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Highlights 

 An algorithm to solve a dynamic airspace configuration problem is proposed. 

 The considered problem is formulated as a graph partitioning problem and is solved using 

genetic algorithms. 

 Airspace configurations obtained using the developed algorithm, outperform the existing 

airspace configurations. 

Abstract 

With the continuous air traffic growth and limits of resources, there is a need for reducing 

the congestion of the airspace systems. Nowadays, several projects are launched, aimed 

at modernizing the global air transportation system and air traffic management. In recent 

years, special interest has been paid to the solution of the dynamic airspace configuration 

problem. Airspace sector configurations need to be dynamically adjusted to provide 

maximum efficiency and flexibility in response to changing weather and traffic conditions. 

The main objective of this work is to automatically adapt the airspace configurations 

according to the evolution of traffic. In order to reach this objective, the airspace is 

considered to be divided into predefined 3D airspace blocks which have to be grouped or 

ungrouped depending on the traffic situation. The airspace structure is represented as a 

graph and each airspace configuration is created using a graph partitioning technique. We 
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optimize airspace configurations using a genetic algorithm. The developed algorithm 

generates a sequence of sector configurations for one day of operation with the minimized 

controller workload. The overall methodology is implemented and successfully tested with 

air traffic data taken for one day and for several different airspace control areas of Europe. 

Keywords: 

Dynamic airspace configuration; genetic algorithm; sectorization 

 

 

*Corresponding author. Tel.: +33 5 6217 4179. 
 E-mail addresses: sergeeva@recherche.enac.fr (M. Sergeeva), delahaye@recherche.enac.fr 
(D. Delahaye). 
 



 

 
 

3

1    Introduction 1 

With the continuous air traffic growth and limited resources such as air traffic controllers, there is a need 2 

for decreasing airspace congestion by adapting current airspace design to new traffic demands. In order 3 

to manage air traffic safely and efficiently, the airspace is currently divided into 3D airspace volumes 4 

called sectors. An elementary sector is defined as a volume of the airspace within which the air traffic 5 

controller can perform his controlling function. Each sector assigned to a team of controllers is called a 6 

controlled sector. A set of controlled sectors composes an airspace configuration. An air traffic control 7 

(ATC) workload is a way of evaluating an air traffic situation inside the controlled sectors in terms of 8 

several factors. The first factor is related to the number of potential conflicts in the sector. The second 9 

one is linked to the monitoring workload in the sector. The last factor is a coordination workload, which 10 

takes into account all aircraft that cross sector frontiers (in this case pilots and controllers have to 11 

exchange information in order to ensure a safe transfer of aircraft between two sectors).  12 

During the course of a day, the ATC workload fluctuates based on traffic demands between various 13 

origin-destination pairings. As the traffic in the airspace is changing with time, it is necessary to consider 14 

dynamic reconfiguration of the airspace for which the number of controlled sectors and their shape will 15 

be adapted to the current traffic situation. Initial sectors can be temporarily combined with others into a 16 

new controlled sector in order to improve efficiency of the airspace configuration. This process is called 17 

dynamic airspace configuration (DAC).  18 

In DAC, airspace configurations are generated so as to reduce the coordination workload between 19 

adjacent controlled sectors and to achieve workload balancing between them for each time period of the 20 

day. The DAC process also has to ensure that configurations are stable over time periods. Other 21 

important aspects of DAC concern the reduction of multiple entries of an aircraft in the same sector and 22 

the maximization of the average flight time through the sector. The DAC problem is even more critical in 23 

the SESAR or NextGen framework. In comparison with a currently used fixed route network, the SESAR 24 

program introduces the user preferred routing (UPR) or free routing concept to enable the airspace 25 

users to plan freely 4D trajectories that suit them best. Contrarily to a fixed-route network, a free-route 26 
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environment will produce a much larger number of different trajectories, for which the dynamic nature 27 

and flexibility of the DAC process will work most efficiently.  28 

Our contribution aims at improving today's airspace management in Europe in a pre-tactical 29 

phase. Our research is part of SESAR Programme (Project SJU P07.05.04) co-financed by the EU and 30 

Eurocontrol. The aim of this project is to develop research prototype (decision-support tool) to support 31 

new sectorization methodologies based on 4D trajectories to deal with the implementation of the free 32 

routing concept in the short-term future.  33 

In this paper, we present a genetic algorithms (GA) to solve the DAC problem. Our goal is to 34 

produce a solution (airspace configurations for several time periods) that satisfies most constraints and 35 

minimizes all costs. Our approach is based on a graph partitioning algorithm. The method is able to find 36 

a solution even for large problems such as, for example, configuration of the French Airspace for 24 h.  37 

This paper is organized as follows: Section 2 presents an overview of related works. In Section 3, 38 

a mathematical model of the DAC problem is proposed. Here, the DAC problem is described as a multi 39 

periods graph partitioning problem. A pre-processing step is presented in this section as well. In Section 40 

4, GA is introduced. Section 5 describes a GA approach for the DAC problem. Results are presented in 41 

Section 6. Finally, conclusions are presented in Section 7. 42 

2    Previous related works 43 

Till now, only several works concerning DAC have been produced. In fact, DAC is a quite new paradigm 44 

for airspace systems. The DAC concept consists in allocation of airspace as a resource to meet new 45 

demands of the airspace users. Further introduction to the DAC concept can be found in Kopardekar et 46 

al. (2007) and in Zelinski and Lai (2011). The DAC concept should not be confused with dynamic 47 

sectorization. The main aim of dynamic sectorization is to adapt the airspace to changing needs and 48 

demands of the airspace users, by creating an absolutely new sectorization for each time period of the 49 

day (Chen et al., 2013; Delahaye et al., 1998; Martinez et al., 2007). This means that at each time 50 

period controllers can be obliged to work with new sectors that have different design, as they are not 51 

composed of static airspace blocks, but built from "scratch". From an operational point of view, this is not 52 

desirable, since controllers become more efficient as they become more familiar with airspace, i.e. 53 
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controlled sectors.  54 

Existing approaches on DAC are based on a model in which the airspace is initially divided into 2D 55 

or 3D functional airspace blocks (Delahaye et al., 1995; Klein et al., 2008; Zelinski and Lai, 2011) so that 56 

the DAC problem becomes a combinatorial problem. Configurations are constructed from controlled 57 

sectors, built from pre-defined airspace blocks. Nevertheless, several works are using already existing 58 

and operationally valid ATC sectors (Gianazza, 2010) to construct configurations, or even full 59 

configurations (Vehlac, 2005) to build an opening scheme. 60 

Numerous works on airspace configuration have been produced in USA. A comparative 61 

description of 7 works can be found in Zelinski and Lai (2011). In Zelinski and Lai (2011) first three 62 

described works proposed methods for the DAC problem. These works were focused mainly on 63 

reducing delays and reconfiguration complexity in airspace configurations. Among these works, the 64 

most promising one is presented in Bloem and Gupta (2010). This work used as an input a set of given 65 

functional blocks (elementary sectors) and the number of open positions at each period. An output was 66 

a set of controlled sectors grouped into configurations. The workload of the sector was computed as the 67 

maximum number of aircraft in the sector during a given period of time divided by a monitor alert 68 

parameter (MAP). The method minimized a workload cost and a transition cost. It also satisfied several 69 

constraints (taking into account as soft one): bounded workload, connectivity and convexity of controlled 70 

sectors. The uncertainty of trajectory prediction was taken into account as well. The transition cost in 71 

this work was computed as the number of new controlled sectors in the successive configuration. The 72 

model is solved using a rollouts approximate dynamic programming algorithm based on a myopic 73 

heuristic. 74 

In Martinez et al. (2007), Chen et al. (2013), Trandac and Duong (2002), Tang et al. (2011), 75 

methods for solving the dynamic sectorization problem (which is related to the DAC problem) were 76 

presented. These works took in consideration most of the important operational constraints. However, 77 

they also contained several weak points from an operational point of view. First, they did not include a 78 

3D design of sectors, including some important airspace design aspects, such as sector shapes. Then, 79 

these approaches did not take into account the stability of the generated configurations in time. In DAC, 80 

generated configurations should have minimal changes from one time period to another, and should be 81 
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built with operationally workable controlled sectors. As a matter of fact, the more changes between 82 

successive configurations there are, the harder it is for controllers to adapt to a new configuration. 83 

Considering that the duration time of one configuration can be short (the minimum duration time is equal 84 

to 20 min (Eurocontrol, 2015)), too many changes in configurations can induce safety issues.  85 

In Klein et al. (2008), instead of using existing sectors, airspace building blocks, called fix posting 86 

areas (FPA), were used. FPAs are assumed to be created in advance. For the complexity metric, rather 87 

than using absolute occupancy counts, a relative metric is computed, i.e., occupancy count (the number 88 

of aircraft in the sector) as a percentage of the sector’s MAP value. The dynamic FPA concept is one 89 

form of the flexible airspace management. Sectors are built from FPAs. FPAs can be dynamically 90 

assigned from one sector to other during scheduled sectorization events. In case the sector is 91 

overloaded in a given period of time, algorithm attempts to reassign some of sector's FPAs to a 92 

neighboring sector, if it is possible. If sector is not loaded enough in a given period of time and it has a 93 

neighbor sector whose metric is small enough, then this sector with all its FPAs can be combined with 94 

this neighboring sector. This procedure is repeated for all sectors and all FPAs. The same principle is 95 

used for vertical partitioning of sectors into FPAs, arranged by altitude (e.g., flight levels). In Klein et al. 96 

(2012), the author expanded this concept to create dynamic airspace unit (DAUs). The DAUs are 97 

represented as sector slices near sector boundaries. During pre-defined increments, these units are 98 

dynamically shared between sectors depending on the weather and on the traffic demand. Sector 99 

boundaries adjustments are used in case the complexity metric in one sector is above a certain 100 

threshold. 101 

The authors of Gianazza (2010) used existing controlled sectors to create suitable configurations 102 

for different time periods. The decision to reconfigure controlled sectors was driven by the prediction 103 

made by an artificial neural network. A classical tree-search algorithm was used to build all the valid 104 

sector configurations from an initial set of controlled sectors. The tree-search algorithm explored all 105 

possible airspace configurations, among which only one was chosen using evaluation criteria. The 106 

computed configurations were compared to the actual configurations archived by ATC centers. 107 

It should be mentioned that most of the existing approaches have been developed for the fixed 108 

airway route network. The main problem of the previous approaches is that they do not include 109 



 

 
 

7

reconfiguration cost. The stability of the generated configurations as well as most important sector 110 

design constraints should be included in the solution of the DAC problem. The next section presents a 111 

model which has been used in our work to address the DAC problem. 112 

3    Problem modeling 113 

3.1     Problem description 114 

Given a forecast on air traffic demand, the DAC problem consists in finding a suitable airspace 115 

configuration for each time period, built from a given set of airspace blocks, such as to minimize some 116 

cost functions. The main objective of the DAC process is to minimize the workload imbalance and the 117 

coordination workload in each airspace configuration. Each configuration should consist of a number of 118 

controlled sectors best suited for the given time period. Controlled sectors should be built from 119 

predefined airspace blocks, such as to be accepted by ATC experts. Therefore, they should satisfy 120 

some geometrical and operational constraints. The quality of the airspace configuration can be 121 

evaluated according to several criteria. In this work, the cost function includes the following criteria. 122 

 The imbalance between the workload of the resulting controlled sectors. 123 

 The coordination workload. 124 

 The number of flight re-entry events. 125 

 The number of short transits flight through sectors.  126 

 The number of controlled sectors in each airspace configuration (should not exceed a given 127 

maximum). 128 

All those criteria should be minimized during the optimization process. The workload imbalance 129 

minimization means that each sector in each configuration should approximately be loaded with the 130 

same amount of traffic at each period of time. The minimization of the coordination workload, and thus 131 

the controller workload, implies the minimization of the number of traffic flows, cut by sector borders. 132 

Then, the aircraft should not enter the same sector several times. Finally, any entering aircraft must stay 133 

between each sector a given minimum amount of time. This is an important safety constraint, as it 134 

requires a lot of time for the controller to spend on coordination functions. For the controller of the sector, 135 
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it is hard to manage a conflict between two aircraft in a safe way, if one or both aircraft are passing 136 

through this sector too fast. 137 

Then, there are several constraints arising from the sector design methodology. Configurations and 138 

controlled sectors have to satisfy the following constraints. 139 

 Airspace blocks combined into one controlled sector should be connected. 140 

 There should be continuity between resulting configurations.  141 

 Shapes of sectors (in a lateral view) such as "stairs" or "balconies" should be restricted. 142 

Last two constraints are considered as soft ones. 143 

The presented list of criteria and constraints is designed according to Eurocontrol requirements and 144 

developed in co-operation with operational experts (Eurocontrol, 2015). All those criteria are included in 145 

the model described in the next part. 146 

3.2     Airspace modeling 147 

According to Kopardekar et al. (2007) and Zelinski and Lai (2011) in the current DAC concept, sector 148 

configurations are constructed by combining existing elementary sectors, provided as an input. 149 

Nevertheless, in this work, we introduce a new DAC concept, proposed and developed in cooperation 150 

with Eurocontrol for SESAR (Eurocontrol, 2015; Sergeeva et al., 2015). This new concept increases 151 

the adaptability of the airspace to the traffic pattern, by delineating from the nominal elementary sectors, 152 

to a larger number of new airspace components, that can be easily combined into rather more adaptable 153 

control sectors. The idea of this concept is that instead of being trained on a full elementary sectors, 154 

airspace controllers can be trained only on a most congested areas, comprised inside smaller airspace 155 

blocks. Two types of airspace blocks are specified in this concept (Fig. 1). In Fig.1, the black blocks are 156 

non-sharable and the white ones are sharable.  157 

(1) Sector building blocks (SBBs) are permanently busy areas with a high traffic load, delineated by 158 

recurring traffic patterns. Often, SBBs blocks are small and cannot be sub-divided further. Each SBB is 159 

considered as a core of a future control sector. SBBs can be sufficiently large than SAMs, in order to be 160 

workable and controllable. It should be noticed that the control sector should include at least one SBB.  161 

(2) Sharable airspace modules (SAMs) are built in less busy areas with a temporary high traffic 162 
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load. SAMs can be re-allocated laterally or vertically between neighboring control sectors within a sector 163 

configuration process, in order to equally balance the traffic load among the control sectors. SAMs 164 

cannot be used separately in the configuration. 165 

 166 

Fig. 1   Initial airspace blocks (2D projection).  167 

Each controlled sector is supposed to be built of at least one non-sharable block and several 168 

sharable blocks. Building of the controlled sector starts from choosing a central block, which can be 169 

chosen only among non-sharable blocks. The number of non-sharable blocks is limited; this guarantees 170 

that the central part of each controlled sector will be stable between several configurations. Even if the 171 

number of controlled sectors is different in two successive configurations, centers of the controlled 172 

sectors will be chosen among the same small group of non-sharable blocks. This partly insures 173 

continuity between successive airspace configurations. 174 

3.3     Graph modeling 175 

In this section we describe a weighted graph model of the airspace. Let a graph G = (N, L) represent the 176 

airspace, where N is a set of nodes and L is a set of links. In this graph each node represents sharable 177 

or non-sharable block and each link represents the relation is neighbor with between two nodes (Fig. 2), 178 

it means that when two blocks share a common vertical or horizontal border, a link is built between 179 

them. In Fig.2, sdid nodes represent non-sharable blocks, and hollow nodes represent sharable blocks. 180 

Weight of the node represents the monitoring workload and weight of the link represents the 181 

coordination workload. 182 
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 183 

Fig. 2   Example of the initial graph.  184 

The workload assessment is a key requirement for generation of the workable sector 185 

configurations in a context of free route environment. In order to evaluate the monitoring workload, in 186 

each block, an occupancy count is used. The occupancy count metric is computed as the number of 187 

aircraft inside the airspace block at each minute of an associated time period. The weight of the link 188 

(coordination workload) is computed as the number of aircraft crossing the border between two airspace 189 

blocks connected by this link. Both monitoring and coordination workloads of airspace blocks are 190 

computed for each given time period. 191 

3.3     A graph partitioning problem 192 

Based on the weighted graph described above, our problem consists in finding an optimal multi-period 193 

graph partitioning. For each given time period, we must find an optimal grouping of airspace blocks that 194 

satisfies all the constraints. The time periods (opening scheme) are considered to be an input data. 195 

A connectivity constraint on airspace blocks belonging to the same sector means that nodes 196 

belonging to the same component have to be connected. This means that for each pair of nodes 197 

belonging to the same component, there is a path connecting them. 198 

For a given time period ti, the resulting configuration is modeled in the following way: Xi = {N1, 199 

N2, …, 
i

k
N }, where Nj represents the set of nodes belonging to the component j, Ki represents here the 200 

number of component for time period ti. Ki  value is controlled by the optimization process and has to be 201 

less than Sn, where Sn is the maximum number of available controllers. Having a problem with several 202 

time periods {t1, t2, …, tP}, the associated graph partitioning problem have to be optimized for each 203 
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3.3     Objective function 206 

Based on the state space definition, we now model the associated objective function. Five criteria are 207 

included in our objective function for evaluation of a solution (resulting configurations).  208 

The first criterion measures the total level of the workload imbalance in each configuration, 209 

separately for each time period ti (i = 1, 2, …, T). The workload of the controlled sector is computed as a 210 

sum of the workloads of airspace blocks which are composing this sector. The workload imbalance of all 211 

sectors in the configuration for the time period ti is computed using Eq. (2). 212 

2

1
( )i ik

K c

k

t
i

||W c||

cU
k








                                                               (2) 213 

 214 

where Ki is the number of controlled sectors in the configuration for period ti, 
ikcW  is the total workload of 215 

all airspace blocks composing the sector k for period ti, c is a targeted workload of the sector.  216 

c is a user-defined parameter and can be computed, for example, as a capacity of a sector. The 217 

capacity of a controlled sector can be defined as the maximum number of aircraft that are controlled in a 218 

particular sector in a specified period, while still permitting an acceptable level of controller workload 219 

(Majumdar and Ochieng, 2002). The way sector capacity is computed depends on the controller 220 

workload definition. Often it is computed as the maximum number of flights that a controller can handle 221 

in one hour without breaking a theoretical threshold (Christien et al., 2003). In this work, the 222 

maximum sector capacity is taken for 1 min (the workload is computed as occupancy count). The 223 

maximum acceptable number of flights per 1 min is equal to 8 (this number was provided by 224 
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Eurocontrol and reflects realistic operational value). Then, the maximum sector capacity for the 225 

time period of 1 h is equal to 8 aircraft multiplied by 60 min. As we would like to obtain controlled 226 

sectors that are not extremely loaded, c is computed as the maximum sector capacity weighted by the 227 

reduction coefficient, which is equal to 75% (value provided by Eurocontrol). Then, for the time period of 228 

1 h, the targeted workload c is equal to 360. 229 

The second criterion included in the objective function, measures the transfer traffic between 230 

neighboring blocks (a flow cut). When two neighboring blocks belong to different sectors, the traffic flow 231 

between them is getting cut by the sector's border, increasing the coordination workload of sectors. The 232 

total flow cut for the time period t ( tFc ) is given by Eq. (3). 233 

t ( )
, 

Fc
tm tn

t t
i , j L ij ji

i N j N
m n

f f
 


                                                                           (3) 234 

where fij
t + fji

t is the number of aircraft crossing the border between blocks i and j (in both directions) at 235 

the time period t, computed using a known set of links.  236 

The number of re-entries (Nrt) and the number of short transits (Nst) inside the controlled sectors at 237 

the time period ti are included in the objective function as well. In order to be able to compute re-entry 238 

events and short transits inside created controlled sectors, we register the list of airspace blocks 239 

crossed by each trajectory with the associated time horizon (Fig. 3). In Fig.3, each element of a list 240 

contains the ID of a block and a crossing time. 241 

 242 

Fig. 3 List of airspace blocks associated to a given trajectory.  243 

Then, using this list of airspace blocks associated to each trajectory (list of traversed blocks), it is 244 
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possible to compute Nrt and Nst for each time period. It is done in several steps. 245 

(1) We first transform a list of associated airspace blocks into a list of controlled sectors associated to 246 

each trajectory. 247 

(2) To compute the re-entries, we check if in the aircraft's list of traversed sectors there is no situation 248 

when the aircraft enters the same sector several times, and if there is, we add one re-entry to Nrt. 249 

(3) For computing the number of short-crossings, we check the time that the aircraft stays in each 250 

sector, and if this time is smaller than a given value, we add one short-crossing to Nst. 251 

Finally, the last criterion included in our objective function (Nbt) measures the number of "balconies". 252 

This type of sector shape (in the lateral view) is not desirable but acceptable, that is why this criterion is 253 

included in the objective function. The number of "balconies" is computed during the evaluation process, 254 

using the set of links. 255 

All those criteria are normalized in order to have values (0, 1) and aggregated into one objective 256 

function (Eq. (4)) which is used to evaluate each configuration, created during the optimization process. 257 

1 2 t 3 t 4 t 5 tmin( ) Fc Nr Ns Nbty U                                                              (4) 258 

where α1-α5   (0, 1) are proportion coefficients. 259 

Then, the objective function associated to the whole planning is computed as an average value of 260 

the evaluation of each configuration. The proportion coefficients in the objective function enable to 261 

obtain optimized results for different scenarios.  262 

The number of the controlled sectors in configuration is minimized during the optimization process, 263 

due to minimization of the workload imbalance (while trying to keep sectors workload close to a given 264 

value, we also optimize the number of sectors in each configuration). 265 

3.4    Combinatorial optimization problem 266 

Based on the airspace model described above, the DAC problem is formulated as a combinatorial 267 

optimization problem, which consists in finding an optimal partitioning of the graph into several 268 

connected sub-graphs for each defined time period. Moreover, several operational constraints have to 269 

be taken into account during the partitioning process and this makes it difficult to use most common 270 
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techniques for solving the graph partitioning problem.  271 

The proposed formulation of the DAC problem, as a graph partition problem, is highly combinatorial. 272 

The size of the state space (the number of states that the problem can be in) depends on the number of 273 

blocks Nb, on the number of controlled sectors Ki and on the number of opening time periods Nt. For 274 

each time period we must find an optimal grouping among 
b

Ki

N
S  of possible combinations of Nb blocks 275 

into Ki sectors, where 
b

Ki

N
S  is a second Stirling number. The second Stirling number is computed using 276 

Eq. (5). 277 

b
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                                                            (5) 278 

 279 

The state space of our problem is discrete and its size grows exponentially fast. An example of the 280 

number of possible combinations of 16 blocks is shown below. 281 

Ki 
16

KiS  Ki 
16

KiS  

1 1 9 820,784,250 

2 32,767 10 193,754,990 

3 7,141,686 11 28,936,908 

4 171,798,901 12 2,757,118 

5 1,096,190,550 13 165,620 

6 2,147,483,647 14 6020 

7 2,147,483,647 15 120 

8 2,141,764,053 16 1 

 282 

The combinatorics of such a problem can become extremely high, especially if we want, for 283 

example, to obtain airspace configurations for the whole day and we take one time period equal to 30 284 

min. 285 

Typically, graph partition problems fall under the category of NP-hard problems (for more details 286 

see Kernighan and Lin (1970), Savage and Wloka (1989)). For an NP-hard problem, where 287 



 

 
 

15

state-of-the-art exact algorithms cannot solve the handled instances within the required search time, the 288 

use of metaheuristics is justified. Metaheuristics do not guarantee to find optimal solutions, however, 289 

they allow to obtain good solutions in a significantly reduced amount of time (Blum and Roli, 2003; Talbi, 290 

2009). Their use in many applications shows their efficiency in solving large NP-hard problems. 291 

Metaheuristics can be roughly divided into population-based algorithms and non-population-based 292 

algorithms (Talbi, 2009). While solving optimization problems, non-population-based metaheuristics 293 

improve only one solution, while the population-based algorithms explore the search space by evolving 294 

a whole population of candidate solutions. Population-based metaheuristic methods are well adapted 295 

for problems that require not a lot of memory to code the state space (in our case, it requires less than 1 296 

Mb). 297 

The proposed model of DAC can be solved using different techniques (Antosiewicz et al., 2013; 298 

Han and Zhang, 2004; Silberholz and Golden, 2010). Non-population-based algorithms, such as 299 

Simulated Annealing for example, can allow to converge more rapidly to an optimal solution than 300 

population-based algorithms (Kohonen, 1999). Nevertheless, the convergence speed mainly depends 301 

on the implementation of the algorithm and on the size of the state space of the problem. In case of the 302 

problem with a large state space of feasible solutions (like the DAC problem), it is hard to avoid 303 

non-population-based algorithms getting stuck at local minima. On the other hand, in population-based 304 

algorithms, solutions are being independently improved at the same time and this makes this type of 305 

algorithms less prone to get stuck in local optima than alternative methods (Mukherjee et al., 2015; Nair 306 

and Sooda, 2010; Rossi-Doria et al., 2002). 307 

The DAC problem can have several different optimal solutions, due to the different possible 308 

symmetries in the topological space. As we have several objectives to be satisfied, we can obtain 309 

several different solutions with the same value of the objective function. We must be able to find most of 310 

the near-optimal solutions, as they have to be evaluated and refined by experts. This last point makes 311 

us reject non-population-based algorithms which update only one state variable, i.e. improve only one 312 

possible solution. 313 

In this work, we aim to obtain a compromise between the quality of the solution and the CPU time 314 

required to reach it. Population-based algorithms, such as EAs, maintain and improve a population of 315 
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numerous state variables according to their fitness and are able to find several optimal solutions. EAs 316 

can guarantee stable optimization results even for big problem instances, computed within a reasonable 317 

time. EAs are also a good choice if we would like to extend our model to a multi-objective one. Thus, 318 

EAs are relevant to solve the DAC problem. 319 

4    Evolutionary algorithms 320 

Evolutionary algorithms (Back et al., 1991; Davis, 1991; Fogel and Owens, 1966; Goldberg, 1989; 321 

Holland, 1975; Koza, 1992; Michalewicz, 1992) use techniques inspired by evolutionary biology to find 322 

approximate solutions of optimization problems. An individual, or solution of the problem, is represented 323 

by a list of parameters, called chromosome. Initially several such individuals are randomly generated to 324 

form the first initial population (POP(k) in Fig. 4). Then each individual is evaluated, and a value of fitness 325 

is returned by a fitness function. This initial population undergoes a selection process which identifies 326 

the most adapted individual. The one which is used in our work is a deterministic (λ, µ)-tournament 327 

selection (Miller and Goldberg, 1995). This selection begins by randomly selecting λ individuals from the 328 

current population and keep the µ best (λ > µ). These two steps are repeated until a new intermediate 329 

population (POPi) is completed. Then, three following recombination operators are applied to individuals: 330 

nothing (1－Pc－Pm), crossover (Pc), or mutation (Pm) with the associated probability respectively. 331 

The chromosomes of two parents are mixed during crossover resulting in two new child 332 

chromosomes, which are added to the next population. Mutation is an operator used to maintain genetic 333 

diversity from one population of chromosomes to the next one. The purpose of mutation in EAs is to 334 

allow the algorithm to avoid local minima by preventing the population of chromosomes from becoming 335 

too similar to each other, thus slowing or even stopping evolution.  336 

These processes ultimately result in the next population of chromosomes (POP(k+1) in Fig. 4). This 337 

process is repeated until a termination condition has been reached. As a termination condition, we can 338 

use the maximum number of generations. In Fig.4, on the first step best individuals are selected from 339 

population POP(k). Then, recombination operators are applied to produce the POP(k+1) population. 340 

 341 
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 342 

Fig. 4 Genetic Algorithm with tournament selection.  343 

 344 

5    Application of GA to the DAC problem 345 

5.1    Coding the chromosome 346 

Based on the proposed problem modeling, a way of coding configurations for each time period 347 

(chromosome) has to be developed. In the previous section, we have proposed a way of modeling the 348 

airspace configuration as a set of connected components (subgraphs). The coding used for this problem 349 

consists in representing connected components by sub-sets of nodes for each time period.  350 

      The chromosome used in this work consists of two layers. The first layer controls the number of 351 

opened controlled sectors and theirs centers per each time period. The second layer contains all 352 

sub-sets of connected components obtained for each time period, i.e., the list of all airspace blocks with 353 

the associated number of the controlled sector for each time period. Thus, the first layer controls root 354 

nodes (non-sharable blocks) and consists of two tables. The first table includes all permuted 355 

non-sharable nodes and the second one contains temporal segments for each root node (Fig. 5). In Fig. 356 

5, non-sharable blocks (potential root nodes) are represented as squares and sharable blocks as 357 

circles. 358 

 359 

The temporal segments include the information about the number of the controlled sectors used per 360 
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each time period. The second layer manages the set of connected components (for each time period) 361 

and is represented as a table that contains all nodes with their associated component number (Section 362 

5.2). 363 

           (a)                                                                          (b) 364 

                           365 
Fig. 5 Chromosome structure. (a) Initial graph. (b) First layer of chromosome. 366 

5.2    Initialization of the chromosome 367 

Each solution (chromosome) in a population is first initialized randomly. As our chromosome consists of 368 

two parts, the process of initialization of the chromosome is divided into two steps. On the initial step, for 369 

each time period, several root nodes are randomly selected from the permutation table (initially this 370 

table is randomly generated for each solution in the population) which contains all non-sharable nodes 371 

as shown in Figs. 5 and 6. Those selected nodes are considered as root nodes - central parts of each 372 

subgraph. The minimum number of root nodes that can be selected is equal to 1 and the maximum is 373 

equal to the maximum allowed number of the controlled sectors per configuration, i.e., to the number of 374 

available controllers. 375 
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 376 

Fig. 6 Resulting graph partition for the 3 time periods, obtained using a table of root nodes and temporal time segments. 377 

  On the next step, temporal segments are randomly built. After this, all selected root nodes are 378 

associated with time periods. For each time period, several root nodes can be selected. The number of 379 

the selected root nodes per time period is first chosen randomly and then is optimized in the algorithm. 380 

The first root node in the permutation table participates in the partitioning process for each time period 381 

(node 8 in Fig. 6). 382 

  In the example illustrated in Fig. 6, the number of non-sharable nodes and potential root nodes is 383 

equal to 4 (nodes 1, 4, 8 and 9) and the maximum number of the controlled sectors per configuration is 384 

equal to 3. Three time periods are considered and three temporal time segments are generated 385 

randomly. Each time segment cannot have a length bigger than 3. At the time period 1 there is one 386 
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sub-set created with root node 8, and time period 2, with root nodes 8, 9 and 1, and etc. The initial 387 

permutation of the root nodes in different solutions ensures a random mapping between temporal 388 

segments and root nodes (this avoids the same root node to be associated with the first temporal 389 

segment in different solutions). 390 

This way of coding the chromosomes with temporal segments ensures the stability in time of 391 

shapes of controlled sectors. For successive time periods, the same root nodes are used as sector 392 

centers, ensuring these volumes of airspace being controlled by the same controllers. As a matter of 393 

fact, compared with the other works on DAC, the main advantage of our method is that the stability of 394 

configurations in time is insured by the proposed model of the configuration process. Most of the 395 

existing methods in the literature, instead, include a reconfiguration cost as one of the objectives. This 396 

cannot always insure the stability of configurations in time, as often the reconfiguration cost is computed 397 

simply as a difference of the number of the controlled sectors in the successive configurations. 398 

   After producing the first layer of the chromosome, a graph partitioning algorithm is applied for the 399 

second layer. In the example illustrated in Fig. 6, for 3 time periods, 3 subgraphs are built, using the 400 

associated list of selected root nodes for each time period. The developed graph partitioning algorithm 401 

ensures that nodes of the same sub-set are connected by at least one path. The process of building 402 

connected components using greedy heuristic is illustrated in Fig. 7.  403 

(a)                                                                                (b) 404 

               405 

 406 

 407 

 408 
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(c)                                                                                    (d) 409 

                    410 

Fig. 7 Greedy heuristic is used to create initial partitions. (a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4. 411 

This heuristic takes the first root node and propagates it on its neighbours (step 2). Then, the 412 

second root node is propagated also on its neighbours (step 3). Then, the algorithm propagates again 413 

the first component (step 4) and this process is repeated until all nodes are associated with their 414 

components. At the end, each connected component is coded as a list of nodes (Fig. 8). 415 

 416 

Fig. 8 Example of the coding used for one time period. Here, the graph is partitioned into two components using two root nodes 417 

1 and 8. 418 

After creating the first population of solutions, each solution is evaluated using the objective 419 

function. Then, after the selection process, the recombination operators are applied resulting in a new 420 

population. 421 
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5.3    Recombination operators 422 

5.3.1    Recombination operators for the first layer of the chromosome 423 

The first layer of the chromosome controls the choice of root nodes used for all time periods.  424 

(1) Temporal segment crossover  425 

In this crossover operator, two or more solutions (parents) exchange part of their chromosome, 426 

resulting in two new solutions. Based on time interval sets from two randomly selected solutions, a 427 

crossover has been developed in which, most probably, the individual with the worst performance will 428 

receive temporary segments of the second one (i.e., we copy the first layer of chromosome from a good 429 

solution to a bad one). 430 

(2) Temporal segment mutation  431 

The mutation operator starts by selecting a solution from the population. An individual with low 432 

performances has more chances to be selected. Then one configuration is selected either randomly or 433 

according to its performance. This mutation operator changes the number of the temporal segments in 434 

the solution by adding or removing one segment, i.e., adding or removing one controlled sector into 435 

configuration for a selected time period. The number of segments has to stay in the following range [1, 436 

|NR|] where NR is the set of root nodes in the network. 437 

(3) Root nodes mutation  438 

The mutation operator starts with randomly selecting a solution from the population. The aim of 439 

this operator is to change initial permutation table of root nodes. The operator simply changes the order 440 

of root nodes by randomly exchanging two nodes in the permutation table. 441 

5.3.2    Recombination operators for the second layer of the chromosome 442 

For the second layer, we only use one mutation operator. After choosing a solution from the population, 443 

the operator selects a time period according to the associated graph partitioning performances, 444 

meaning that a bias is added for the period with a low performance. Then the graph partitioning mutation 445 

operator is applied (Fig. 9). 446 

 447 



 

 
 

23

(a)                                                                                   (b) 448 

       449 

Fig. 9 Graph partitioning results for the second layer of the chromosome. (a) Before applying the developed mutation operator. 450 

(b) After applying the developed mutation operator. 451 

This operator begins by statistically selecting the component with the worst performance. Then, in 452 

case the selected component is overloaded (sector workload > targeted workload), it seeks the 453 

neighbouring component with the least load. In case the selected component is underloaded, the 454 

operator searches the neighbouring component with the higher load. This second step is also carried 455 

out statistically (introducing a bias into a random selection). We thus obtain a link between the two 456 

components. A node is then moved from the most loaded component to the least loaded one, while 457 

verifying that the component losing a node remains connected. 458 

6    Results and discussions 459 

This algorithm has been tested on several different problems in order to check its efficiency and its 460 

future perspective. The algorithm is able to provide different kind of results according to expert 461 

requirements. 462 

6.1    First test: application to a network with symmetries 463 

In order to evaluate this algorithm, a network with symmetry has been built for which, a solution is easy 464 

to investigate for a human being due to our ability to see such symmetry but which has no particular 465 

features for the algorithm. This network is built with 144 blocks which are extended on 10 time periods. 466 

Those 144 blocks are symbolized by nodes on the graph in Fig. 10. For this network it is very easy to 467 
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identify 36 sectors. With only 100 individual in the population and 100 generation, the algorithm is able 468 

to identify the best solution at generation 80 as it can be seen on Figs. 11 and 12. 469 

 470 

Fig. 10 Graph with symmetries. 471 

 472 

 473 

Fig.11 Graph with symmetries: fitness evolution (mean, max, standard). 474 

 475 

Fig. 12 Graph with symmetries: criteria evolution (balance, flow cut). 476 

 477 
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Having validated our algorithm on the toy network, we propose now to apply it on a real airspace. 478 

 479 

6.2    Second test: application to a real airspace 480 

Our algorithm has been tested on a Maastricht (EDYYBUTA) Area Control Center (ACC). This area 481 

initially consists of 8 elementary sectors. For this second test we have prepared two scenarios. In the 482 

first scenario, we use existing elementary sectors of today’s airspace (Fig. 13). Those sectors are big 483 

and not flexible enough, as they are loaded differently during the day. For this scenario, the number of 484 

initial sectors is small, and so all of them are considered as non-sharable blocks. In the second scenario, 485 

we use 32 sharable and non-sharable blocks (Fig. 14) located on 2 altitude layers and created only for 486 

the purpose of our experiments in order to increase the flexibility of new sector configurations (Sergeeva 487 

et al., 2015). These blocks are much smaller; as a result, the workload is better distributed between 488 

them. Each scenario is based on free route simulated trajectories, which provide a sample of full free 489 

route trajectories for the 11th of July 2014 crossing Maastricht/Amsterdam Airspace. 490 

Tuning of the controlling parameters of the algorithm (such as generations number, population size, 491 

mutation/crossover ratio) is required due to the specific properties of each airspace area. The parameter 492 

values are selected after running several tests in order to obtain a required result. 493 

 494 

Fig. 13 Eight elementary sectors of the Maastricht ACC (EDYYBUTA). 495 
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 496 

 497 

Fig. 14 Thirty-two experimental sharable and non-sharable blocks. 498 

 499 

In this test, the mutation rate is selected to be bigger than the crossover rate, as the mutation 500 

operators allow the algorithm to converge faster. The number of generations and the size of the 501 

population are chosen according to the size of the network. For example, the first scenario requires 502 

smaller number of generations in order to obtain a near optimum solution. The values of proportion 503 

coefficients in the objective function are chosen according to interviewed operational experts. The 504 

highest priority is given the workload imbalance minimization. The remaining criteria are sorted by 505 

priority as follows: short-crossings, re-entries, the number of “balconies” and flow cuts. 506 

The parameters defining the overall resolution methodology for both scenarios are empirically set, 507 

and presented in Table 1. 508 

Numerical results from computational experiments for two proposed scenarios are presented in 509 

Tables 2 and 3. These two tables include the following data (per each time period): the number of 510 

sectors in the configuration, an average workload imbalance per 1 h, the number of re-entries and the 511 

number of short-crossings. The execution time for both scenarios is less than a few minutes (1-2 min). 512 

 513 

 514 

 515 
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Table 1 Values of main criteria of the algorithm. 516 

Parameter Scenario 1 Scenario 2 

Generations 200 1000 

Population size 300 1000 

Mutation/crossover ratio 0.6/0.2 0.6/0.2 

Targeted workload 360 360 

Time period (h) 7 – 18 7 – 18 

Period size (h) 1 1 

α1, α2, α3, α4, α5 0.6, 0.05, 0.1, 0.1, 0.2 0.6, 0.05, 0.1, 0.1, 0.2 

Table 2 Results for the scenario 1. 517 

Time period (h) Number of sectors Imbalance Number of re-entries Number of short-crossings 

7 – 8 4 0.10 0 1 

8 - 9 5 0.24 0 6 

9 – 10 5 0.30 0 11 

10 – 11 5 0.22 0 7 

11 - 12 5 0.19 0 9 

12 – 13 4 0.20 0 3 

13 – 16 6 0.18 0 9 

16 – 17 4 0.24 0 8 

17 – 18 4 0.10 0 6 

Table 3 Results for the scenario 2. 518 

Time period (h) Number of sectors Imbalance Number of re-entries Number of short-crossings 

7 – 8 5 0.10 4 7 

8 – 9 5 0.14 3 11 

9 – 10 5 0.18 2 6 

10 – 11 5 0.17 7 8 

11 – 12 5 0.13 2 8 

12 – 13 5 0.12 5 8 

13 – 14 6 0.14 4 8 

14 – 15 6 0.08 6 8 

15 – 16 5 0.05 2 9 

16 – 17 5 0.08 1 5 

17 – 18 4 0.06 2 6 

 519 
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Controlled sectors built by the algorithm for the second scenario are much better balanced in 520 

terms of the workload than sectors built for the first scenario. However, some of the sectors proposed for 521 

the second scenario have undesired shapes like “balconies”. Nevertheless, balanced sectors with only 522 

few “balconies” are considered by operational specialists as an acceptable solution. Then, the number 523 

of re-entries is higher for the second scenario, this is explained by the shape of the initial blocks; they do 524 

not have enough convex shapes, thus, combinations of such blocks are not well adapted to a traffic 525 

pattern. 526 

The second scenario proves the idea of using more adaptive blocks instead of those that are 527 

currently used in the airspace management. As a matter of fact, the quality of the workload balance is 528 

mainly linked to the number of input blocks. With a bigger number of input blocks we can obtain less 529 

unbalanced sector configurations. 530 

From the provided results we can conclude that the algorithm is quite efficient for the workload 531 

balancing. However, it is hard for the algorithm to remove all defects of sector shapes such as 532 

“balconies” and obtain sectors with convex shapes. The algorithm can later be modified in order to 533 

receive rather convex shapes of the resulting sectors in both horizontal and vertical directions. 534 

Next we compare configurations built by the algorithm with the existing configurations (Table 4), 535 

used at the day of operation and also with the solution built by the improved configuration optimizer (ICO) 536 

system tool (Table 5) of Eurocontrol (Vehlac, 2005). The ICO tool uses a limited number of predefined 537 

sectors configurations to construct a full timetable for the day (an opening scheme), based on known 538 

traffic pattern and current organizational framework. ICO provides a limited flexibility, as it uses already 539 

existing configurations that are not well adapted to the traffic. In order to evaluate the workload 540 

imbalance in those configurations, instead of using the same targeted workload as in two solution 541 

scenarios, we use an average workload of sectors in each configuration. 542 

Table 4   Evaluation of existing configurations. 543 

Period Number of sectors Imbalance Number of re-entries Number of short-crossings 

06:30 - 08:00 5 0.37 1 10 

08:00 - 09:30 6 0.36 0 15 

09:30 - 11:00 5 0.33 0 20 
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11:00 - 12:00 6 0.42 2 14 

12:00 - 13:30 5 0.38 0 20 

13:30 - 14:30 6 0.48 0 12 

14:30 - 15:00 5 0.35 0 3 

15:00 - 15:30 6 0.43 0 4 

15:30 - 18:00 5 0.19 2 20 

 544 

Table 5 Evaluation of the ICO tool results. 545 

Period Number of sectors Imbalance Number of re-entries Number of short-crossings 

07:11 - 08:10 6 0.28 0 6 

08:11 - 09:10 6 0.31 0 6 

09:11 - 10:49 6 0.34 0 22 

10:50 - 12:06 6 0.39 2 21 

12:07 - 14:02 6 0.39 0 15 

14:03 - 15:02 6 0.36 1 10 

15:03 - 16:43 6 0.30 1 21 

16:44 - 18:15 6 0.26 1 18 

 546 

Fig. 15 shows a significant improvement of the quality of the configurations provided by the 547 

solution scenarios, especially in terms of the workload balancing. The results of the ICO tool show 548 

worse performance, as this tool does not improve configurations, but it selects for each computed time 549 

period one suitable configuration among the existing ones. In the future research, the output of our 550 

algorithm can be used as an input for the ICO tool, and a combination of both algorithms could provide 551 

better results. 552 

 553 

Fig. 15 An average workload imbalance in configurations proposed by the algorithm (for two scenarios), in existing 554 

configurations and in configurations proposed by the ICO tool. 555 
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It can be seen that configurations from Tables 2, 3, 4 and 5, taken for the same time period, are 556 

built of the different number of sectors. ICO aims to reduce overloads in configurations, so it uses the 557 

maximum number of controlled sectors per configuration. In the existing configurations, the number of 558 

sectors can vary depending on the number of available controllers during the day. Then, our algorithm 559 

tries to find configurations with the most suitable number of sectors. This means that the number of 560 

sectors in configuration created by the algorithm roughly derives from the chosen value of the targeted 561 

workload and the total workload of the ACC for the given time period. 562 

Presented results show that our method, which freely combines airspace blocks, enables to 563 

propose balanced sectors configuration. The algorithm attempts to keep the value of the workload of 564 

each controlled sector close to some given value. The quality of the workload balance is linked to the 565 

performance of the algorithm and to the features of the benchmark. Indeed, if there are many input 566 

blocks almost equally loaded, it is easy to find a well balanced solution (Table 3). Considered here 567 

Maastricht ACC is originally divided into non-equally loaded airspace blocks, which are evidently hard to 568 

group into several equally loaded controlled sectors. Airspace blocks used for the second scenario 569 

increase the adaptability of the airspace to the traffic pattern, however shapes of these blocks are not 570 

enough convex. As a result, controlled sectors in the second scenario are better balanced, but show 571 

less performance in terms of other costs. If we want to obtain rather balanced sectors with good shapes 572 

and better adapted to the traffic, a new set of initial blocks is required. 573 

7    Conclusions 574 

The algorithm presented in this paper solves the DAC problem. At the first step, a weighted graph of the 575 

airspace has been proposed. Based on this initial graph, a method for solving a multi-period graph 576 

partitioning problem has been developed. Due to the induced complexity, a population-based 577 

metaheuristic optimization algorithm has been chosen for solving the DAC problem. 578 

Genetic algorithms give good results on graph partitioning problems, but at some computational 579 

cost. The number of criteria and constraints in the DAC problem is highly increasing the complexity of 580 

the algorithm. One of the main problems for us was to create suitable recombination operators, which 581 

could sufficiently enrich the space of solutions. 582 
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The developed algorithm, applied to real airspace, has produced realistic and fairly good results. 583 

Computed configurations have been compared with the existing airspace configurations and with 584 

results obtained using ICO tool, developed by Eurocontrol. The provided results demonstrate that the 585 

new solution fits with the requirements of the DAC concept and in some way outperforms the existing 586 

ones. 587 

Further improvements can be investigated to improve the performance of the algorithm. We can 588 

use more advanced workload metric in order to better reflect the associated traffic complexity in the 589 

sector. For instance, we could use a metric like convergence rate or Lyapunov exponents (Delahaye 590 

and Puechmorel, 2010). Then, in order to obtain operationally feasible sectors, it would require adding 591 

more geometrical constraints. 592 

 593 

References 594 

Antosiewicz, M., Koloch, G., Kaminski, B., 2013. Choice of best possible metaheuristic algorithm for the 595 

travelling salesman problem with limited computational time: quality, uncertainty and speed. 596 

Journal of Theoretical and Applied Computer Science 7(1), 46-55. 597 

Back, T., Hoffmeister, F., Schwefel, H., 1991. A survey of evolution strategies. In: The fourth 598 

International Conference on Genetic Algorithm, San Mateo, 1991.  599 

Bloem, M., Gupta, P., 2010. Configuring airspace sectors with approximate dynamic programming. In: 600 

The 27th International Congress of the Aeronautical Sciences (ICAS), Nice, 2010. 601 

Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: overview and conceptual 602 

comparison. ACM Computing Surveys 35 (3), 268-308.  603 

Christien, R., Benkouar, A., Chaboud, T., et al., 2003. Air traffic complexity indicators and ATC sectors 604 

classification. In: 21st Digital Avionics Systems Conference, Irvine, 2003. 605 

Davis, L., 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. 606 

Delahaye, D., Alliot, J., Schoenauer, M., et al., 1995. Genetic algorithms for automatic regrouping of air 607 

traffic control sectors. In: The 4th International Conference on Evolutionary Programming, San 608 



 

 
 

32

Diego, 1995. 609 

Delahaye, D., Puechmorel, S., 2010. Air traffic complexity based on dynamical systems. In: The 49th 610 

IEEE Conference on Decision and Control, Atlanta, 2010.  611 

Delahaye, D., Schoenauer, M., Alliot, J.M., 1998. Airspace sectoring by evolutionary computation. In: 612 

The IEEE World Congress on Computational Intelligence, Anchorage, 1998.  613 

Eurocontrol, 2015. Dynamic airspace configuration. Technical report, SESAR WP7.5.4 project, OSED 614 

step2/V2. 615 

Fogel, L., Owens, A., 1966. Artificial Intelligence Through Simulated Evolution. John Wiley & Sons, 616 

London. 617 

Gianazza, D., 2010. Forecasting workload and airspace configuration with neural networks and tree 618 

search methods. Artificial Intelligence 174(7-8), 530-549. 619 

Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning, first ed. 620 

Addison-Wesley Longman Publishing Co., Inc., Boston. 621 

Han, S.C., Zhang, M., 2004. The optimization method of the sector partition based on metamorphic 622 

voronoi polygon. Chinese Journal of Aeronautics 17(1), 7-12. 623 

Holland, J., 1975. Adaptation in Natural and Artificial Systems. Massachusetts Institute of Technology 624 

(MIT) Press, Cambridge. 625 

Kernighan, B.W., Lin, S., 1970. An efficient heuristic procedure for partitioning graphs. The Bell System 626 

Technical Journal 49 (2), 291-307.  627 

Klein, A., Lucic, P., Rodgers, M., et al., 2012. Exploring tactical interaction between dynamic airspace 628 

configuration and traffic flow management (DAC-TFM). In: The 31st Digital Avionics Systems 629 

Conference, Williamsburg, 2012.  630 

Klein, A., Rodgers, M., Kaing, H., 2008. Dynamic FPAs: a new method for dynamic airspace 631 

configuration. In: Integrated Communications, Navigation and Surveillance Conference, 632 

Bethesda, 2008.  633 

Kohonen, J., 1999. A brief comparison of simulated annealing and genetic algorithm approaches. 634 

Available at: https://www.cs.helsinki.fi/u/kohonen/papers/gasa.html (Accessed 1 April 2016). 635 



 

 
 

33

Kopardekar, P., Bilimoria, K., Banavar, S., 2007. Initial concepts for dynamic airspace configuration. In: 636 

The 7th American Institute of Aeronautics and Astronautics (AIAA) Aviation Technology, 637 

Integration and Operation Conference (ATIO) Conference, Atlanta, 2007. 638 

Koza, J., 1992. Genetic Programming. MIT Press, Cambridge. 639 

Majumdar, A., Ochieng, W., 2002. Factors affecting air traffic controller workload: multivariate analysis 640 

based on simulation modelling of controller workload. Transportation Research Record 1788, 641 

58–69. 642 

Martinez, S., Chatterji, G., Sun, D., et al., 2007. A weighted-graph approach for dynamic airspace 643 

configuration. In: The AIAA Conference on Guidance, Navigation, and Control (GNC), Atlanta, 644 

2007. 645 

Michalewicz, Z., 1992. Genetic algorithms + Data Structures = Evolution Programs. Springer-Verlag, 646 

Berlin. 647 

Miller, B.L., Goldberg, D.E., et al., 1995. Genetic algorithms, tournament selection, and the effects of 648 

noise. Complex Systems 9(3), 193–212. 649 

Mukherjee, S., Datta, S., Chanda, P.B., et al., 2015. Comparative study of different algorithms to solve 650 

n-queens problem. International Journal in Foundations of Computer Science and Technology 651 

(IJFCST) 5(2), 15-27. 652 

Nair, T.R.G., Sooda, K., 2010. Comparison of Genetic Algorithm and Simulated Annealing Technique 653 

for Optimal Path Selection in Network Routing. arXiv: 1001.3920. Available at: 654 

http://arxiv.org/abs/1001.3920 (Accessed 1 April 2016). 655 

Rossi-Doria, O., Sampels, M., Birattari, M., et al., 2002. A Comparison of the Performance of Different 656 

Metaheuristics on the Timetabling Problem. In: International Conference on the Practice and 657 

Theory of Automated Timetabling, Berlin, 2002. 658 

Savage, J.E., Wloka, M.G., 1989. Heuristics for Parallel Graph-partitioning. Brown University, 659 

Providence. 660 

Sergeeva, M., Delahaye, D., Zerrouki, L., et al., 2015. Dynamic airspace configurations generated by 661 

evolutionary algorithms. In: The 34th Digital Avionics Systems Conference, Prague, 2015. 662 

Silberholz, J., Golden, B., 2010. Comparison of metaheuristics, in: Gendreau, M., Potvin, J. (Eds.), 663 



 

 
 

34

Handbook of Metaheuristics Springer-Verlag, Boston, pp. 625-640. 664 

Talbi, E.G., 2009. Metaheuristics: from Design to Implementation. John Wiley & Sons, London. 665 

Tang, J., Alam, S., Lokan, C., et al., 2011. A multi-objective approach for dynamic airspace sectorization 666 

using agent based and geometric models. Transportation Research Part C: Emerging 667 

Technologies 21(1), 89-121. 668 

Trandac, H., Duong, V., 2002. A constraint-programming formulation for dynamic airspace sectorization. 669 

In: The 21st Digital Avionics Systems Conference, Irvine, 2002. 670 

Vehlac, C.S.M., 2005. Improved configuration optimizer. ECC note No 10/05. 671 

Chen, Y., Bi, H., Zhang, D., et al., 2013. Dynamic airspace sectorization via improved genetic algorithm. 672 

Journal of Modern Transportation 21(2), 117–124. 673 

Zelinski, S., Lai, C.F., 2011. Comparing methods for dynamic airspace configuration. In: The 30th Digital 674 

Avionics Systems Conference, Seattle, 2011. 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 



 

 
 

35

 692 

Marina Sergeeva received the MSc degree in computer science from Department of Information 693 

Measuring Systems and Physical Electronics at Petrozavodsk State University in 2010. She is currently 694 

working toward the PhD degree at Ecole Nationale de l’Aviation Civile (ENAC), Toulouse, France. Her 695 

research concerns airspace design. 696 

 697 

 698 

Daniel Delahaye obtained his engineer degree from ENAC and his MSc in signal processing from the 699 

National Polytechnic Institute of Toulouse (1991). He obtained his PhD in automatic control from the 700 

Aeronautic and Space National School (1995). He is now the head of the optimization group of the 701 

MAIAA laboratory of ENAC and is conducting research on stochastic optimization for airspace design 702 

and large-scale traffic assignment. 703 

 704 

 705 

Catherine Mancel received the MSc degree in computer science and production management from 706 

University of Clermont-Ferrand, France, in 2000, and the PhD degree in operations research from the 707 

National Institute of Applied Science (INSA), Toulouse, France in 2004. She is an associate professor 708 

with the ENAC, Toulouse, France, since 2005. She teaches and conducts research in air transportation 709 



 

 
 

36

modelling and operations research. 710 

 711 

 712 

 713 

Andrija Vidosavljevic graduated from the Faculty of Transport and Traffic Engineering, University of 714 

Belgrade (UB-FTTE) in 2007 in the field of air transportation. He received a PhD at the division of 715 

airports and air traffic safety from UB-FTTE in 2014. He is currently post-doctoral researcher at 716 

ENAC/MAIAA lab. 717 

 718 


