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Abstract—In this article, we evaluate the robustness of a detect
and avoid algorithm designed for the integration of UASs in
terminal control areas. This assessment relies on a realistic
modeling of navigation accuracy on positions and velocities and
was carried out on thousands of scenarios built from recorded
commercial traffic trajectories. The tested scenarios involved
two different types of UASs – flying at 80kts and 160kts –
with various missions, and three strategies for separation: one
focussing on the separation distance, one focussing on the UAS
mission and and combination of both.

Fast-time simulation was used to evaluate each scenario against
a wide range of accuracy levels corresponding to required naviga-
tion precision standards and linked to on-board navigation and
communication systems. Experiments reveal a strong robustness
of the separation algorithm up to relatively high uncertainty
levels, indicating that UASs equipped with low accuracy navi-
gation systems can still manage proper separation. However, the
maneuvering cost for separation increases when the accuracy
deteriorates. Nevertheless, a UAS with GPS-based navigation
in a collaborative environment (e.g. aircraft providing their
navigation parameters through ADS-B) can expect robustness
at a reasonable cost.

Keywords—UAS, detect & avoid, robustness, navigation accu-
racy, self-separation, geometrical algorithm

I. INTRODUCTION

Operations of unmanned aircraft systems (UASs) have
drastically increased [1] in the past few years, as the technology
has spread from military use to various civilian applications
such as aerial surveying, search and rescue or scientific research.
Due to the nature of these tasks, most UASs operate in the lower
airspace, where their mission might interfere with airliners
departures and arrivals at airports. The integration of UASs in
terminal control areas (TCAs) has thus become a challenging
problem both in ATM and on-board systems communities, so
that research and development of systems and algorithms to
ensure the separation between a UAS and regular traffic are
on the rise.

Several strategies can be explored in this context. First,
separation can be entirely managed by Air Navigation Service
Providers. Experiments [2] showed that Air Traffic Con-
trollers resolution process is hindered by UASs mixed with
conventional traffic because they have unusual performance
specifications and interact with different time responses.

Separation could otherwise be delegated to both commercial
aircraft and UASs which could autonomously maneuver to
resolve potential conflicts. However, complex processes of
coordination should be considered in such a context to keep
Air Traffic Controllers aware of the resolution process and able
to interfere in it.

Finally, conflict resolution could be taken care of by UASs
only such that they do not disrupt the commercial traffic. This
seems a more realistic approach, provided that the positions
and speeds of surrounding aircraft are available (through
ADS-B for example) and that the performances of UASs and
the resolution anticipation are sufficient to solve all traffic
situations. In previous work [3], [4], [5], we investigated the
latter strategy by adapting a self-separation algorithm used in
robotics [6] to our context and carried out experiment with
various parameters and strategies on real traffic samples. In
this paper, we propose to test the robustness of this algorithm
in presence of navigation errors by conducting a sensitivity
analysis based on a probabilistic model of position and velocity
accuracy.

A. Related Works

When the concept of Free-flight emerged in the 90s, one of
the ideas was then to equip every aircraft with a detect and
avoid algorithm able to ensure separation with the rest of the
traffic.

The first effective approach used sliding forces to coordinate
maneuvers between aircraft [7]. Potential or vortex fields [8]
as well as a model based on an analogy with electrical particle
repulsion [9] were also used. In 2001, we proposed a token
allocation strategy combined with an A∗ algorithm to solve
conflicts with realistic maneuvers [10], [11]. Even if some
maneuvers could be simultaneously decided, a complete ranking
of aircraft was necessary and finding an optimal ranking has
been shown to be problem-dependent [12]. We also tried
artificial Neural Networks on the two-aircraft problem [13]
but they could not be generalized to handle more aircraft. All
these approaches have been tested on en-route traffic, mainly
with leveled aircraft.

Geometrical algorithms have also been widely studied in
robotics [14], [15], [16], [6]. The powerful Optimal Reciprocal
Collision Avoidance (ORCA) technique developed by Van den



Berg et al. [6] can handle thousands of agents in a small space.
It was applied to aircraft by Snape et al. [16], but the hypotheses
of the algorithm require simultaneous vertical and horizontal
speed changes. We also tested them [3] in the horizontal plane
with speed constraints and showed that this algorithm is unable
to deal with high densities of traffic when the speed norm
cannot be changed.

More generally, conflict resolution has been proven to
be a highly combinatorial optimization problem [17]. Most
centralized approaches that have been proposed to solve
conflicts can be broadly divided into two main categories.
The first ones [18], [19], [20] use greedy sequential algorithms
to optimize trajectories one after the other based on a ranking
of aircraft (ordering aircraft is however very challenging [12]).
The others try to find the global optimum without the need to
prioritize aircraft. Among this second category, many models
define aircraft trajectories through simple analytic expressions
that introduce strong limits on the type of situations that can
be dealt with, as the ones described in [21], [22], [23], [24],
[25], [26]. In [27], [28], we proposed a model to solve multiple
aircraft conflicts based on Metaheuristics (Genetic Algorithm
and Tabu Search) using trajectory simulation with uncertainties.
However, these works mainly targeted en-route traffic control
and used simulated traffic only with the BADA model on real
flight plans.

B. Detect & Avoid

In this article, we come back to a simpler problem in a more
realistic environment. We consider UASs flying in the lower
airspace (under FL180) and design various conflict scenarios
with real recorded commercial aircraft trajectories in TCAs.
The aim of the study is to assess the robustness of a “detect and
avoid” strategy for UASs to maintain a reasonable horizontal
separation with commercial traffic. The evaluated algorithm
is derived from ORCA and was tested with different speed
constraint hypotheses by Durand et al. [3] in the context of
autonomous air conflict resolution. Compared to these first
experiments, we then tailored this geometrical approach further
in [4] and [5] to model the performances of UASs and consider
specific fallback strategies to handle cases for which the first
approach fails to maintain separation. The adaptation of ORCA
to the integration of UASs in commercial traffic lead to the
following major differences from the preliminary work:

• The whole avoidance maneuver is endorsed by the UAS.
• UASs used in a civilian context generally fly with low

speeds compared to commercial aircraft. The ratio we used
in this article can go from 1.5 to 5. We focus on the lower
airspace where the aircraft speed is theoretically limited
at 250 kts, but recorded data show that in practice some
aircraft fly much faster (up to 400 kts). In this study, we
consider two types of UASs: fast UASs flying at 160 kts
and slow UASs flying at 80 kts.

• Moreover, most civilian UASs have very poor speed up
performances compared to conventional aircraft. We will
therefore only consider maneuvers at constant speed for

UASs, as this degree of freedom would have almost no
effect on the resolution process with realistic traffic.

• Commercial aircraft flying in the lower airspace are
generally climbing or descending and their speeds are
constantly changing, either increasing when climbing, or
decreasing when descending and changing direction as
well. This factor has a great influence on the detect and
avoid strategy in order to ensure that a reasonable distance
to the encountered traffic can be maintained. Using real
traffic data is therefore essential to validate a resolution
algorithm for such evolving and intricate traffic.

• Air traffic trajectory prediction, which is one of the main
component of a conflict solver, is always tainted with
uncertainties that must be taken into account to assess the
efficiency of an algorithm. We show how our approach
can handle uncertainties by providing robust resolution
maneuvers.

The main contribution in this paper is to perform a sensitivity
analysis of such a solution, taking as input a realistic mod-
eling of positioning and navigation sensors as the geometric
algorithm is based on relative positions and speeds only.

C. Outline

Section II presents the geometrical algorithm and describes
different strategies to choose the maneuver when a potential
loss of separation is detected. In section III, we describe a
probabilistic model for position and velocity accuracy that takes
into account the time-correlation of successive measurement
errors observed for many navigation sensors. This section also
provides reference values for the uncertainty levels issued
from reference documents. Section IV describes the simulation
framework, scenarios and data used throughout our sensitivity
analysis and shows the results obtained from almost 300 000
fast-time simulations. The impact of navigation errors on both
the separation and the cost of maneuvers are analysed. The
last section draws some conclusion on the robustness of our
geometrical algorithm and highlights directions for future work.

II. DETECT AND AVOID MODEL

This section describes the Optimal Reciprocal Collision
Avoidance (ORCA) algorithm developed in [6] and its adapta-
tion to the case where only one aircraft (the UAS) maneuvers.
We first detail how the constraints are computed for a single
aircraft, then propose different strategies to modify the heading
of the UAS in order to avoid the constraints with a fixed
velocity. We also describe a fallback strategy to minimize the
separation violation when our model has no solution within the
allowed turning range. Our model is then further extended to
simultaneously take into account several aircraft while keeping
the UAS speed constant.

A. Constraint Model

Let d be the target separation distance and τ be a look ahead
time. In figure 1, let us consider UAS A and aircraft B. We
can represent the position of aircraft B in the referential of
UAS A. If we draw a circle of radius d centered at aircraft B,
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Figure 1. Conflicting aircraft model: a conflict will occur within time τ if
and only if the relative speed #»vr lies in the forbidden zone in red.

the two lines issued from position A, tangent to the circle of
radius d form a cone. If the relative speed #»vr =

# »vA − #  »vB lies
in this cone, a conflict will occur in the future. If we draw a
circle of size d

τ tangent to the two previous lines, we obtain a
new zone (in light red) bounded by the bold line in figure 1. It
is then straightforward to understand that a conflict will occur
within time τ if and only if #»vr lies in this zone. If this is the
case, then it is necessary to modify the speed vector # »vA in
such a way that the resulting relative speed vector

#»

v′r is outside
of the constraint.

B. Possible Heading Range

In this paper, we consider that heading changes are the
only possible maneuvers for UAS. Velocity changes were also
considered, but were ruled out for several reasons:
• The capacity of a small UAS to accelerate is poor, so that

a velocity increase would be limited in amplitude and
would take too long to enforce.

• It has been observed in a previous study [5] that the
higher the velocity of the UAS, the better the chances
the avoiding maneuver has to succeed. Velocity reduction
therefore seems unpromising.

• The velocity of UASs is low compared to aircraft. A slight
modification of this velocity would be almost negligible.

To ensure that the norm of the speed of the UAS remains
constant throughout the conflict resolution process, we must
have: ∥∥∥ # »

v′A

∥∥∥ = ‖ # »vA‖

As
#»

v′r =
# »

v′A − #  »vB , we also have:

(xv′r + xvB )
2 + (yv′r + yvB )

2 = ‖ # »vA‖2

which means that the possible endpoints of
#»

v′r belongs to a
circle of radius ‖ # »vA‖ centered at A− #  »vB as shown on figure 2.
But

#»

v′r must also lie outside the forbidden zone defined in the
previous section, which removes all angle ranges of the circle
included in it (in red on the figure). The remaining angles
must be further filtered by intersecting the allowed turn angle
range θ corresponding to the performance of the UAS, i.e. an
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# »vA #  »vB

#»vr

# »

v′A

Figure 2. Possible headings for conflict avoidance: the end of
#»

v′r must lie on
the circle but outside of the forbidden zone (in light red) and in the allowed
turn angle range of ±θ (θ = 30◦) around #  »vA, which leaves the tiny green
safe zone as possible new heading for the UAS.

arc of ±θ around the current speed shown in blue on figure 2
(θ = 30◦ in this paper).

The conflict-free heading change thus ranges over an arc of a
circle (pictured in green on figure 2) which is the difference of
the allowed (in blue) and forbidden (in red) arcs. In scenarios
involving several conflicting aircraft, constraints are computed
as described above for each aircraft, and the resulting constraint
is simply the union of forbidden headings for each constraint,
possibly containing several disjointed forbidden ranges.

C. Heading Change Strategies

As mentioned in the previous section, the conflict-free
solution set is generally not a singleton, so a decision must be
taken to choose the “best” angle within possibly discontinuous
angle ranges. We define several possible strategies in the
following sections.

1) Closest: The new speed for the UAS can be chosen
with the available angle that minimizes the heading change,
which will result in optimizing “maneuver quantity” (a measure
defined in section IV-B). This strategy will be referred to as
Closest in the remaining sections and is pictured in figure 3.

Because it is expected that the relative performance of
airliners and UASs will create many unsolvable scenarios,
for which losses of separation will occur, it likely preferable to
choose an angle that leaves some leeway for the next resolution
steps, i.e. which does not saturate the separation constraint.

2) Safest: To maximize the expectation of escaping a
future conflict in case of further maneuvering of aircraft
B (without any knowledge of its intended trajectory), the
new heading could instead target the median value of the
largest unconstrained angle range that at least intersects the
maneuvering capacity of the UAS (in case of several disjointed
angle ranges), which will optimize the robustness of the
maneuver. This target heading is depicted in figure 3 as speed
vector #          »vtarget . Then the selected heading is simply the nearest
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Figure 3. Closest and Safest speeds, computed from #  »vA, given the constraints
in red and turn angle range in blue.

to this target in the maneuverability range. This strategy will be
referred to as Safest below and its result is shown in figure 3.

However, the overestimate of the conflicting situation inher-
ent to the Safest strategy can lead to unacceptable amounts of
heading changes and totally disregards the UAS mission and
flight plan.

3) Hybrid: The two strategies can in fact be combined to
benefit from their respective advantages while getting rid of
their drawbacks. The Closest strategy could be favored while
there is still time and space to solve potential future conflicts,
resorting to the Safest one before the situation becomes dire.
So we define the Hybrid strategy parametrized by γ ∈ R+ for
a set of (conflicting) aircraft positions F at a given time step:

Hybrid =

{
Closest if minB∈F

∥∥∥ #    »

AB
∥∥∥ > γd

Safest otherwise

Therefore, this parameter allows us to continuously slide from
a pure Closest strategy for γ = 0 to a pure Safest strategy for
γ = +∞; its influence on the detect and avoid algorithm was
discussed in [5]. For our sensitivity analysis, we will consider
strategies Closest, Safest and Hybrid with γ = 3.

4) Fallback Strategy: If the permitted heading range is
empty, it means that no turning angle can guarantee the
separation distance d for the next τ minutes. However, even if
a conflict occurs, a brief one at a distance just below the target
separation distance is preferable to a lasting close encounter.

To take into account this criterion while choosing a maneuver
whenever a loss of separation is inevitable, our algorithm resorts
to a fallback strategy consisting in reducing the separation
distance until a solution can be found anew. Our current
implementation uses a linear scheme with a constant step
(0.1NM in our experiments) and returns the corresponding
maneuver as soon as a solution is found.

III. MODELING POSITION AND VELOCITY ERRORS

The efficiency of the detect and avoid algorithm described
in the previous sections relies on the accuracy of UAS and
aircraft positions and velocities gathered through ADS-B. This
section presents a realistic model for uncertainties that will be
used to assess the robustness of our algorithm.

P (x, y)

#»v
εp

εv

#»vx

#»vy

Figure 4. Modeling of accuracy: εp (resp. εv) represents the 95% accuracy
bound for the position (resp. velocity) of UAS and aircraft. Each component
of the position (resp.velocity) follows a normal distribution.

A. Accuracy Categories

In order to comply with different airspace and procedure
categories, the Radio Technical Commission for Aeronautics
(RTCA) defines minimum system performance standards [29]
that aircraft must meet in order to be allowed to enter a given
type of airspace. Navigation Accuracy Categories for position
(NACp) are defined as the 95% accuracy metric that must be
provided by the position source. These categories depend highly
on the on-board equipment, and their values and associated
accuracies are provided in table I. In the same manner, such
categories are defined for velocity error (NACv, see table II).

As an example, the accuracy study for GPS from [30]
indicates that a GPS-based aircraft can be categorized as
NACp 9 and NACv 1 or 2, whereas [31] indicates that a
satellite-based navigation system enhanced by ground stations
(e.g. EGNOS1, WAAS2) yields a NACp 10 accuracy level.
This study proposes to assess the impact of accuracy category
on the efficiency of our detect and avoid algorithm. The next
section describes the modeling of position and velocity errors
used for this sensitivity analysis.

B. Accuracy Model

The accuracy of navigation systems is, most of the time,
expressed as a p-bound on the measurement error, where p
is given as a percentage. Therefore, each measurement error
could be represented as a normally distributed random variable.

In particular, we define εp as the 95% accuracy bound on
position, which ensures that 95% of measures for position lie
within a circle of radius εp centered on the actual aircraft (or
UAS) position. In the same manner, we define εv as the 95%
accuracy bound on velocity. Each component of position and
velocity (x, y, vx, vy) follows a normal distribution centered on
the actual value of the estimated parameter. Figure 4 illustrates
this uncertainty model.

However, this first model can produce consecutive values
that would be arbitrarily distant from each other, whereas most
measurement systems have an error that is time-correlated,

1European Geostationary Navigation Overlay Service
2Wide Area Augmentation System



Table I
NAVIGATION ACCURACY CATEGORIES FOR POSITION (NACP).

Category NACp 1 NACp 2 NACp 3 NACp 4 NACp 5 NACp 6 NACp 7 NACp 8 NACp 9 NACp 10 NACp 11
Accuracy 10NM 4NM 2NM 1NM 0.5NM 0.3NM 0.1NM 0.05NM 30m 10m 3m

Table II
NAVIGATION ACCURACY CATEGORIES FOR VELOCITY (NACV).

Category NACv 1 NACv 2 NACv 3 NACv 4
Accuracy 10m s−1 3m s−1 1m s−1 0.3m s−1

i.e. the error on a given measure depends on the errors
on the previous ones. Therefore, we decided to use the
ADS-B accuracy model from [32], which proposes a similar
probabilistic approach, except that it includes a correlation of
errors on positions and speed over time. This model is briefly
presented below.

We describe here how the time-correlated errors for each
value are expressed. Let X1, X2, . . . , Xn be random variables
such that Xi represents the error at time i (either on position
(x or y) or velocity (vx or vy)) in our model, and r the target
accuracy level (i.e. r = εp for position error model and r = εv
for velocity error model). Then the sequence of variables Xi

is modeled as a Markov chain described as:

Xi = e
−1
T Xi−1 + Ui (1)

where T is the time correlation of the process (T = 4 minutes
in our study) and Ui is a random variable following a normal
distribution3 N (0, σ2

u). The initial error (i.e. random variable
X0) follows a normal distribution N (0, σ2

X0
).

The standard deviation for random variables X is deduced
from the radial error on position (resp. velocity) and is
computed according to the following equation:

σX0
=

r√
−2 ln(1− p)

(2)

with p = 95% for our study. The variance of random variable
U is deduced from the Markov process from equation 1 and
the variance of X0 from equation 2 as:

σ2
u = σ2

X0
(1− e

−2
T ) (3)

Figure 5 shows the difference in the evolution of an uncorrelated
normal distribution and a time-correlated distribution built
according to the previously described scheme. Refer to [32]
for complete details about this model.

The next section presents the results of a sensitivity analysis
of the detect and avoid algorithm introduced in section II
towards the accuracy model previously described.

IV. SENSITIVITY ANALYSIS

Our geometrical algorithm and accuracy model were imple-
mented and used to perform a sensitivity analysis on a wide
range of situations derived from real recorded TCA traffic.

3We note N (µ, σ2) a normal distribution with mean µ and variance σ2.
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Figure 5. Comparison of an uncorrelated error (orange) and a time-correlated
(T = 4 minutes) error on position for NACp 7 (εp = 0.1NM).

Section IV-A describes the data set and scenarios used in this
study and section IV-B presents the results and analysis of our
experiments.

A. Input Data and Scenarios

Experiments were conducted on real traffic data, recorded
on 14th September 2013 in the TCA of Bordeaux in the south-
west of France. This provides a particularly realistic picture
of the types of trajectories that a UAS may encounter when
flying in real traffic. This is all the more necessary because
UASs are essentially meant to fly in the lower airspace where
most commercial traffic is climbing or descending.

UAS trajectories are built from recorded tracks of aircraft
with similar performances for two UAS types (flying at 80 kts
and 160 kts respectively), three vertical profiles (leveled flight,
climb and descent) and two horizontal profiles (constant
heading and circle around a fixed point), for a total of 6
different patterns for each UAS type.

We filtered trajectories that had at least six minutes of flight
under FL195, leaving us with a set of 475 aircraft trajectories.
For each UAS type, six conflicting scenarios are built based on
each aircraft trajectory by adequately inserting the UAS pre-
computed trajectory in such a way that a collision would occur
if no maneuver were issued. This procedure yields 6× 475 =
2850 traffic situations for each aircraft type.

A fast-time simulator enables us to play the trajectories
(both recorded and built) and to modify them by sending
maneuver messages consisting of a heading change and a turn
rate. Those messages are send to UASs only, other aircraft are
left unchanged.

In our experiments, we aimed at a 3NM separation between
aircraft and UASs. We do not take vertical separation into
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Figure 6. Evolution of the detect and avoid efficiency w.r.t. position accuracy.
Velocity accuracy is fixed at NACv 2.

account because we want to test the efficiency of the detect
and avoid process in the horizontal plane only. Further research
will be conducted in the vertical dimension. The detect and
avoid algorithm is triggered every ten seconds. The varying
parameters in this sensitivity analysis are the navigation
accuracy category for position and velocity, the UAS type
(distinguished by their velocity) and the heading choice strategy
(Closest, Safest or Hybrid). A total of 102 sets of parameters
were tested, adding up to 290 700 fast-time simulations.

B. Influence of navigation accuracy on detect and avoid
performance

For each set of parameters, all 2850 scenarios were run in
a fast-time simulation tool (each run was executed within one
tenth of a second on a 3.4GHz Intelr Xeonr workstation).
We measured various indicators of the efficiency of the conflict
avoidance maneuvers and counted the occurrences of “close
distance events,” which we set up to be the simulations where
the distance between the UAS and the aircraft went under
1NM, and which we will call airprox in the following.

Figure 6 pictures the evolution of the number of such
airproxes with position accuracy. The most interesting result is
that there is a very low variation in the range NACp 6-11 (i.e.
εp ≤ 0.3NM), meaning that the detect and avoid algorithm is
efficient even with reasonably high uncertainty about position
(as stated in section III-A, a GPS-based UAS can be categorized
NACp 8 or NACp 9). For lower accuracy categories however,
the efficiency quickly deteriorates, particularly when the
uncertainty εp is on the same order of magnitude as the target
separation distance. With a higher UAS velocity (which is
closely linked to its maneuverability, see [5]), the algorithm
still shows high performance, as only 3% to 4% scenarios
could not be solved for Safest and Hybrid strategies and a
UAS flying at 160 kts.

The number of airprox events is the primary indicator for the
efficiency of the detect and avoid strategy. Yet, the deviation of
the UAS from its trajectory and the number of maneuvers matter
as well: they can be seen as the cost of maintaining separation
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Figure 7. Evolution of the cost of conflict avoidance w.r.t. position accuracy.
Velocity accuracy is fixed at NACv 2.

or as a secondary objective to discriminate between solutions
with equivalent amounts of airprox. Let (m1,m2, . . . ,mk) be
the sequence of heading maneuvers issued from the detect
and avoid algorithm to the UAS for a given scenario. In order
to quantify this cost of maneuvers, we define the maneuver
quantity for this scenario as:

cost(m1, . . . ,mk) = |m1 − hdg0|+
k∑
i=2

|mi −mi−1|

where hdg0 is the heading of the UAS before the first maneuver
is issued.

Figure 7 shows the mean maneuver quantity for different
position accuracy categories. For this criterion as well, the
evolution is only significant for high error values (εp >= 1NM
or NACp 4 to 1). As observed in previous studies, the efficiency
of conflict avoidance is increased at the cost of more deviation
from the planned trajectory, with Closest strategy trying to
limit this amount but sometimes failing the conflict resolution,
Safest strategy giving priority to conflict avoidance no matter
the cost of the maneuver, and Hybrid strategy combining both
approaches. For the sake of readability, the legend for this
figure and those which come after was not repeated and is the
same as the legend for figure 6.

The same analysis has been carried out for velocity accuracy
and the results can be seen on figures 8 and 9. Figure 8,
which depicts the evolution of airprox events with respect
to NACv, shows that our detect and avoid algorithm is very
stable regarding speed uncertainties, as no increase in airprox
events can be noticed. However, the impact on the cost of
maneuvers, illustrated in figure 9, is significantly higher than
for positioning error.

On the basis of observations from section III-A, we chose
to plot the evolution of detect and avoid performance for
several representative UAS configurations corresponding to
different uncertainty levels. These configurations are described
in table III, associated to their accuracy categories. As expected
from the previous results, the number of airprox events
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Figure 9. Evolution of the cost of conflict avoidance w.r.t. velocity accuracy.
Position accuracy is fixed at NACp 7.

(figure 10) is stable. This means that our algorithm is robust as
even a relatively inaccurate configuration (NACp 7 - NACv 1)
can manage separation as well as a hypothetical fully accurate
UAS. Figure 11, on the other hand, shows that a better equipped
UAS will be able to maintain separation at a much lower cost,
the most precise realistic configuration (NACp 10 - NACv 4)
being very close to the best achievable maneuvers. A better
assessment method for the cost of maneuvers would be to
record the mission-time lost in the process of self-separation,
which will be the subject of future work.

V. CONCLUSION AND FUTURE WORK

Following previous work on a geometrical detect and avoid
algorithm – derived from ORCA [6] – for the integration
of unmanned aerial systems in terminal control areas, we
proposed an analysis of the robustness of such an algorithm
towards uncertainties on position and velocity measurements.
Navigation errors have been modeled as random variables,
taking into account the correlation of successive measurement
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Figure 10. Evolution of the detect and avoid efficiency for various typical
accuracy settings.
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Figure 11. Evolution of the cost of conflict avoidance for various typical
accuracy settings.

errors over time that typically occurs in most sensors, and
particularly in GPS receivers.

The sensitivity analysis was carried out on a set of 2850
realistic traffic scenarios issued from data recorded in a French
TCA for two UAS models (flying at 80 kts and 160 kts
respectively) and for three proposed resolution strategies: one
that gives priority to separation (Safest) but leads to costly

Table III
EXAMPLE UAS CONFIGURATIONS AND ASSOCIATED NAVIGATION

ACCURACY CATEGORIES.

Accuracy categories

Description Position Velocity

Hypothetical, fully accurate navigation εp = 0 εv = 0
GPS-based navigation enhanced with ground
stations (e.g. WAAS, EGNOS) combined with
inertial navigation

NACp 10 NACv 4

Standard GPS-based navigation NACp 9 NACv 3
GPS-based navigation with poor receiver antenna NACp 8 NACv 2
Radar-based navigation NACp 7 NACv 1



maneuvers, one that minimizes the amount of deviation from
planned trajectory (Closest) at the cost of a slightly less efficient
separation, and an intermediate strategy (Hybrid) that switches
from the latter to the former whenever the separation distance
falls below a given threshold. Many levels of position and
velocity accuracy were tested, representing a wide range of
UAS equipment for navigation and detection.

The most interesting result of this sensitivity analysis is
the adequate robustness of the separation provided by our
algorithm: only the most inaccurate configurations (e.g. with a
positioning error greater than 0.5NM) significantly increase
the number of airproxes in the simulations. Also, the velocity
accuracy, at least for the categories defined by RTCA standards,
has almost no influence on the capacity of the algorithm to
ensure separation. However, lower accuracy levels induce an
increase in the amount of deviation necessary to avoid the
conflict.

In order to improve the accuracy of our model, other
kinds of errors will be implemented in future developments.
In particular, communication latency and errors of ADS-B
transmitting systems can further deteriorate the accuracy of
position and velocity measures. Furthermore, because ADS-B
communications rely on antennas, masking effects can occur
depending on the relative positions and angular state of aircraft
and UASs, which can lead to missing data over short periods.
Our detect and avoid algorithm already stores past positions
and velocities for both the UAS and the adverse aircraft. This
history would help recover from such situations by providing
maneuvers based on previous states, but the impact on conflict
avoidance has to be measured in future work.

In some TCAs, the UAS might face noncollaborative aircraft,
i.e. aircraft that do not broadcast their position and speed
through ADS-B (e.g. small private aircraft might not be
equipped with ADS-B). In that case, the UAS shall rely on
other sensors for the detection part, such as on-board radar,
which are much less accurate. The analysis of such scenarios
would require heterogeneous values for uncertainties, with high
accuracy for UAS navigation and lower accuracy for aircraft
position and velocity.

As pictured in our results, several traffic situations could
not be efficiently solved, leading to an airprox. Because many
aircraft are equipped with TCAS, it would be interesting to
study how the detect and avoid algorithm and TCAS would
behave when combined.

One of the pitfalls of our method is that it only takes into
account the current positions and velocities, so that any further
change in the aircraft state could break the resolution, especially
with the Closest strategy. In order to improve the robustness
of the maneuvers, we plan to try and anticipate better, both
about aircraft intentions and UAS capabilities. Knowing the
past positions of the aircraft, it is possible to build a short-term
predicted trajectory based on the analysis of the derivatives of
its speed and turn angle. For example, the beginning or the end
of a turn, a climb or a descent could be inferred. Particular care
would have to be taken during the calibration phase, especially
when choosing the number of past states to consider: too many

states would create some latency in predictions, whereas too
few states would yield unreliable ones. If the aircraft trajectory
could be predicted this way, then it would become particularly
interesting to anticipate several maneuvers for the UAS. This
could be planned optimally with an A∗ or Dijkstra algorithm,
using the modified ORCA algorithm at each step to prune the
search tree or validate the existence of partial solutions, at
the cost of a significantly longer computation. It could also
be performed geometrically by an approximation of a few
maneuvers aggregated into a single one.
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[8] J. Košecká, C. Tomlin, G. J. Pappas, and S. Sastry, “2 1/2 d conflict
resolution maneuvers for atms,” in Proceedings of the 37th IEEE
Conference on Decision and Control, vol. 3, pp. 2650–2655, Dec. 1998.

[9] M. S. Eby and W. E. Kelly, III, “Free flight separation assurance using
distributed algorithms,” in IEEE Aerospace Conference. Proceedings,
vol. 2, pp. 429–441, Mar. 1999.

[10] G. Granger, N. Durand, and J.-M. Alliot, “Token allocation strategy for
free-flight conflict solving,” in IAAI 2001, 13th Conference on Innovative
Applications of Artificial Intelligence (H. Hirsh and S. Chien, eds.),
(Seattle, WA), pp. 59–64, AAAI Press, Aug. 2001.

[11] G. Granger, N. Durand, and J.-M. Alliot, “Optimal resolution of en-route
conflicts,” in Proceedings of the 4th ATM R&D Seminar, (Santa Fe, NM),
Dec. 2001.

[12] N. Archambault and N. Durand, “Scheduling heuristics for on-board
sequential air conflict solving,” in 23rd Digital Avionics Systems
Conference, vol. 1 of DASC 2004 Proceedings, (Salt Lake City, UT),
pp. 3.1–9, AIAA, IEEE, Oct. 2004.

[13] N. Durand, J.-M. Alliot, and M. Frédéric, “Neural nets trained by genetic
algorithms for collision avoidance,” Applied Intelligence, vol. 13, pp. 205–
213, Nov. 2000.

[14] I. Hwang, J. Kim, and C. Tomlin, “Protocol-based conflict resolution for
air traffic control,” Air Traffic Control Quarterly, vol. 15, no. 1, pp. 1–34,
2007.

[15] J. Le Ny and G. J. Pappas, “Geometric programming and mechanism
design for air traffic conflict resolution,” in Proceedings of the 2010
American Control Conference (ACC), pp. 3069–3074, June 2010.

[16] J. Snape and D. Manocha, “Navigating multiple simple-airplanes in
3D workspace,” in IEEE International Conference on Robotics and
Automation (ICRA), (Anchorage, AK), pp. 3974–3980, 2010.

www.abiresearch.com/press/small-unmanned-arial-systems-market-exceeds-us84-b
www.abiresearch.com/press/small-unmanned-arial-systems-market-exceeds-us84-b


[17] N. Durand, J.-M. Alliot, and J. Noailles, “Automatic aircraft conflict
resolution using genetic algorithms,” in 11th Annual Symposium on
Applied Computing, (Philadelphia, PA), pp. 289–298, ACM, Feb. 1996.

[18] F. Krella et al., “Arc 2000 scenario (version 4.3),” tech. rep., Eurocontrol,
Apr. 1989.

[19] Y.-J. Chiang, J. T. Klosowski, C. Lee, and J. S. Mitchell, “Geometric
algorithms for conflict detection/resolution in air traffic management,”
in Proceedings of the 36th Conference on Decision and Control, vol. 2,
(San Diego, CA), pp. 1835–1840, Dec. 1997.

[20] J. Hu, M. Prandini, A. Nilim, and S. Sastry, “Optimal coordinated
maneuvers for three dimensional aircraft conflict resolution,” Journal
of Guidance, Control and Dynamics, vol. 25, pp. 888–900, Sept.–Oct.
2002.

[21] J.-H. Oh, J. M. Shewchun, and E. Feron, “Design and analysis of conflict
resolution algorithms via positive semidefinite programming [aircraft
conflict resolution],” in Proceedings of the 36th Conference on Decision
and Control, vol. 5, (San Diego, CA), pp. 4179–4185, Dec. 1997.

[22] E. Frazzoli, Z.-H. Mao, J.-H. Oh, and E. Feron, “Resolution of conflicts
involving many aircraft via semidefinite programming,” Journal of
Guidance, Control and Dynamics, vol. 24, pp. 79–86, Jan. 2001.

[23] L. Pallottino, A. Bicchi, and E. Feron, “Mixed integer programming for
aircraft conflict resolution,” in AIAA Guidance, Navigation, and Control
Conference and Exhibit, (Montréal, Canada), Aug. 2001.
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