with the directional version of
CUBu and with FFTEB.

Undirected bundling: All tests were done using a single-GPU
4GB NVidia GTX 690 graphics card. The tests presented here use
an image resolution of 10002 pixels and a kernel size of h = 21
pixels (we have done more tests, but cannot present them all due to
space constraints). We adapted the edge-sampling parameters in all
tested methods (KDEEB, ADEB, CUBu, FFTEB) so as to generate
roughly the same number of sample points N for a graph. Exactly
identical N values for the three tested methods (KDEEB, CUBu,
FFTEB) could not be obtained, since N is not an explicit parameter
of any of these methods, but a result of setting an edge-sampling-
density parameter. Table 1 shows the obtained timings. We see that
both FFTEB and CUBu are 50 to 100 times faster than KDEEB.
The important message, however, is that FFTEB is up to 2 times
faster than CUBu, especially for larger datasets. This makes FFTEB
the fastest undirected-bundling method in existence.

Directional bundling: For these tests, we use edge directions as
compatibility criterion. Parameter settings are identical to the undi-
rected bundling evaluation presented above. Table 1 (rightmost six
columns) shows the results. ADEB results for amazon miss, as this
graph is too large for the implementation in [30]. FFTEB is 10 to
50 times faster than ADEB, with a larger speed-up for larger graphs.
Also, we see that the directional version of FFTEB has basically the
same cost as the undirected version. Compared to CUBu, FFTEB is
roughly 3 times faster.

Given the results for directed and directional bundling presented
above, we can conclude that FFTEB is the fastest undirected and
directional method in existence.

The advantage of FFTEB extends beyond the above results. Re-
cent work has shown that approximate FFTs can be efficient paral-
lelized on CUDA, yielding speeds one order of magnitude higher
than exact FFT’s such as CUFFT [40]. Since we only use the FFT
to compute a density map, whose gradient does not need to be very
precise for the iterative advection used by the KDE model (Eqn. 3),
such techniques are directly applicable to FFTEB.

5.2 Parameter Analysis

As stated in Sec. 3.2, FFTEB’s complexity is O(I(N + R2 logR)),
lower than CUBu’s complexity of O(I(N +R2h)). Also, FFTEB’s
complexity is independent on the kernel size h ∼ R, while CUBu’s
complexity is not. Apart from this, both FFTEB and CUBu are linear



Table 1: Timing comparison of KDEEB[19], CUBu[38], ADEB [30], and FFTEB.
Undirected bundling methods Directional bundling methods

Graph Edges KDEEB CUBu undirected FFTEB undirected ADEB CUBu directional FFTEB directional
|E| Samples Time (ms) Samples Time(ms) Samples Time(ms) Samples Time(ms) Samples Time(ms) Samples Time(ms)

US airlines 2099 86K 500 86K 14 105K 10 80K 150 86K 28 88K 11
Poker 2127 50K 400 50K 11 60K 8 50K 200 50K 22 50K 6
Radial 4021 290K 1500 290K 23 290K 13 300K 450 290K 46 300K 13
US migration 9780 220K 1500 221K 24 300K 15 260K 650 221K 48 290K 15
France airlines 17275 330K 1800 330K 25 330K 16 250K 400 330K 50 250K 13
Amazon 899791 19M 8053 19M 152 19M 93 n/a n/a 19M 304 19M 98
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Figure 8: Scalability of FFTEB as function of number of sample points
N and image size R.

in the number of bundling iterations I which, as explained, is set to a
small fixed value I = 10.

We next study how FFTEB’s performance depends on its two free
parameters – number of sampling points N and image size R. Re-
call that N depends on the image size R, so the sampling density,
i.e., ratio N/R, is invariant. As such, we proceed as follows. We
assume a fixed sampling density of a few pixels between consecu-
tive sampling points on each edge. Next, we benchmark FFTEB for
four graphs having between 2K and 15K edges, bundled at resolu-
tions varying from 1002 to 15002 pixels. For each run, we record the
computational time and produced sampling-point count N.

Fig. 8 shows how FFTEB’s speed depends on both R and N. As
expected, the computational time is linear in N (Fig. 8a). More in-
terestingly, however, is Fig. 8b, which shows an almost linear depen-
dency of time on the size (width, height) R of the image, while, as we
have seen, the computational complexity in R is O(R2 logR). In con-
trast, CUBu’s time dependency on R is clearly superlinear (see [38],
Fig. 12a). This positive result shows that FFTEB scales in practice
very well with the image size R.

This can be explained by the very efficient parallelization of
FFTEB in CUFFT, the large number of parallel cores (3072) of the
used GPU (NVidia 690 GTX) vs the amount of data to process, and
the fact that we only evaluated performance up to a relatively low
resolution (R = 1600). Quadratic increase of computation time with
image size may actually become visible, on this GPU, only at higher
image resolutions. Finally, we see that the slopes of the four graphs

are quite similar. This tells that FFTEB has a throughput (number of
bundled sample points per unit time) which does not strongly depend
on the data size. This practically confirms the FFTEB complexity of
O(I(N +R2 logR)), which is linear in the sample point count N.

5.3 Advantages and Limitations
FFTEB solves the scalability and computational speed challenges of
earlier bundling methods, for all known bundling variants – undi-
rected, directional, and general attribute-based. By itself, this is
an important results, as it opens the possibility to efficiently han-
dle datasets of arbitrary size and number of attributes. In particular,
FFTEB strongly alleviates the main scalability problems of KDE-
based methods, which, as discussed in Sec. 3.1, strongly depend on
the image resolution R, kernel-size h, and a graph’s sampling points
count N. Putting it simply, FFTEB can generate high-resolution im-
ages (large R), with strrong bundling (large h), for big graphs (large
N) faster than all known methods we are aware of.

Additionally, our proposed modulation of bundle width by local
edge density emphasizes important bundles much better than shad-
ing and/or opacity can. More specifically, when looking at an im-
age, it is easier to quantitatively compare the widths of bundles,
especially when these are rendered as shaded tubes as we do, than
quantitatively compare their relative opacities. This is related to the
well-known power of encoding of the size (width) and opacity vi-
sual variables [1, 28]. Separately, our paper is, to our knowledge,
the most extensive comparison of edge bundling methods – in total,
we compare eight existing methods (apart from FFTEB) on several
graphs ranging from a few thousands to a million edges.

FFTEB by itself does not solve several challenges related to the
effective interpretation of edge-bundled drawings. Following cer-
tain edge groups end-to-end is hard, especially for large graphs –
directional bundling helps here only partially. Designing compat-
ibility functions κ that effectively capture the similarity of multi-
variate edges highly depends on the specific nature and meaning of
edge attributes for the problem at hand. Controlling and/or showing
the amount of distortion that bundling produces is an important fac-
tor that must be further considered when bundling data with spatial
meaning, such as trails. Finally, quantifying the quality of a bun-
dled layout in terms of how effective it is to solve a specific problem,
or based on ground truth in terms of its ability to preserve the un-
derlying data structure, is still an open grand challenge in the edge
bundling arena. Potential ideas to address this are (1) organizing con-
trolled experiments to test the accuracy and/or speed of performing
a certain task using different bundling methods; and (2) measuring
the amount of distortion and/or displacement of the bundled edges
with respect to the unbundled ones, or to a relevant subset hereof, to
quantify how data structure is preserved.

Given all above, we conclude that FFTEB effectively solves the
bundling efficiency challenges of current methods and is a good
framework to base further research in measuring and improving the
effectiveness of edge-bundled drawings of large datasets.

6 CONCLUSION

We have presented FFTEB, a method to bundle very large attributed
graphs. FFTEB’s key asset is its scalability, both in size of the input



graph (number of edges or edge sampling-points) and in the reso-
lution of the final image. FFTEB exploits the properties of the Fast
Fourier Transform, and of a GPU streaming design, to bundle graphs
which are much larger than what state-of-the-art methods can han-
dle, and with less time. Additionally, FFTEB generalizes attribute-
based graph bundling with no computational penalties, something
that aforementioned methods cannot do. We demonstrate our ap-
proach by comparing FFTEB with nine state-of-the-art methods and
using graphs that have up to billions of sample points – an order
of magnitude that not current method can handle. Additionally, we
show that the high scalability delivered by FFTEB is essential to
generate images which can capture fine details of the underlying
datasets, which in turn helps their better understanding.

Many possible extensions for FFTEB exist: Using recent results
in computation of sparse FFT can accelerate our method one order of
magnitude [40], which would make FFTEB cope with most big-data
challenges envisable today. Next, FFTEB’s efficient attribute-based
bundling opens new ways to explore virtually any kinds of edge-
compatibility criteria based on any nature and/or number of edge
attributes. Finally, the overall generality and scalability of FFTEB
makes its extension to interactive 3D bundling a low hanging fruit
prospect, with application e.g. into medical imaging [2].
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