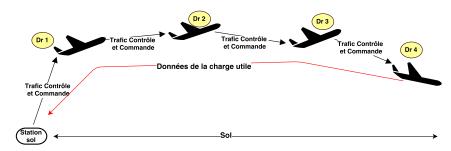
Vérification étendue d'un protocole de routage sécurisé pour les réseaux UAANET

Jean Aimé Maxa, Nicolas Larrieu, Mohamed Slim Ben Mahmoud

Journée de présentations des doctorants

Chantier Sécurité et Vie Privée du RTRA STAF

Laboratoire d'accueil: ENAC, axe ResCo de l'équipe TELECOM Ecole doctorale: Systèmes (EDSYS)



Plan

- Introduction et contexte du travail
- Création du protocole SUAP (Secure UAV Ad hoc routing

Pourquoi un réseau Ad hoc?

Réseau UAANET (UAV Ad hoc Network)

- Réseau ad hoc mobile (MANET Mobile ad hoc Network) où les nœuds sont des drones et des stations sol
- Caractéristiques spécifiques :
 - Faible densité de nœuds, mobilité spécifique (3D), connectivité intermittente.

Besoins de sécurité

Vulnérabilités des réseaux MANET

- Canal de communication vulnérable
- Absence d'une ligne de défense
- Problème de coopération

- Attaque Blackhole : génération
- Attaque Wormhole :

Besoins de sécurité

Vulnérabilités des réseaux MANET

- Canal de communication vulnérable
- Absence d'une ligne de défense
- Problème de coopération

Attaques sur le routage

- Attaque Blackhole : génération de paquets falsifiés permettant d'établir une route erronée
- Attaque Wormhole : coordination entre deux ou plusieurs attaquants pour créer un tunnel et intercepter le trafic

Contexte UAANET

- Le protocole de routage doit être robuste aux différentes attaques
 - L'authentification des paquets de routage est primordiale pour la survie de la mission
 - 2 Les attaquants ne doivent pas pouvoir falsifier le choix d'une route

Besoins de sécurité

Vulnérabilités des réseaux MANET

- Canal de communication vulnérable
- Absence d'une ligne de défense
- Problème de coopération

Attaques sur le routage

- Attaque Blackhole : génération de paquets falsifiés permettant d'établir une route erronée
- Attaque Wormhole : coordination entre deux ou plusieurs attaquants pour créer un tunnel et intercepter le trafic

Contexte UAANET

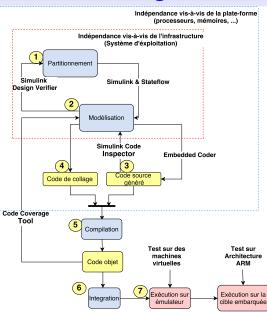
- Le protocole de routage doit être robuste aux différentes attaques
 - L'authentification des paquets de routage est primordiale pour la survie de la mission
 - 2 Les attaquants ne doivent pas pouvoir falsifier le choix d'une route

Contexte de travail : vérification et validation de la sûreté pour une flotte de drones

Sûreté de fonctionnement

- Anticiper les défaillances et les pannes
- [DO 178 B], [DO 178 C] : normes de certification du logiciel pour l'avionique
- Vérification de conformité entre le code source et l'architecure logicielle durant la conception

Besoin de validation


Performances de SUAP

- Assurer que la flotte de drones n'entre pas en collision avec d'autres systèmes (UTM: UAS Traffic Management)
- Nécessite une méthodologie qui prenne en compte l'évaluation et la certification du logiciel produit

Contribuer à la validation (dans le but d'obtenir une certification) du système UAS utilisé

- Introduction et contexte du travail
- 2 Élaboration d'une méthodologie de prototypage rapide
- 3 Création du protocole SUAP (Secure UAV Ad hoc routing Protocol)
- Validation des performances du protocole SUAP
- **5** Conclusions & Perspectives

Méthodologie de développement

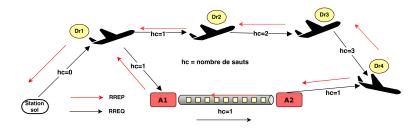
Introduction

- 3 Création du protocole SUAP (Secure UAV Ad hoc routing Protocol)

Introduction

Objectif du protocole SUAP

Proposer une route fiable


- Authentifier les messages de routage
 - Eviter les modifications non autorisées des messages de routage
 - Eviter les attaques conduisant à la dégradation de performance
- Protéger contre l'attaque wormhole
 - Assurer que les paquets de routage ne passent pas par un tunnel wormhole

Objectif du protocole SUAP

Performances de SUAP

Proposer une route fiable

- Authentifier les messages de routage
 - Eviter les modifications non autorisées des messages de routage
 - Eviter les attaques conduisant à la dégradation de performance
- Protéger contre l'attaque wormhole
 - Assurer que les paquets de routage ne passent pas par un tunnel wormhole

Mécanismes de sécurité mis en oeuvre dans **SUAP**

Champs non mutables

- Utilisation d'une signature numérique
- Algorithme utilisé RSA

Champs mutables

- Utilisation d'une chaine de hachage (en incluant l'identité du prochain nœud dans la table)
- Algorithme utilisé SHA-256 (peut également utiliser les autres variantes SHA)

La contribution porte sur l'implémentation orientée modèle de ces mécanismes et les validations formelles qui en découlent

Nouveaux mécanismes de sécurité proposés pour SUAP

Raisonnement

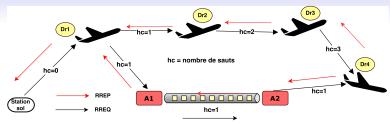
- L'attaque wormhole diminue d'une manière significative le nombre de sauts d'une source vers une destination.
- Il est possible de connaître la distance relative entre deux voisins (synchronisation des nœuds)
- On considère le problème en deux dimensions

Proposition

- Relation entre le nombre de sauts et la distance géographique entre les nœuds
- Inclusion de l'identité des nœuds légitimes dans le calcul de l'empreinte (valeur de hash)

Nouveaux mécanismes de sécurité proposés pour SUAP

Fonctionnement du mécanisme



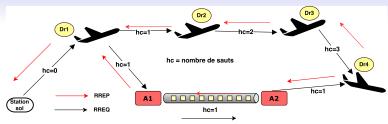
ETAPE 1 (à l'initialisation) : Découverte de voisin

Rélation entre nombre de sauts et distance rélative

Protocole SUAP

Illustration de l'échange des paquets Hello

T = distance totale de la route légitime hc = valeur virtuelle du nombre de sauts


$$rac{T}{\mathit{Dmax}} - 1 \leq \mathit{hc} < rac{T}{\mathit{Dmax}} + 1$$
 (1)

avec

$$T = \sum_{i=0, i=0}^{n} R_{i,j}$$

- Dr1 envoi un paquet Hello au nœud Dr2
- Dr2 calcule la distance relative et déduit la valeur virtuelle du nombre de sauts
- Dr2 compare le nombre de sauts virtuel avec le nombre de sauts inclus dans le paquet.

Illustration de l'échange des paquets Hello

T = distance totale de la route légitime hc = valeur virtuelle du nombre de sauts

$$\frac{T}{\textit{Dmax}} - 1 \le \textit{hc} < \frac{T}{\textit{Dmax}} + 1 \tag{1}$$

avec

$$T = \sum_{i=0,j=0}^{n} R_{i,j}$$

- Dr1 envoi un paquet Hello au nœud Dr4 à travers le tunnel
- Dr4 calcule la valeur virtuelle du nombre de sauts
- Dr4 compare les deux valeurs de nombre de sauts et constate l'anomalie

Mécanismes de sécurité contre l'attaque wormhole

Fonctionnement du mécanisme

ETAPE 1 (à l'initialisation) :

Découverte de voisin

Authentification (des messages) entre voisin et vérification de l'existence d'un tunnel wormhole

Mécanismes de sécurité contre l'attaque wormhole

Performances de SUAP

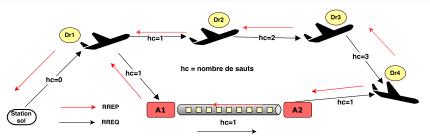
Fonctionnement du mécanisme

ETAPE 1 (à l'initialisation) :

Découverte des voisins

Rélation entre nombre de sauts et distance rélative

Authentification (des messages) entre voisins

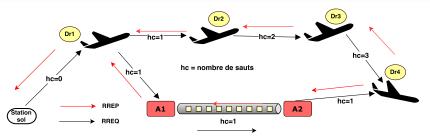


et vérification de l'existence d'un tunnel wormhole

ETAPE 2:

Découverte de route

Prise en compte de l'identité des noeuds dans le calcul de hash

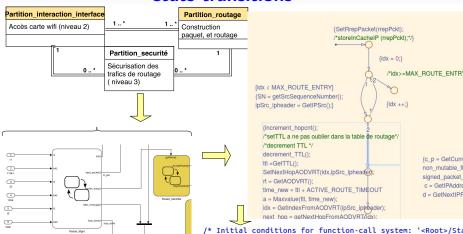

Opération sur le nœud Dr1

- Calcul de Hashold
- Calcul de Hashnew = H(Dr1, Dr2, Hashold)
- Dr1 \Rightarrow Dr2: [64, H, sign, Hashnew, Hashold]

Opération sur le nœud Dr2

- Calcul de Hashverifier = H[Dr1, Dr2, Hashlold]
- Comparaison de Hashverifier et Hashnew
- Si Hashverifier = Hashnew ⇒ il n'y a pas de tunnel wormhole

Illustration de l'échange des paquets de découverte de route


Opération sur le nœud Dr1

- Calcul de Hashold
- Calcul de Hashnew = H(Dr1, Dr2, Hashold)
- Dr1 \Rightarrow Dr2: [64, H, sign, Hashnew, Hashold]

Opération sur le nœud Dr4

- Calcul de Hashverifier = H[Dr1, Dr4, Hashlold]
- Comparaison de Hashverifier et Hashnew
- Hashverifier \neq Hashnew \Rightarrow il y un tunnel wormhole

Mise en œuvre grâce à des modèles à états-transitions

Usage de modèles

=> Vérification de propriétés

=> Génération de code

15/26

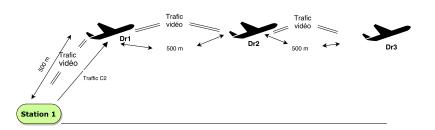
```
int32_T i;
ADDV_delair_DW.bitsForTID0.is_active_c4_AODV_delair = 0U;
AODV_delair_DW.bitsForTID0.is_c4_AODV_delair = AODV_delair
for (i = 0; i < 5; i++) {
AODV_delair_Y._statisticsAodv_out[i] = 0U;
```

void AODV delair StatisticsMgmt Init(void)

Vérification étendue du protocole SUAP

Vérification formelle des propriétés de sécurité avec AVISPA

Objectifs

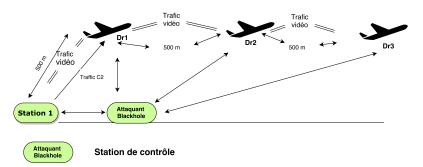

Introduction

- Vérifier l'utilité des contre-mesures
- Trouver des variantes d'attaques auxquelles SUAP serait vulnérable
- Résultats
 - Propriétés du protocole SUAP conformes aux objectifs de sécurité attendus

(Performances de SUAP)

- Création du protocole SUAP (Secure UAV Ad hoc routing
- Validation des performances du protocole SUAP

Topologie de test pour les fonctions de sécurité

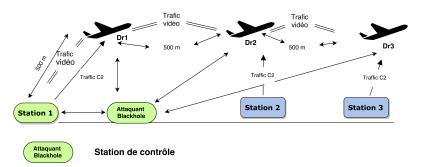


Permet de valider les classes de partition de sécurisation des trafics de routage

 Fonctions d'authentification et d'intégrité

- Protocole AODV modélisé et SUAP modélisé
- IEEE 802.11g

Topologie de test pour les fonctions de sécurité

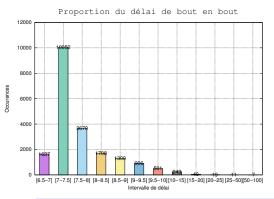


Permet de valider les classes de partition de sécurisation des trafics de routage

 Fonctions d'authentification et d'intégrité

- Protocole AODV modélisé et SUAP modélisé
- IEEE 802.11g

Topologie de test pour les fonctions de sécurité

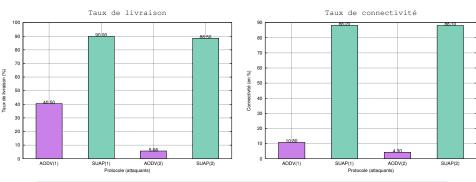


Permet de valider les classes de partition de sécurisation des trafics de routage

 Fonctions d'authentification et d'intégrité

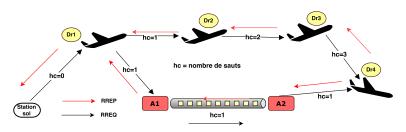
- Protocole AODV modélisé et SUAP modélisé
- IEEE 802.11g

Délai de bout en bout et délai d'acheminement des trafics vidéo



Délai pour trafic	Valeurs	
de signalisation		
Délai moyen	7.43 ms	
Délai maximum	100 ms	
Délai pour trafic	Valeurs	
de charge utile		
Délai moyen	9.2 ms	
Délai maximum	104 ms	

Conclusion


• Le délai nécessaire pour authentifier les paquets **ne pénalise pas** l'échange des trafics temps réel

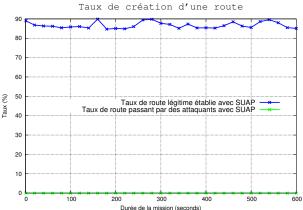
Taux de connectivité et de livraison des données

- AODV souffre de l'effet de l'attaque blackhole.
- Avec SUAP, la connectivité est maintenue

Validation des mécanismes contre l'attaque wormhole

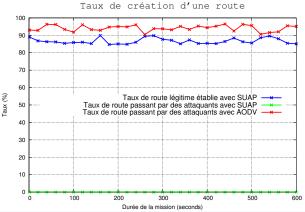
Paramètres	Valeur
Nombre de nœuds légitimes	5 (4 drones et une station sol)
Mobilité	Rejeu de scénarios de mobilité réels
Protocole de routage	SUAP et AODV modélisé
Protocole MAC	Couche d'accès idéale
Trafic applicatif généré	trafic C2 et vidéo

Validation des mécanismes contre l'attaque wormhole

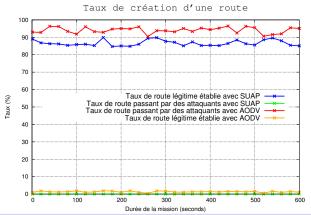

Objectif

Introduction

- 1 Étudier la capacité de SUAP à
 - détecter l'attaque wormhole
 - prendre des décisions sur le choix d'une route
- Métrique choisie
 - Taux de création d'une route sur le chemin légitime


Paramètres	Valeur
Nombre de nœuds légitimes	5 (4 drones et une station sol)
Mobilité	Rejeu de scénarios de mobilité réels
Protocole de routage	SUAP et AODV modélisé
Protocole MAC	Couche d'accès idéale
Trafic applicatif généré	trafic C2 et vidéo

Taux de création d'une route passant par les nœuds légitimes


- Taux de création d'une route légitime est de 85 % avec SUAP contre 0 % avec AODV
- Avec SUAP, les paquets de données ne sont échangés que sur la

Taux de création d'une route passant par les nœuds légitimes

- Taux de création d'une route légitime est de 85 % avec SUAP contre 0 % avec AODV
- Avec SUAP, les paquets de données ne sont échangés que sur la

Taux de création d'une route passant par les nœuds légitimes

- Taux de création d'une route légitime est de 85 % avec SUAP contre 0 % avec AODV
- Avec SUAP, les paquets de données ne sont échangés que sur la

Plan

- Introduction et contexte du travail
- Élaboration d'une méthodologie de prototypage rapide
- 3 Création du protocole SUAP (Secure UAV Ad hoc routing Protocol)
- Validation des performances du protocole SUAP
- **5** Conclusions & Perspectives

Conclusions

Génie logiciel

- Élaboration et validation d'une méthodologie de développement de systèmes embarqués critiques
- Utilisation de modèles pour concevoir l'architecture détaillée du système
- Vérification formelle des modèles et du code source généré

Sécurité des réseaux UAANET

- Élaboration et validation du protocole SUAP
- Nos résultats valident que SUAP authentifie les messages et protège contre l'attaque wormhole
- SUAP offre un niveau de service acceptable

Perspectives

Infrastructure de gestion de clé adaptée au contexte UAANET

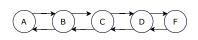
 Proposer une architecture de gestion de clé pour les réseaux UAANET afin de gérer le cycle de vie des clés cryptographiques utilisées dans la solution SUAP

Sécurité des trafics utiles échangés

 Définir une solution de sécurité applicative pour la confidentialité des données utiles

Etude de performance complémentaire du protocole SUAP

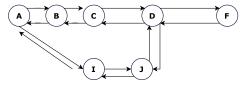
- Augmenter le nombre de nœuds durant l'expérimentation réelle
- Déployer un attaquant mobile en environnement réel
- Tester l'attaque wormhole en environnement réel


Merci pour votre attention

Introduction

Spécification du protocole SUAP avec AVISPA

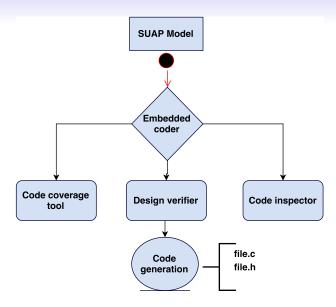
Analyse de l'authentification des messages


Analyse de l'attaque wormhole

A ----> B: { SREQ, NA, A, id}_inv(Ka), oldhash, newhash}

B ----> C: { SREQ, NA, A, id}_inv(Ka), oldhash, newhash}

B ----> A: { SREP, NF, F, id}_inv(Kf), oldhash, newhash}

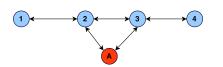


1) A \rightarrow I: {SREQ, F, N a '} inv(Ka), Hash, certA 2) A \rightarrow B: {SREQ, F, N a '} inv(Ka), Hash, certA 3) I \rightarrow J: {SREQ, F, N a '} inv(Ka), Hash, certA 4) J \rightarrow D: {SREQ, F, N a '} inv(Ka), Hash, certA 5) D \rightarrow F: {SREQ, F, N a '} inv(Ka), Hash, certA, certD 6) F \rightarrow D: {SREP, A, N d '} inv(Kf), Hash, certF, certD 7) D \rightarrow J: {SREP, F, N d '} inv(Kf), Hash, certF, certD 8) J \rightarrow I: {SREP, F, N d '} inv(Kf), Hash, certF, certD 9) I \rightarrow A: {SREP, F, N d '} inv(Kf), Hash, certF, certD

Résultats

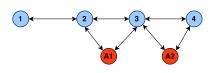
- Le protocole SUAP assure l'authentification des messages
- L'attaque wormhole n'est pas solutionnée

Illustration des étapes de vérification formelle



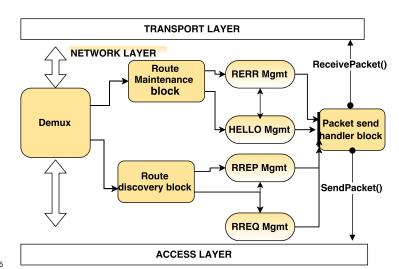
28/2

Description de l'attaque Blackhole

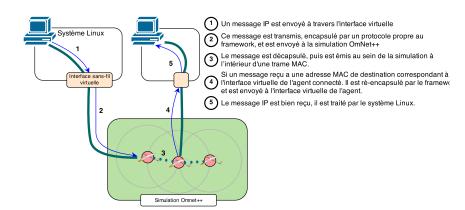

Single blackhole

- L'attaquant jette tous les paquets de donnés qu'il reçoit
- L'attaquant propose de meilleures routes (en jouant sur le nombre de sauts)

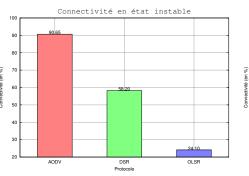
Collaborative blackhole

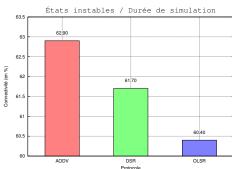

 Plusieurs nœuds malveillants attaquent le réseau simultanément

Format du paquet requête


Туре	Length		Hash function		Max hop count	
Top hash						
Sign Method H		н	Reserved		Padd Length	
Public Key						
Padding (optional)						
Signature						
Hashnew						
Hashold						

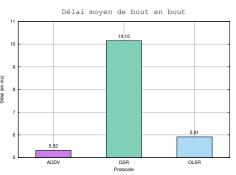
Architecture générique de conception pour la partition de routage

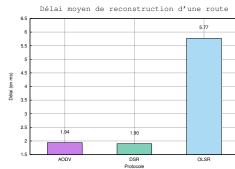



31/26

VirtualMesh : lien entre tests réel et tests en simulation

Taux de connectivité des protocoles en environnement émulé

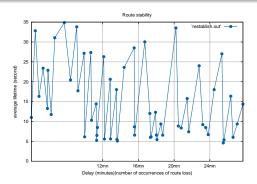


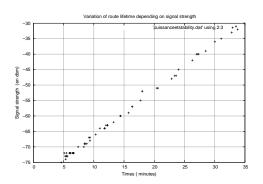


Conclusion

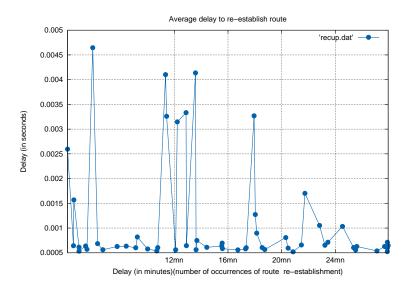
AODV présente de meilleures connectivités en états instables

Délai moyen de bout en bout et délai de reconstruction d'une route en environnement émulé




Durée de vie moyenne d'une route

Stabilité d'une route


• Durée de vie moyenne d'une route : 14.328955 s

Variation de la durée de vie de route en fonction de la force du signal reçu

Délai de rétablissement d'une route après une perte de route

