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ABSTRACT  

 

In the context of GNSS signals and associated 

augmentation systems modernization, new modulations 

are envisaged. More precisely Galileo E1C, the pilot 

component of the E1 Open Service signal 

(CBOC(6,1,1/11) modulation), Galileo E5a and GPS L5 

(BPSK(10) modulation) are signals that will be used by 

civil aviation receivers for pseudorange computation. To 

meet stringent requirements defined for civil aviation 

GNSS receivers, the characterization of distortions which 

could affect a GNSS signal in a hazardous way is required. 

In particular, expected signal distortions generated at 

payload level are described by Threat Models (TM). 

Distortions incorporated in the TM are also called Evil 

WaveForm (EWF). 

These TMs, and their associated parameter ranges, referred 

to as Threat Space (TS), are powerful and necessary tools 

to design and test the performance of Signal Quality 

Monitor (SQM). The SQM is a mean to detect the presence 

of dangerous signal distortions and is necessary to protect 

users with high requirements in terms of integrity, 

accuracy, availability, and continuity (for example civil 

aviation users). Nowadays, this monitoring task is 

performed by GBAS and SBAS reference stations for GPS 

L1 C/A to warn the user in a timely manner. In this paper, 

SQMs for Galileo E1C and Galileo E5a will be designed 

and compared by mean of an innovative representation 

inspired from [1]. From this representation, SQM 

performance is assessed based on the highest differential 

tracking error entailed by a signal distortion included in the 

TM and not detected by the SQM within allocated 𝑃𝑓𝑓𝑑 and 

𝑃𝑚𝑑 . It is noteworthy that performance of SQM is 

dependent on several parameters and in particular on the 

𝐶 𝑁0⁄  at which the reference station is operating. One of 

the advantage of the proposed representation is that 

performances of the SQM can be assessed for different 

equivalent 𝐶 𝑁0⁄  from one figure. Using this 

representation, different SQMs are compared and an 

optimized SQM is proposed to monitor signal distortions 

on Galileo E5a and Galileo E1C signals.  

 

 

INTRODUCTION 

 

The type of distortion generated by the satellite payload 

and that could entail large errors on a differential GNSS 

user without being detected are called Evil WaveForms 

(EWF) and are a burning issue for GNSS users with strict 

requirements. In order to represent signal distortions that 

could be generated by the payload, a proposition of Threat 

Models (TM) was made in 2001 for GPS L1 C/A [1]. The 

aim of this TM was to define the type of signal distortion 



that could be created by the GPS satellite payload and that 

could create a hazard for a civil aviation user. Nowadays, 

the proposition made in 2001 has been adopted by ICAO 

with the definition of three threat models for GPS L1 C/A 

signal [2]:  

- TM-A which is associated with a failure in the 

navigation data unit (NDU), the digital partition of a 

satellite payload. It consists of the normal C/A code 

signal except that all the positive chips have a falling 

edge that leads or lags relative to the correct end-time 

for that chip (∆). 

- TM-B which introduces amplitude modulation and 

models degradations in the analog section of a 

satellite. More specifically, it consists of the output 

from a second order system when the nominal C/A 

code baseband signal is the input. Two parameters are 

defined for this threat model: the damping factor 𝜎 and 

the ringing frequency 𝑓𝑑.  

- TM-C which is a combination of the two first failures. 

 

The advent of new GNSS signals requests new research in 

the SQM field. Indeed, new signals use different 

modulations. Consequently TMs have to be redefined and 

SQM efficiency regarding these new TMs must be 

assessed. A proposal for Galileo E1C and Galileo E5a 

signals TM is given in a previous publication [3]. These 

TMs will be the starting points for the work performed in 

this publication.  

 

It is noticeable that performances of SQM are dependent 

upon the TM but they are also dependent upon the receiver 

configurations to protect. In this document, different user’s 

configurations (correlator spacing, pre-correlation 

bandwidth and RF filter type) based on expected civil 

aviation requirements will be taken into account to cover 

the largest number of possible cases.  

 

The paper content has the following structure: 

- The first section will detail the context of this work. 

Definition of tested TMs and receiver configurations 

of interest will be given. 

- The second section will introduce different metrics 

based on simple ratio, difference ratio and sum ratio. 

The methodology to assess SQM performances as a 

function of metric standard deviation will be 

described. These performances will be defined in an 

ideal theoretical way, considering an ideal Gaussian 

distribution for the noise on correlator outputs [4] and 

on metrics. A reference SQM based on simple metrics 

(only correlator ratios) but a high number of available 

correlator outputs (51 outputs) spaced by 0.01 chip 

will be first tested on GPS L1 C/A signal. Due to 

advances in receiver technology, this SQM design is 

nowadays conceivable. GPS L1 C/A signal will be 

taken as an example in order to illustrate the concept 

of an innovative representation to assess performances 

of SQM. As a conclusion of this part, a method to 

adapt theoretical results to operating reference station 

conditions is suggested. 

- The third section will compare different performances 

of SQMs regarding Galileo E1C and Galileo E5a 

signal deformations. A compromise will be found 

between SQM complexity and its performances. The 

sensitivity of the reference SQM will be tested for 3 

key parameters: the area covered by the correlators, 

the spacing between correlators, and the type of 

metrics (ratio, difference or sum of available correlator 

outputs). At the end, an optimized SQM (in terms of 

ratio between performance and complexity) will be 

proposed for both signals. Optimized SQMs are not 

optimal and better SQMs could be found using more 

complex metrics than presented in this paper, as for 

example the alpha metric used nowadays in WAAS 

reference stations [5]. Nevertheless proposed 

optimized SQMs are simple to implement and show 

sufficient performances regarding the context of this 

study.  

- The last section will conclude on the relevance of the 

new comparison tool (inspired from [7]) and on the 

performances provided by proposed SQMs. 

The proposition and assessment of SQM techniques 

adapted to the new Galileo signals is the main objective of 

this paper. Results obtained for Galileo E5a are also valid 

for GPS L5, both BPSK(10) modulated.  

 

CONTEXT OF THE STUDY 

 

As introduced, design and performance of SQM are 

dependent upon:  

- User’s configurations to protect and reference station 

configurations. Receiver parameters of interest at user 

and reference levels are: the tracking technique 

(including the local replica modulation), the tracking 

pair correlator spacing and the RF front-end 

(technology, bandwidth and maximum group delay 

variation). 

- The TM, or in other words, the distortions that have to 

be monitored. 

As a targeted requirement in this document the maximum 

tolerable differential error (denoted as MERR in the 

literature) induced by an undetected distortion of the TM is 

fixed to 3.5 meters which is a typical value used by civil 

aviation. Nevertheless from results presented in this study, 

it is possible to assess SQM performances independently 

from MERR value. SQM performances are considered as 

acceptable if the maximum undetected differential error 

(MUDE) respecting the ICAO requirements for that SQM 

is below the MERR. 

Receiver configurations of interest 

 

The reference station configuration is fixed: its RF filter is 

considered as a 6-order Butterworth with a 24 MHz 

bandwidth (double sides) and its discriminator is an early 

minus late with a 0.1 chip spacing for Galileo E1C and GPS 

L1 C/A signals and 1 chip spacing for Galileo E5a signal. 

Local replicas at reference level are modulated differently 

depending on the processed signal: BOC(1.1) for Galileo 



E1C, BPSK(1) for GPS L1 C/A and BPSK(10) for Galileo 

E5a signal.  

More configurations are tested at user level as shown in 

Table 1. These configurations represent receiver 

architectures expected for civil aviation users [4]. 

Different types of filters are used, to account for the wide 

variety of filters encountered across multiple receiver 

manufacturers. All these filters satisfy ICAO requirements: 

- Filter1: 6-order Butterworth (the differential group 

delay is equal to 39 nsec). 

- Filter2: resonator filter type with a group delay equal 

to zero. 

- Filter3: resonator filter type with a concave group 

delay and a 150 nsec differential group delay. 

- Filter4: 6-order Butterworth for the amplitude and the 

smallest order Butterworth filter leading to a 

differential group delay higher than 150 nsec for the 

phase. 

 

Table 1. Tested user’s configurations. 

 

 

 

 

 

 

Distortions of interest 

 

As introduced, for Galileo E5a and Galileo E1C, 

performance of SQM will be evaluated from TMs proposed 

in [3]. Regarding GPS L1 C/A TM, the current ICAO TM 

is kept and is recalled in [2].  

 

Definition of the TMs and associated Threat Space (TS) for 

the three signals are summarized in Table 2 where: 

- 𝑓𝑑 is the frequency of the ringing phenomenon. 

- 𝜎 is the damping factor of the ringing phenomenon. 

- ∆ is the lead/lag at every falling transitions after 

modulation. 

- ∆11 is the lead/lag at every BOC(1,1) falling 

transitions at signal square wave generator. 

- ∆61 is the lead/lag at every BOC(6,1) falling 

transitions at signal square wave generator. 

Table 3. Studied TS for GPS L1 C/A signal. 

 

 

THEORETICAL SQM CONCEPT 

 

SQM consists of a test (noted 𝑇𝑒𝑠𝑡) to evaluate if the signal 

is affected by a distortion or not.  

 

SQM methodology has already been described as for 

example in [4] or [6].   

This test compares to a threshold the difference between a 

current metric value and the metric value in the nominal 

case. In this document, several metrics are introduced to 

build the test and metrics are estimated from outputs of the 

correlation function.  
 

 

 

 

 

Galileo E1C 

(CBOC(6,1,1/11)) 

and GPS L1 C/A 

signal (BPSK(1)) 

Galileo E5a 

signal 

(BPSK(10)) 

Tracking 

technique 

E-L (BOC(1.1) and 

BPSK(1) local replica) 

E-L (BPSK(10) 

local replica) 

Correlator 

spacing 
0.08, 0.1 and 0.12 chip 

0.8, 1 and 1.2 

chip 

Pre-

correlation 

bandwidth 

(double sided) 

12, 14, 16, 18, 20, 22, 24 MHz 

Equivalent RF 

filter 
4 filters are tested 

 TM-C   

TM-B TM-A 

Area 1 Area 2 TM-
A1 

TM-A2 

𝑓𝑑_𝑚𝑖𝑛 
𝑀𝐻𝑧 

𝑓𝑑_𝑚𝑎𝑥 
𝑀𝐻𝑧 

𝜎𝑚𝑖𝑛 
𝑀𝑛𝑒𝑝𝑒𝑟𝑠
/𝑠 

𝜎𝑚𝑎𝑥 
𝑀𝑛𝑒𝑝𝑒𝑟𝑠
/𝑠 

𝑓𝑑_𝑚𝑖𝑛 
𝑀𝐻𝑧 

𝑓𝑑_𝑚𝑎𝑥 
𝑀𝐻𝑧 

(
𝜎

(𝑓𝑑)
2)

𝑚𝑖𝑛

 

𝑛𝑒𝑝𝑒𝑟𝑠/𝑠
/𝐻𝑧/𝑀𝐻𝑧 

(
𝜎

(𝑓𝑑)
2)

𝑚𝑎𝑥

 

𝑛𝑒𝑝𝑒𝑟𝑠/𝑠
/𝐻𝑧/𝑀𝐻𝑧 

𝛥𝑚𝑎𝑥
= 
− 

𝛥𝑚𝑖𝑛 
𝑐ℎ𝑖𝑝 

𝛥11𝑚𝑎𝑥
= 
− 

𝛥11𝑚𝑖𝑛  
𝑐ℎ𝑖𝑝 

𝛥61𝑚𝑎𝑥
= 
− 

𝛥61𝑚𝑖𝑛 
𝑐ℎ𝑖𝑝 

Galileo 
E1C 

1 19 0 26 3 19 0.07 5 0.12 0.1 0.08 

Galileo 
E5a 3 19 0 24 4 19 0.06 3.5 1.2 / / 

Resolution 
1 1 1 

0.05 (Galileo E1C) 
0.075 (Galileo E5a) 

0.01 0.01 0.01 

 
Δ  

𝑐ℎ𝑖𝑝 

𝜎  
𝑀𝑁𝑒𝑝𝑒𝑟𝑠/𝑠 

𝑓𝑑 

 𝑀𝐻𝑧 

TM A [−0.12: 0.1: 0.12] - - 

TM B - [0.8: 1: 8.8] [4: 1: 17] 

TM C [−0.12: 0.1: 0.12] [0.8: 1: 8.8] [7.3: 0.57: 13] 

Table 2. Studied TS for new modulations. 

 



Mathematically, the test on one metric (noted 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐) 

is equivalent to compare the following expression to a 

given threshold: 

 

 
𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐  =

𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑖𝑠𝑡
𝑖 −𝑚𝑒𝑡𝑟𝑖𝑐𝑛𝑜𝑚
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 
 

(1) 

Where 

- 𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑖𝑠𝑡
𝑖  is the current value of the metric which can 

be affected by a distortion. The index 𝑖 shows that this 

value is estimated based on one ranging signal sent by 

satellite 𝑖. 
- 𝑚𝑒𝑡𝑟𝑖𝑐𝑛𝑜𝑚 is the nominal value of the metric. In 

theory the nominal value can consist in the median of 

that metric across all satellites in view in nominal 

conditions [7]. In practice, because of the difference of 

correlation function shape in nominal conditions 

depending on the PRN, 𝑚𝑒𝑡𝑟𝑖𝑐𝑛𝑜𝑚  has to be estimated 

from the average value of that metric for a given PRN. 

Performance threshold estimation 

 

In order to know if faulty cases are detected with adequate  

𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑, a Neyman Pearson hypothesis test is 

performed. The MDE or MDR (Minimum Detectable 

Error/Ratio) are performance thresholds that fulfills the 

ICAO requirements for a test based on only one metric 

(𝑇𝑒𝑠𝑡 = 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐). The definition of the MDE is given 

based on one metric is given in [2] as: 

 

 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐 = (𝐾𝑚𝑑 + 𝐾𝑓𝑓𝑑)𝜎𝑚𝑒𝑡𝑟𝑖𝑐  (2) 

where 

- 𝐾𝑓𝑓𝑑 =  5.26 is a typical fault-free detection multiplier 

representing a false detection probability of 1.5 ×
 10−7 per test; 

- 𝐾𝑚𝑑  =  3.09 is a typical missed detection multiplier 

representing a missed detection probability of 10−3per 

test; 

- 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  is the standard deviation of measured values 

of the test metric; 

For the above expression to hold, it is assumed that the 

noise affecting metrics is white and Gaussian. The 

Gaussian behaviour of the noise affecting correlator 

outputs was verified in [4]. Details are given about the 

Gaussian assumption of metrics in the following. 

If several metrics are used, as it is envisaged in this paper, 

𝑃𝑓𝑓𝑑_𝑚𝑒𝑡𝑟𝑖𝑐  and 𝑃𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐  have to be computed for each 

individual metric. Indeed, the proposed SQM test is based 

on several partially dependent sub-tests. 

Let us call 𝑃𝑋_𝑚𝑒𝑡𝑟𝑖𝑐 (𝑋 = 𝑓𝑓𝑑 𝑜𝑟 𝑚𝑑) the probability 

associated to one test based on one metric and let us assume 

that the same budget is allocated to each sub-test. 

Considering that the total test is based on 𝑁𝑡𝑒𝑠𝑡 sub-tests 

and that an alarm is triggered if at least one metric exceeds 

its threshold, two extreme cases are imaginable: 

- Metrics are totally independent. In this condition 

probabilities of one sub-test (𝑃𝑋_𝑚𝑒𝑡𝑟𝑖𝑐) are related to 

the total test probabilities (𝑃𝑋) by: 

 
𝑃𝑓𝑓𝑑 =∑ (𝐶𝑁𝑡𝑒𝑠𝑡

𝑘 𝑃𝑓𝑓𝑑𝑚𝑒𝑡𝑟𝑖𝑐

𝑘
𝑁𝑡𝑒𝑠𝑡

1
 

(1 − 𝑃𝑓𝑓𝑑_𝑚𝑒𝑡𝑟𝑖𝑐)
𝑁𝑡𝑒𝑠𝑡−𝑘) 

𝑃𝑚𝑑 = 𝑃𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐
𝑁𝑡𝑒𝑠𝑡 

(2) 

 

 
(3) 

 

- Metrics are totally dependent, in this case: 

 𝑃𝑓𝑓𝑑 = 𝑃𝑓𝑓𝑑_𝑚𝑒𝑡𝑟𝑖𝑐  (4) 

 𝑃𝑚𝑑 = 𝑃𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐  (5) 

   

In real conditions, 𝑃𝑋_𝑚𝑒𝑡𝑟𝑖𝑐 are between the two extrem 

cases defined by Equation (2), (3), (4) and (5) . With a more 

precise knowledge about the relation dependency between 

each metric, exact 𝑃𝑋_𝑚𝑒𝑡𝑟𝑖𝑐  and consequenlty exact 

(𝐾𝑚𝑑 + 𝐾𝑓𝑓𝑑) could be estimated. (𝐾𝑚𝑑 + 𝐾𝑓𝑓𝑑) is 

assessed in this document in a conservative way which is 

obtained when metrics are considered as totally dependent. 

It entails that even if several metrics are used to define a 

testthe MDE fulfilling the ICAO requirements in terms of 

𝑃𝑚𝑑  and 𝑃𝑓𝑓𝑑 can be modelled in a conservative way, on 

each metric,  as: 

 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐 = 8.35 × 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  
 

(6) 

The three types of metric used in this document are 

elementary and are presented in Equations (7), (8) and (9). 

These metrics are looked at for two main reasons: 

- the simple ratio and the difference ratio metrics are 

currently used in SQM implemented in EGNOS. 

- the value of 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  for these three metrics can be 

derived theoretically in a simple way. 

 

Simple ratio metric which is the easiest metric to 

implement and permits to detect all kind of correlation 

function deformations. 

Difference ratio metric which permits to detect distortions 

that affect the correlation function in an asymmetric way 

(asymmetric from the prompt) more efficiently than the 

simple ratio metric.   

 
𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 =

𝐼−𝑥 − 𝐼𝑥
𝑃

 
(8) 

 

And sum ratio metric which permits to detect distortions 

that affect the correlation function in a symmetric way 

(symmetric from the prompt) more efficiently than the 

simple ratio metric.   

 
𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 =

𝐼−𝑥 + 𝐼𝑥
𝑃

 
(9) 

where 

- 𝐼𝑥 is the in phase correlator output value at a distance 

𝑥 (in chip unit) from the prompt. 

- 𝑃 = 𝐼0 is the value of the prompt correlator output. 

Usually 𝑃 = 𝐼0 ( 𝑥 = 0). 

 
𝑚𝑒𝑡𝑟𝑖𝑐𝑥 =

𝐼𝑥
𝑃

 
(7) 

   



An important remark is that in WAAS reference stations, a 

virtual prompt is used [6]. In this case, instead of 𝑃 = 𝐼0, 

𝑃 =
𝐼𝑧+𝐼−𝑧

2
 with 𝑧 = 0.025 𝑇𝑐 is adopted. In this document 

it is decided to establish results based on the virtual prompt 

𝑃 =
𝐼𝑧+𝐼−𝑧

2
 with 𝑧 = 0.025 𝑇𝑐 for GPS L1 C/A and Galileo 

E1C and with 𝑧 = 0.25 𝑇𝑐 for Galileo E5a. This choice has 

consequences on SQM performances even if repercussions 

are minor.  

 

Metrics value can then be compared to its nominal value 

and finally divided by the MDE associated to that metric. 

Let us define the performance test 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸 as: 

 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸  

=
𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑖𝑠𝑡

𝑖 −𝑚𝑒𝑡𝑟𝑖𝑐𝑛𝑜𝑚
𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐

 

 

(10) 

If  𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸 > 1, this means that a given distortion 

is detected with the appropriate ICAO 𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑  since 

it entails a bias larger than the 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐. The estimation 

of 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐 is consequently of a primary importance to 

establish SQM performances.  

 

As discussed previously, 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐  is a function 

of 𝜎𝑚𝑒𝑡𝑟𝑖𝑐 making the assumption that the noise 

distribution on metrics is Gaussian.  

𝜎𝑚𝑒𝑡𝑟𝑖𝑐  can be estimated theoretically for the three 

introduced metrics. Mathematical 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  expressions are 

given in the Appendix and are valid when the noise 

distribution on metrics (for example 
𝐼𝑥

𝐼𝑦
) is Gaussian. This 

condition is fulfilled when: 

- 𝐼𝑥 and 𝐼𝑦  are treated as Gaussian variables 𝑁(𝜇𝑥 , 𝜎𝑥
2) 

and 𝑁(𝜇𝑦, 𝜎𝑦
2). This properties is acquired and is used 

in many publications as for instance in [4], [8] or [9]. 

- 
𝜇𝑥

𝜎𝑥
 and 

𝜇𝑦

𝜎𝑦
 tends to infinity. In this case, the ratio of the 

two Gaussian distributions tends to a Gaussian 

distribution instead of a more complex distribution [7]. 

It can be considered that these conditions are verified 

at reference station level [4] operating with a 1 sec 

correlation duration.  

 

The theoretical 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  matches with the 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  estimated 

from a Matlab software. This software generates a noisy 

filtered signal and a local replica. Then the two signals are 

correlated to obtain a noisy correlation function. Several 

random draws are generated and metrics are built from 

noisy correlation functions. Then 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  can be assessed 

by simulation. As an example theoretical and simulated 

𝜎𝑚𝑒𝑡𝑟𝑖𝑐  values are compared on Figure 1. In this particular 

case, the coherent integration time is equal to 1 sec, the 

𝐶 𝑁0⁄ = 30 𝑑𝐵𝐻𝑧 and the signal is filtered by the 

reference filter.  

 

On Figure 1 are presented theoretical (continuous plot) and 

simulated (dotted plot) metrics standard deviations for 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 (in blue), 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 (in purple) and 𝑚𝑒𝑡𝑟𝑖𝑐𝑥  

(in blue for 𝑥 negative and in purple for 𝑥 positive). The 

normalization is based on the virtual prompt. Similar 

adequacies between theoretical and simulated metrics 

standard deviations have been obtained for Galileo E1C 

and E5a signals. 

 

 

Figure 1. Theoretical and simulated metric standard 

deviations on a BPSK(1) autocorrelation function. 

A representation to assess theoretical performance of 

SQM, example of GPS L1 C/A signal 

 

In this document, performance of SQM is assessed based 

on the highest differential error entailed by an undetected 

distortion from a given TM considering only the steady 

state. Knowing the distortion and the value of 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐  

it is possible to assess 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸  for each metric and 

by consequence 𝑇𝑒𝑠𝑡𝑀𝐷𝐸  which is the performance 

threshold test of a SQM based on several metrics. 

Let us denote:  

 𝑇𝑒𝑠𝑡𝑀𝐷𝐸
= 𝑚𝑎𝑥𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸[𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸] 

(11) 

Then, 𝑇𝑒𝑠𝑡𝑀𝐷𝐸  can be estimated as the maximum value 

among all  𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸. Comparing 𝑇𝑒𝑠𝑡𝑀𝐷𝐸  to 1, it is 

possible to know if a distortion from the TM is theoretically 

detected with a given 𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑  by a SQM for a given 

reference station configuration. Moreover, assuming user 

receiver configurations that have to be protected and the 

reference station configuration, the highest differential 

error induced by a given distortion of the TM between 

different users and the reference can be assessed 

independently from the SQM. This highest differential 

error is called the maximum differential error.  

 

Using simulations, 𝑇𝑒𝑠𝑡𝑀𝐷𝐸  and maximum differential 

error values can be estimated for each distortion of the TM. 

𝑇𝑒𝑠𝑡𝑀𝐷𝐸   is independent from users to protect and depends 

upon: 

- The reference receiver configuration. 

- The SQM design implemented on the reference.  

- The 𝐶 𝑁0⁄  of incoming signals which will have a direct 

impact on 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  and consequently on 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐 and 

 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸. 

The reference receiver configuration is fixed with 

parameter values defined in the previous section. 



A reference SQM is used: it consists of 50 simple ratio 

metrics. More precisely, 50 𝑚𝑒𝑡𝑟𝑖𝑐𝑥  are tested for 𝑥 =
−0.25: 0.01: −0.01 and 𝑥 = 0.01: 0.01: 0.25 in chip unit. 

Normalization of these metrics is based on a virtual prompt 

which uses correlator outputs at ±0.025 chip. Correlator 

outputs are estimated from a coherent integration time 

equal to 1 sec and metrics are not smoothed.  

Figure 2 shows the maximum differential error induced by 

distortions from the TM defined by ICAO for GPS L1 C/A 

signal among the tested user configurations, as a function 

of the 𝑇𝑒𝑠𝑡𝑀𝐷𝐸  value. The 𝐶 𝑁0⁄  of the incoming signal is 

equal to 35 𝑑𝐵𝐻𝑧.This representation is comparable to the 

representation proposed in [1] except that in this document, 

the value of 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 is based on the 𝑃𝑚𝑑  and 𝑃𝑓𝑓𝑑whereas 

in [1] the value of  𝑇𝑒𝑠𝑡𝑀𝐷𝐸  is derived only from the 𝑃𝑓𝑓𝑑. 

Each point of the graph corresponds to one distortion of the 

TM with on the y-axis the highest impact on tested users 

and on the x-axis the value of 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 . 1650 distortions 

are represented (12 from TM-A, 126 from the TM-B and 

1512 from the TM-C). The continuous line corresponds to 

the higher bound. 

 

 
Figure 2. Example of worst differential tracking error 

function of  𝑻𝒆𝒔𝒕𝑴𝑫𝑬. 

Distortions included in the blue square of Figure 2 are 

distortions detected by the defined SQM (𝑇𝑒𝑠𝑡𝑀𝐷𝐸 > 1) in 

the described particular case. The Maximum Undetected 

Differential Error (MUDE) can then been read by taking 

the largest differential tracking error for 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 < 1. In 

conditions of Figure 2, the MUDE is equal to 3.9 m.  

 

It is noticeable that MUDE is dependent upon the 𝐶 𝑁0⁄  

which is a drawback because MUDE has to be re-estimated 

depending on the 𝐶 𝑁0⁄  at which a reference station is 

operating. In this document it is proposed to adapt the scale 

on the x-axis in order to have one representation that 

permits to assess performances of a given SQM at different 

𝐶 𝑁0⁄ . 

 

MUDE is dependent upon the 𝐶 𝑁0⁄  but a relation exists 

between 𝐶 𝑁0⁄  and the value of  𝑇𝑒𝑠𝑡𝑀𝐷𝐸 . Indeed, 𝐶 𝑁0⁄  

has an impact on 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  which can be theoretically 

estimated. Then a relation exists between 𝜎𝑚𝑒𝑡𝑟𝑖𝑐 and 

𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐 , it means between 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  and 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 . The 

relation between 𝐶 𝑁0⁄  in dBHz and 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  is given by: 

 
𝜎𝑚𝑒𝑡𝑟𝑖𝑐 = 𝐶𝑚𝑒𝑡𝑟𝑖𝑐√

1

𝑇𝑖𝑛𝑡 × 10
𝐶 𝑁0⁄
10

 
 

(12) 

Where 𝑇𝑖𝑛𝑡  is the coherent integration time chosen for the 

tracking (𝑇𝑖𝑛𝑡 = 1 𝑠𝑒𝑐). 𝐶𝑚𝑒𝑡𝑟𝑖𝑐  is a parameter that does 

not depend upon the 𝐶 𝑁0⁄  but depends upon the metric. 

By consequence, it is possible to apply a scale change on 

Figure 2 in order to have the worst differential tracking bias 

function of 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 = 1 for different 𝐶 𝑁0⁄ .  Figure 3 

shows same results as on Figure 2 with a simple scale 

change. The blue square is still representing distortions 

detected by the SQM considering 𝐶 𝑁0⁄ = 35 𝑑𝐵𝐻𝑧. 

 

One interest of the representation shown in Figure 3 is that 

MUDE can be assessed for different 𝐶 𝑁0⁄  from one figure. 
 

 
Figure 3. Example of worst differential tracking error 

function of the equivalent 𝑪 𝑵𝟎⁄ . 

A second interest of the representation is that different 

performances of different SQMs can be compared. Now, a 

second SQM is introduced: SQM2b. This SQM was 

studied around 2000 for example in [5] or [10], and is still 

used nowadays in EGNOS RIMS-C stations [11]. 

Originally SQM2b consists of 11 metrics but only 4 

metrics are used by RIMS-C stations. The studied SQM is 

based on the four SQM2b metrics:  

𝑚𝑒𝑡𝑟𝑖𝑐−0.075   ,    𝑚𝑒𝑡𝑟𝑖𝑐0.075 

𝑚𝑒𝑡𝑟𝑖𝑐0.075−0.075   ,    𝑚𝑒𝑡𝑟𝑖𝑐0.1−0.1 

Figure 4 gives in red results obtained using the SQM2b and 

in green using the reference SQM based on 50 simple ratio 

metrics.  

 
Figure 4. Comparison of two SQMs performance.  

From these plots, it is clear that MUDE is higher for the 

SQM2b than for the reference SQM whatever the 𝐶 𝑁0⁄  is 

because the red line is above the green line. This result was 

expected especially because the reference SQM relies on 



50 metrics whereas SQM2b relies on only 4 metrics.The 

MERR was fixed to 3.5 meters for GPS L1 C/A civil 

aviation’s operations. It can be seen that MUDE is lower 

than 3.5 meters with the SQM2b only if the 𝐶 𝑁0⁄  is higher 

than 42 𝑑𝐵𝐻𝑧. This result put forward that with this 

simulation setup, SQM2b does not reach required 

performances for signal with a 𝐶 𝑁0⁄  lower than 42 dBHz. 

This can be interpreted as a reason why a supplementary 

step in SQM design was proposed in the early 2000s [5]. In 

order to decrease the metrics standard deviation, it was 

proposed to smooth metrics values by the mean a low pass 

digital filter with a time constant equal to or shorter than 

100 sec [2]. Such a smoothing was implemented on 

reference stations as define in [6], [11] or [12]. In theory 

this smoothing gives the possibility to divide by a factor 10 

metric standard deviation. However in practice, especially 

because of multipath, such improvement is not reachable. 

In the next section a method is developed to estimate at 

which equivalent theoretical 𝐶 𝑁0⁄  a reference station is 

operating. 

 

Equivalent theoretical 𝑪 𝑵𝟎⁄  for a reference station in 

operational conditions 

 

Results that are presented in the previous section are 

estimated in ideal conditions: 

- The noise distribution on metrics is white and 

Gaussian. 

- The coherent integration time is equal to 1 sec. 

- No multipath is affecting the incoming signal. 

- A 6-order Butterworth (24 MHz double sided) is 

implemented at the reference level. 

 

To estimate performances of SQM in these ideal 

conditions, it is necessary to know at which 𝐶 𝑁0⁄  the worst 

differential tracking error has to be assessed. It is assumed 

that an integration time change and the presence of 

multipath do not have any influence on the Gaussian 

feature of the noise distribution on metrics: only, the 

standard deviation of the Gaussian distribution is impacted 

by the multipath and the integration time. Note that if the 

noise distribution on metrics is not Gaussian, it is still 

possible to assess performances of SQM as detailed in the 

next section. 

 

To estimate the 𝐶 𝑁0⁄  in reference stations operating 

condition, 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥  has to be first estimated for this 

particular condition. Then an abacus is plotted as shown in 

Figure 5 and gives an equivalence between 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥  

assessed in real conditions and the theoretical 𝐶 𝑁0⁄  which 

would permit to obtain that same 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥  value if only 

thermal noise was present. 

 

On the abacus on Figure 5, three examples are proposed 

and represent some real reference stations conditions. It 

shows 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥  normalized by the virtual prompt (𝑃 =
𝐼𝑧+𝐼−𝑧

2
 with 𝑧 = 0.025 𝑇𝑐). The two first cases correspond 

to a data collection performed at Stanford University with 

a LAAS integrity test-bed on SV 5 with a 5° elevation 

angle [5]. Red dots correspond to unsmoothed metrics and 

green dots to metrics smoothed by a 100 sec moving 

average. The last case illustrates 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥  obtained from a 

data collection made by Capgemini with a Novatel GIII 

receiver. The data collection was 1 hour long and 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥  

was estimated from all satellites in view. The worst  

𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥  among satellites is represented by blue dots. The 

worst case was observed on SV 62. Its elevation angle was 

equal to 9° at the beginning of the data collection and 33° 

at the end. 

From Figure 5, it can be approximated that the LAAS 

receiver is working at an equivalent theoretical 𝐶 𝑁0⁄ =
34 𝑑𝐵𝐻𝑧 in the worst case if metrics are unsmoothed 

whereas the equivalent theoretical 𝐶 𝑁0⁄  is equal 

to 38 𝑑𝐵𝐻𝑧 with smoothed metrics. With unsmoothed 

metrics, Capgemini standard deviations correspond in the 

worst case to a theoretical 𝐶 𝑁0⁄ = 35 𝑑𝐵𝐻𝑧. 

 

Figure 5. Example of reference station metric standard 

deviations compared to theoretical values. 

One important remark is that the 100 seconds smoothing 

entails in practice only a 4 𝑑𝐵 improvement whereas a  

10 𝑑𝐵 improvement is expected in theory. Indeed, as 

introduced previously, in theory the smoothing could 

induce a division by a factor 10 of metrics standard 

deviation. In practice, notably because of multipath, the 

factor to apply is equal to 1.5. Even if this factor was equal 

to 2.3 on some signals collected by Capgemini with 

low 𝐶 𝑁0⁄ , to be conservative, the value of 1.5 (4 𝑑𝐵) is 

considered in the continuation. 

 

Abacuses for Galileo E5a and Galileo E1C signals are 

provided in Appendix.  

 

Generalization to non-Gaussian noise distribution on 

metrics 

 

In order to apply the theoretical SQM concept developed 

in this paper, the noise distribution on metrics has to be 

white and Gaussian. In real conditions it can appear that 

this hypothesis is not true [13]. One of the consequence is 

that at each reference station, metric performance 



thresholds have to be adjusted to satisfy 𝑃𝑚𝑑 and 𝑃𝑓𝑓𝑑. 

Indeed in this condition, it is not possible to estimate the 

𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐  multiplying 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  by a factor multiplier 

derived from normal law. Nevertheless with the knowledge 

of metrics performance thresholds it is possible to evaluate 

the equivalent 𝐶 𝑁0⁄  to apply to a reference station with 

metrics affected by a not Gaussian noise.  

 

To make this evaluation possible, the abacus on Figure 6 

gives an equivalence between 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐 assessed in real 

reference station conditions and the theoretical 𝐶 𝑁0⁄  

which would permit to obtain theoretically the 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐  

value. The abacus on Figure 6 is equal to the abacus on 

Figure 5 multiplied by (𝐾𝑚𝑑 + 𝐾𝑓𝑓𝑑) = 8.35. 

Figure 6. Simple ratio metric performance thresholds for 

different 𝐶 𝑁0⁄  and different distance to the prompt. 

Conclusion about SQM methodology 

 

As a conclusion of this section an innovative method was 

proposed to estimate and compare performances of SQM 

independently from the equivalent theoretical 𝐶 𝑁0⁄  at 

which a reference station operates. Performances are 

assessed considering that a 6-order Butterworth (24 MHz 

double sided) is implemented at the reference level. If this 

condition is not verified, plots representing worst 

differential tracking errors function of 𝐶 𝑁0⁄  are different 

from plots presented in this publication and have to be 

assessed for the reference receiver filter of concern.   

 

Considering that no smoothing is applied on metrics, the 

equivalent theoretical 𝐶 𝑁0⁄  can be as bad as 34 𝑑𝐵𝐻𝑧. In 

this condition and with a 6-order Butterworth implemented 

at the reference level, the maximum undetectable 

differential error (MUDE) is higher than 7.5 meters with 

SQM2b and is equal to 5.1 meters with the reference SQM 

(50 simple ratio metrics spread uniformly around the 

correlation function peak). As an order of magnitude, if a 

100 sec moving average window is used to smooth metrics, 

the equivalent theoretical 𝐶 𝑁0⁄  can be improved by 

4 𝑑𝐵𝐻𝑧. In these theoretical conservative circumstances 

the MUDE is equal to 5.3 meters with the SQM2b and 2.5 

meters with the reference SQM.  

From these results, it can be deduced that SQM2b is not 

fulfilling requirements regarding proposed analysis. It 

could be a reason why SQM2b was replaced by the alpha 

metric in WAAS reference stations [5]. More reasonably, 

results provided in this document are conservative. From 

the theoretical point of view, 4 filters with different 

bandwidths are taken into account and metrics are 

considered as totally dependent. With less or different 

filters to estimate the MUDE and without the assumption 

of totally dependent metrics, performances of SQM could 

be improved. From a practical point of view, worst cases 

are looked at. SQM performances could be increased by 

the mitigation of the multipath or/and the setting of a mask 

angle (as example to 15° (instead of 5°) in order to avoid 

multipath and low 𝐶 𝑁0⁄ ) and increase the benefit of 

smoothing.  

 

 

RESULTS ON NEW SIGNALS 

 

In this section, SQM theoretical performances are 

estimated and compared using the method developed in the 

previous part. Several SQMs are tested in order to find an 

optimized SQM: reduce the number of sub-tests and obtain 

suitable performances. A particular care is taken to obtain 

a MUDE smaller than 3.5 meters for the lowest   𝐶 𝑁0⁄  as 

possible. This study is performed on Galileo E1C and 

Galileo E5a. The first step consists of reducing the area 

covered by monitored correlator outputs considering only 

simple ratio metrics to see which part of the correlation 

function is more affected by distortion. The second step 

consists of limiting the distance between two monitored 

outputs to see with which resolution the correlation 

function has to be monitored. The third step consists of 

introducing the difference and the sum ratio metrics to see 

the benefit of using more complex metrics.  

In this paper SQM designs for Galileo E1C are based on 51 

monitored correlator outputs 𝐼𝑥 with 𝑥 =
−0.25: 0.01: 0.25 in Galileo E1C chip unit and for Galileo 

E5a designs are based on 21 correlator outputs 𝐼𝑥  with 𝑥 =
−1: 0.1: 1 in Galileo E5a chip unit. The limitation to these 

correlator outputs is justified by three main reasons: 

- ICAO TM like distortions are more visible around the 

prompt of the correlation function. It is not necessary 

to monitor the correlation function at a too important 

distance from the prompt. 

- Correlator outputs situated at a too important distance 

from the prompt are more subject to multipath. With 

the selected correlator output range, the impact of 

multipath is limited. 

- A time delay of 10 nsec between two correlator 

outputs is nowadays reachable but lower values of 

time delays are more difficult to achieve. 

Three metrics are tested (simple, difference and sum ratio 

metrics) for all monitored correlator outputs. 

 

 

 

 



Galileo E1C 

 

More distortions are tested on new signals because of the 

larger threat space presented in Table 2. For Galileo E1C, 

27314 distortions are generated (12 TM-A1, 80 TM-A2, 

494 TM-B on area1, 1600 TM-B on area2, 5928 TM-C on 

area1 and 19200 TM-C on area2).  

 

Influence of the monitored area size. 

On Figure 7 the reference SQM (in green) is compared to 

two SQMs covering different areas: 

- SQM20: it consists of 40 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 =
−0.20: 0.01: −0.01 and 𝑥 = 0.01: 0.01: 0.20 in chip 

unit. (in red) 

- SQM13: it consists of 26 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 =
−0.13: 0.01: −0.01 and 𝑥 = 0.01: 0.01: 0.13 in chip 

unit. (in blue) 

 
Figure 7. Galileo E1C simple ratio SQMs comparison on 

different areas. 

Results for the reference SQM, the SQM20 and the SQM13 

are almost identical and consequently superimposed. It 

means that benefit of using correlator outputs with a 

distance to the prompt higher than 0.13 chip is marginal. It 

is then possible to reduce monitored area to ±0.13 chip 

around the correlation function main peak if simple ratio 

metrics are considered. 

 

Influence of the distance between two monitored points. 

Figure 8 shows the influence of the distance between two 

monitored correlator outputs. Monitors are still uniformly 

distributed. The comparison is made from three SQMs: 

- SQM13 (in green) 

- SQM13/02: it consists of 14 𝑚𝑒𝑡𝑟𝑖𝑐𝑥  with 𝑥 =
−0.13: 0.02: 0.13 in chip unit. (in red) 

- SQM13/03: it consists of 10 𝑚𝑒𝑡𝑟𝑖𝑐𝑥  with 𝑥 =
−0.13: 0.03: −0.01 and 𝑥 = 0.01: 0.03: 0.13 in chip 

unit. (in blue) 

From Figure 8 is can be deduced that it is not necessary to 

have a too dense monitored correlator outputs distribution. 

Using a distance between monitors equal to 0.02 𝑇𝑐 gives 

approximately same results than using a distance equal to 

0.01 𝑇𝑐. Nevertheless if the distance is equal to 0.03 𝑇𝑐 
SQM performances are degraded. Consequently it seems 

appropriate to consider that SQM13/02 reaches almost the 

same performances as the SQM13 and the reference SQM 

even if it consists of only 14 metrics. 

 
Figure 8. Galileo E1C, comparison of SQMs based on 

simple ratio metrics for different monitors distributions. 

Influence of sum and difference ratio metrics. 

Figure 9 illustrates the comparison between three SQMs 

using more complex metrics: 

- SQM13/02 (in green) 

- SQMsum25: it consists of 25 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 =
0.01: 0.01: 0.25 in chip unit. (in red) 

- SQMdiff25: it consists of 25 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 =
0.01: 0.01: 0.25 in chip unit. (in blue) 

 
Figure 9. Galileo E1C, comparison of SQMs based on 

simple, difference and sum ratio. 

It can be seen that the SQM based on simple ratio metrics 

is better than SQM based on more complex metrics. It is 

noticeable that metrics built on the difference of correlator 

outputs show bad performance. The problem is that 

distortions which affect in the same way both sides of the 

correlation function (symmetry from the prompt), are more 

difficult to detect with 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 despite the fact that these 

distortions can lead to high differential error. Example of 

distortions difficult to detect by any of the 25 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 

are illustrated in Figure 10.  

In blue is presented a TM-A2 distortion with ∆61= 0 𝑐ℎ𝑖𝑝 

, ∆11= 0.9 𝑐ℎ𝑖𝑝 inducing a maximum differential error 

equal to 5.0 meters. In black is a TM-B distortion with 𝑓𝑑 =
2 𝑀𝐻𝑧, 𝜎 = 0.07 𝑛𝑒𝑟𝑝𝑒𝑟𝑠/𝑠 inducing a maximum 

differential error equal to 9.5 meters. In red is shown a TM-

C distortion with 𝑓𝑑 = 9 𝑀𝐻𝑧, 𝜎 = 2 𝑛𝑒𝑟𝑝𝑒𝑟𝑠/𝑠, ∆=
0.12 𝑐ℎ𝑖𝑝 inducing a maximum differential error equal to 

5.6 meters. In green is represented the ideal correlation 

function. All correlation functions are filtered by the 

reference filter.  

 



 
Figure 10. Example of symmetric distortions on Galileo 

E1C difficult to detect with difference ratio metrics. 

Even if some threatening distortions are not detected by 

more complex metrics, the adoption of these metrics jointly 

with the SQM13/02 can improve its performance as 

illustrated on Figure 11. The comparison of SQM13/02 

only (in green) with the SQM13/02 + SQMsum25 (in blue) 

as well as the comparison between SQM13/02 + 

SQMsum25 (in red) with SQM13/02 + SQMsum25 + 

SQMdiff25 (in black) show that difference ratio metrics 

improved slightly performance of the SQM at high  𝐶 𝑁0⁄  

( 𝐶 𝑁0⁄ > 38 𝑑𝐵𝐻𝑧). As a consequence, it is decided to 

introduce a difference ratio metric. From Figure 11 the 

addition of SQMsum25 grants an evident improvement of 

SQM efficiency.  

 
Figure 11. Galileo E1C combination of simple, difference 

and sum ratio SQMs comparison. 

Finally from Figure 11and based on results not presented 

in this paper, it is decided to use SQM13/02 jointly with 

some sum ratio metrics and one difference ratio metric for 

the design of the optimized SQM. 

 

Proposed optimized SQM 

As already done in this section for 𝑚𝑒𝑡𝑟𝑖𝑐𝑥, it can be 

established that it is not necessary to test 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 for all 

𝑥 = 0.01: 0.01: 0.25. On Figure 12 SQM13/02 is used 

together with: 

- SQMsum25 (in green) 

- SQMsum13/02: it consists of 7 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 =
0.01: 0.02: 0.13 in chip unit. (in red) 

- SQMsum13/02 and SQMdiff1: it consists of 7 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.01: 0.02: 0.13 in chip unit plus 

1 metric 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 0.01. (in blue) 

Worst differential tracking errors entailed by undetected 

distortions regarding the 3 SQMs are practically identical 

from Figure 12 (the three limits are superimposed). To 

reduce the number of metrics maintaining satisfying 

performances, SQM13/02 can be used together with 

SQMsum13/02 and SQMdiff1.  

 
Figure 12. Different simple ratio metrics used with sum 

ratio metrics. Galileo E1C. 

To conclude, an optimized SQM (𝑆𝑄𝑀𝐸1𝐶𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
) is 

proposed to monitor Galileo E1C signal distortions defined 

previously.  

𝑆𝑄𝑀𝐸1𝐶𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
 consists of 14 𝑚𝑒𝑡𝑟𝑖𝑐𝑥  with 𝑥 =

−0.13: 0.02: 0.13 in chip unit,  7 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 =
0.01: 0.02: 0.13 in chip unit and 1 metric 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 

𝑥 = 0.01. 

This SQM is not optimal but limits the number of sub-tests 

to realize, almost reaching performances of a SQM based 

on 50 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 plus 25 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 plus 25 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥. To 

underline this fact, Figure 13 proposes a performance 

comparison between 𝑆𝑄𝑀𝐸1𝐶𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
 (in red) and the 

SQM using the 100 metrics (in green). 

 

 
Figure 13. Optimized SQM and 100 metrics SQM 

comparison. Galileo E1C. 

To satisfy the requirement of 3.5 meters on the maximum 

differential tracking error, the reference station has to 

operate with an equivalent 𝐶 𝑁0⁄ > 33.5 𝑑𝐵𝐻𝑧. This 

𝐶 𝑁0⁄  is reached on average on tested operational 

conditions.  

 



Galileo E5a 

 

For Galileo E5a, 21450 distortions are generated (12 TM-

A, 408 TM-B on area1, 736 TM-B on area2, 5526 TM-C 

on area1 and 14768 TM-C on area2). The same concept as 

with Galileo E1C signal can be applied. In this section the 

methodology is not detailed as it is done for the Galileo 

E1C signal.  

 

Regarding the influence of the monitored area, simulations 

show that a large area has to be monitored. From the 21 

monitored correlator outputs chosen in this document to 

monitor the BPSK(10) autocorrelation function, all 

correlator outputs must be used to not decrease visibly the 

efficiency of the SQM.   

The distance between two monitored correlator outputs 

which is equal to 0.1 𝑇𝑐 cannot be reduced in the Galileo 

E5a case without degrading performances of SQM.  

As with the Galileo E1C signal, difference ratio metrics do 

not improve the SQM whereas sum ratio metrics do. 

 

Finally an optimized SQM (𝑆𝑄𝑀𝐸5𝑎𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
) is proposed 

to monitor Galileo E5a signal distortions defined at the 

beginning of the document.  

𝑆𝑄𝑀𝐸5𝑎𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
 consists of 18 𝑚𝑒𝑡𝑟𝑖𝑐𝑥  with 𝑥 =

−1: 0.1:−0.2  and 𝑥 = 0.2: 0.1: 1 in chip unit and  2 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.1: 0.6: 0.7 in chip unit. 

 

This SQM is not optimal but limits the number of sub-tests 

to realize, almost reaching performances of a SQM based 

on 20 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 plus 10 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 plus 10 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥. 

Figure 14 proposes a performance comparison between 

𝑆𝑄𝑀𝐸5𝑎𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
 (in red) and the SQM using the 40 metrics 

(in green). 

 

  
Figure 14. Optimized SQM and 40 metrics SQM 

comparison. Galileo E5a. 

For Galileo E5a signal the requirement on the MERR equal 

to 3.5 meters is satisfied even for the lowest 

simulated 𝐶 𝑁0⁄ . 

 

 

CONCLUSION AND FUTURE WORKS 

 

This paper tackles the design of SQM regarding new GNSS 

signals: Galileo E5a and Galileo E1C. SQM performances 

are assessed theoretically for different SQM designs. These 

performances are dependent upon: 

- Distortions from the TM that have to be detected. 

- User and reference configurations under discussion. 

- Type of metrics used to design the SQM. 

 

In the first part of this document distortions and 

receiver/reference configurations considered for the study 

are defined. 

 

In the second part the three metrics used to design different 

SQMs are introduced: the simple, the difference and the 

sum ratio metrics. It is assumed that metrics are totally 

dependent in order to estimate SQM performances in a 

conservative way.  In the meantime some SQM notions are 

exposed. The main issue in SQM study is the determination 

of performance thresholds which are directly linked to the 

metric standard deviations if metric standard deviations are 

Gaussian. This strong hypothesis was verified in previous 

works. Nevertheless if this hypothesis is not verified, from 

performance thresholds estimated in real conditions, SQM 

performances can still be evaluated from the proposed 

representation (independently from the  𝐶 𝑁0⁄  value) 

presented in this paper using an abacus which gives the 

theoretical  𝐶 𝑁0⁄  value associated to thresholds estimated 

in real conditions. It has been seen from some examples 

that in the worst case, reference stations are operating with 

an equivalent theoretical  𝐶 𝑁0⁄ = 34 𝑑𝐵𝐻𝑧 considering 

unsmoothed metrics and  𝐶 𝑁0⁄ = 38 𝑑𝐵𝐻𝑧 with a 100 sec 

averaging smoothing on metrics.  

 

In the third part optimized SQMs are proposed for Galileo 

E1c and Galileo E5a signals. To design these SQMs, 51 

monitored correlator outputs for Galileo E1C (𝐼𝑥 with 𝑥 =
−0.25: 0.01: 0.25 𝑇𝑐) and 21 monitored correlator outputs 

for Galileo E5a (𝐼𝑥 with 𝑥 = −1: 0.1: 1 𝑇𝑐)  are used. The 

three metrics introduced in the second part are kept. The 

optimized SQM consists of 22 metrics for Galileo E1C and 

in 20 metrics for Galileo E5a.  

Some general results are put forward: 

- Distortions detection with metrics based on correlator 

outputs distant from the correlation function main 

peak ( >  200 𝑛𝑠𝑒𝑐) is more difficult than with metrics 

based on correlator outputs close to the prompt. 

Indeed, second order distortions are attenuated 

according to the damping factor. Moreover, these 

correlator outputs are more affected by multipath 

which has the consequence to increase metrics 

standard deviation. 

- The use of additive monitored correlator outputs close 

to each other ( <  10 𝑛𝑠𝑒𝑐) does not increase detection 

performance. It is due to the fact that the lowest period 

of ringing effects considered in this document is equal 

to 1 (19 × 10−6)⁄ ≈ 50 𝑛𝑠𝑒𝑐 and that high frequency 

phenomena are filtered out by the RF filter applied on 

the received signal.  

- The difference ratio metric is not able to detect 

symmetric distortions that can have a threatening 

impact on differential users.  

 



A more precise selection of metrics used for the SQM 

could be envisaged. The proposed optimized SQM has to 

be seen as a compromise between complexity and 

performance. Fixing the maximum tolerable differential 

error to 3.5 meters the Galileo E1C optimized SQM is 

suitable for equivalent theoretical  𝐶 𝑁0⁄ > 33.5 𝑑𝐵𝐻𝑧 

whereas the Galileo E5a optimized SQM satisfies the 

requirement for 𝐶 𝑁0⁄ > 29 𝑑𝐵𝐻𝑧 and lower 𝐶 𝑁0⁄  values 

that are not shown. One of the conclusion also valid for the 

GPS L5 signal is that monitoring a signal BPSK(10) 

modulated is affordable even with simple SQM design and 

poor reference receiver conditions. For Galileo E1C a 

metric smoothing (less than 100 sec should be sufficient) 

or the use of more complex metrics allows SQM to fulfil 

required performance of 3.5 meters.  

 

The work performs is realized in a theoretical way. 

Nonetheless, a method is proposed to adapt theoretical 

results to reference station conditions. Further works will 

be to estimate reference station performance thresholds in 

order to know performances that could be expected in real 

environment with particular reference receiver filters. 

Then, instead of having an optimized SQM, an optimal 

SQM could be designed following the example of the alpha 

metric concept [5]. Finally, the approach developed in the 

paper could be applied to other modulations.  
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APPENDIX 

 

On the appendix the expression of standard deviations 

applied to metrics presented in the document are derived. 

Simple ratio, difference ratio and sum ratio metrics 

standard deviations are estimated in [8] regarding a 

normalization by the prompt. As discussed, in WAAS 

reference stations, metrics are based on virtual prompt, it 

means that metrics can be modelled as: 

- The simple ratio metric normalized by a virtual 

prompt: 
𝐼𝑍

𝐼𝑋+𝐼𝑌
. 

- The difference ratio metric normalized by a virtual 

prompt: 
𝐼𝑍−𝐼𝑊

𝐼𝑋+𝐼𝑌
. 

- The sum ratio metric normalized by a virtual prompt: 
𝐼𝑍+𝐼𝑊

𝐼𝑋+𝐼𝑌
. 

First of all a model for 𝐼𝑥 is proposed. This model was 

already introduced in [9]. The modelling gives a 

mathematical definition of parameters necessary to 

compute metrics standard deviation.   

Then expressions of theoretical standard deviations are 

derived. 

 



Correlator output model 

 

A simplified model for in phase correlator outputs affected 

by thermal noise (assuming a constant code and phase 

delay during the coherent integration time 𝑇𝑖𝑛𝑡  and 

assuming that tracking errors are negligible) is given by: 

𝐼𝑥 = √
𝑃

2
𝑅𝑠(𝑥) + 𝑛𝐼 

- 𝑅𝑠 is the correlation function of the local replica and 

the filtered received signal. 

- 𝑛𝐼 is the noise on the in-phase component. 

- 𝑃 is the power of the received signal. 

Moreover, the noise correlation function at correlator 

outputs can be modelled using the Wiener Lee relation as 

it was done in [14]: 

𝑅𝑛𝐼(𝜏) =
𝑁0
4𝑇𝑖𝑛𝑡

∫ |𝐻𝑅𝐹(𝑓)|
2𝑆𝑙𝑜𝑐𝑎𝑙(𝑓)𝑆𝑙𝑜𝑐𝑎𝑙

∗ (𝑓)𝑒2𝑖𝜋𝑓𝜏𝑑𝑓
+∞

−∞

 

=
𝑁0
4𝑇𝑖𝑛𝑡

𝑅𝑁(𝜏) 

- 𝑆𝑙𝑜𝑐𝑎𝑙(𝑡) is the Fourier transform of the local replica 

signal. 

- 𝐻𝑅𝐹(𝑓) is the RF filter transfer function. 

- 𝑁0 = 𝑘𝑏𝑇𝑠𝑦𝑠 is the noise Gaussian density when the 

noise is considered white and Gaussian. 

- 𝑘𝑏 is the Boltzmann constant equal to −228.6 𝑑𝐵𝑊/
𝐾/𝐻𝑧. 

- 𝑇𝑠𝑦𝑠 is the system noise temperature in degrees on the 

Kelvin scale. 

- 𝑇𝑖𝑛𝑡  is the coherent integration time in sec. 

 

The standard deviation at the correlator outputs is derived 

from: 

𝜎(𝑛𝐼𝑥) = √
𝑃𝑛𝐼
𝑃𝑠

= √
𝑅𝑛𝐼(0)

𝐼𝑥
2 = √

1

2𝐶 𝑁0⁄ × 𝑇𝑖𝑛𝑡
×
𝑅𝑁(0)

𝑅𝑠
2(𝑥)

 

 

And the covariance can be estimated by: 

 

𝑐𝑜𝑣 (𝑛𝐼𝑥 , 𝑛𝐼𝑦) =
𝑅𝑛𝐼(𝑥 − 𝑦)

𝐼𝑋𝐼𝑌

=
1

2𝐶 𝑁0⁄ × 𝑇𝑖𝑛𝑡
×
𝑅𝑁(𝑥 − 𝑦)

𝑅𝑆(𝑥)𝑅𝑆(𝑦)
 

 

Standard deviations and covariance are given for correlator 

outputs with a mean 𝜇𝐼𝑥 equal to 1. 

Another way to express the standard deviation, covariance 

and the mean of a correlator output can be obtained by a 

variable change: 

𝜇𝐼𝑥 = 𝑅𝑠(𝑥)√2𝐶 𝑁0⁄ 𝑇𝑖𝑛𝑡 

𝜎(𝑛𝐼𝑥) = √𝑅𝑁(0) 

𝑐𝑜𝑣 (𝑛𝐼𝑥 , 𝑛𝐼𝑦) = 𝑅𝑁(𝑥 − 𝑦) 

Finally, we find the model already proposed in [9] with the 

difference that the impact of the filter is now taken into 

account. Indeed, instead of ideal correlation function 

expression, true correlation functions (which include 

filtering effect) are adopted in the proposed definition. 

Theoretical standard deviations 

 

The demonstration presented in [8] is applied in this 

appendix for the simple ratio metric normalized by the 

virtual prompt. For other metrics, same method could be 

applied but only results are provided. 

 

Simple ratio metric normalized by a virtual prompt 

The first step consists of using the first order development 

in Taylor series: 

𝐼𝑍
𝐼𝑋 + 𝐼𝑌

≈ (
𝜇𝑍 + 𝑛𝑍
𝜇𝑋 + 𝜇𝑌

)(1 −
𝑛𝑋 + 𝑛𝑌
𝜇𝑋 + 𝜇𝑌

+ (
𝑛𝑋 + 𝑛𝑌
𝜇𝑋 + 𝜇𝑌

)
2

) 

 

The second step consists of the evaluation of 𝐸[𝑚𝑒𝑡𝑟𝑖𝑐]² . 
First of all 𝐸[𝑚𝑒𝑡𝑟𝑖𝑐] is expressed at the second order, zero 

means and higher order terms are not considered. 

 

𝐸 [
𝐼𝑍

𝐼𝑋 + 𝐼𝑌
] ≈

1

𝜇𝑋 + 𝜇𝑌
𝐸 [

𝜇𝑍 −
𝑛𝑋𝑛𝑍
𝜇𝑋 + 𝜇𝑌

−
𝑛𝑌𝑛𝑍
𝜇𝑋 + 𝜇𝑌

+(𝑛𝑋 + 𝑛𝑌)
2

𝜇𝑍
(𝜇𝑋 + 𝜇𝑌)

2

] 

=
1

𝜇𝑋 + 𝜇𝑌
(

 
𝜇𝑍 −

𝐸[𝑛𝑋𝑛𝑍]

𝜇𝑋 + 𝜇𝑌
−
𝐸[𝑛𝑌𝑛𝑍]

𝜇𝑋 + 𝜇𝑌

+(𝐸[𝑛𝑋
2] + 𝐸[𝑛𝑌

2] + 2𝐸[𝑛𝑋𝑛𝑌])
𝜇𝑍

(𝜇𝑋 + 𝜇𝑌)
2)

  

 

The square of the last expression is then written: 

 

𝐸 [
𝐼𝑍

𝐼𝑋 + 𝐼𝑌
]
2

≈
1

(𝜇𝑋 + 𝜇𝑌)
2
 

(

 

𝜇𝑍
2 − 2

𝜇𝑍
𝜇𝑋 + 𝜇𝑌

(𝐸[𝑛𝑋𝑛𝑍] + 𝐸[𝑛𝑌𝑛𝑍])

+2(𝐸[𝑛𝑋
2] + 𝐸[𝑛𝑌

2] + 2𝐸[𝑛𝑋𝑛𝑌])
𝜇𝑍
2

(𝜇𝑋 + 𝜇𝑌)
2)

  

 

The third step consists of the estimation of 𝐸[𝑚𝑒𝑡𝑟𝑖𝑐2]. 
The expression is also given at the second order (zero 

means and higher order terms are not considered): 

 

𝐸 [(
𝐼𝑍

𝐼𝑋 + 𝐼𝑌
)
2

] ≈ 

𝐸 [(
𝜇𝑍 + 𝑛𝑍
𝜇𝑋 + 𝜇𝑌

)
2

(1 −
𝑛𝑋 + 𝑛𝑌
𝜇𝑋 + 𝜇𝑌

+ (
𝑛𝑋 + 𝑛𝑌
𝜇𝑋 + 𝜇𝑌

)
2

)

2

] 

=
1

(𝜇𝑋 + 𝜇𝑌)
2
𝐸

[
 
 
 𝜇𝑍

2 + 𝑛𝑍
2 − 4

𝜇𝑍
(𝜇𝑋 + 𝜇𝑌)

𝑛𝑍(𝑛𝑋 + 𝑛𝑌)

+3
𝜇𝑍
2

(𝜇𝑋 + 𝜇𝑌)
2
(𝑛𝑋 + 𝑛𝑌)

2

]
 
 
 

 

 

The last step consists of the estimation of the metric 

standard deviation using its definition: 

 

𝜎2(𝑚𝑒𝑡𝑟𝑖𝑐) = 𝐸[𝑚𝑒𝑡𝑟𝑖𝑐2] − 𝐸[𝑚𝑒𝑡𝑟𝑖𝑐]2 
 



𝜎2 (
𝐼𝑍

𝐼𝑋 + 𝐼𝑌
) =

1

(𝜇𝑋 + 𝜇𝑌)
2
 

[
 
 
 
 
 
 
 
 
 

𝜇𝑍
2 + 𝐸[𝑛𝑍

2]

−4
𝜇𝑍

(𝜇𝑋 + 𝜇𝑌)
(𝐸[𝑛𝑋𝑛𝑍] + 𝐸[𝑛𝑌𝑛𝑍])

+3
𝜇𝑍
2

(𝜇𝑋 + 𝜇𝑌)
2
(𝐸[𝑛𝑋

2] + 𝐸[𝑛𝑌
2] + 2𝐸[𝑛𝑋𝑛𝑌])

−

(

 

𝜇𝑍
2 − 2

𝜇𝑍
𝜇𝑋 + 𝜇𝑌

(𝐸[𝑛𝑋𝑛𝑍] + 𝐸[𝑛𝑌𝑛𝑍])

+2(𝐸[𝑛𝑋
2] + 𝐸[𝑛𝑌

2] + 2𝐸[𝑛𝑋𝑛𝑌])
𝜇𝑍
2

(𝜇𝑋 + 𝜇𝑌)
2)

 

]
 
 
 
 
 
 
 
 
 

 

=
1

(𝜇𝑋 + 𝜇𝑌)
2
[𝜇𝑍

2 + 𝐸[𝑛𝑍
2]

− 2
𝜇𝑍

(𝜇𝑋 + 𝜇𝑌)
(𝐸[𝑛𝑋𝑛𝑍] + 𝐸[𝑛𝑌𝑛𝑍])

+
𝜇𝑍
2

(𝜇𝑋 + 𝜇𝑌)
2
(𝐸[𝑛𝑋

2] + 𝐸[𝑛𝑌
2]

+ 2𝐸[𝑛𝑋𝑛𝑌])] 

 

Finally the standard deviation of a simple ratio metric 

normalized by a virtual prompt can be modelled as: 

𝜎 (
𝐼𝑍

𝐼𝑋 + 𝐼𝑌
)

=

√
  
  
  
  
  
  
  

𝜇𝑍
2

(𝜇𝑋 + 𝜇𝑌)
2

[
 
 
 
 
 
 

+

𝜎2(𝑛𝑍)

𝜇𝑍
2

𝜎2(𝑛𝑋) + 𝜎2(𝑛𝑌) + 2𝑐𝑜𝑣(𝑛𝑌𝑛𝑋)

(𝜇𝑋 + 𝜇𝑌)
2

−2
𝑐𝑜𝑣(𝑛𝑋𝑛𝑍) + 𝑐𝑜𝑣(𝑛𝑌𝑛𝑍)

𝜇𝑍(𝜇𝑋 + 𝜇𝑌) ]
 
 
 
 
 
 

 

 

 

Difference ratio metric normalized by a virtual prompt 

Using the same process, the metric standard deviation of a 

difference ratio metric can be modelled as: 

 

𝜎 (
𝐼𝑍 + 𝐼𝑊
𝐼𝑋 + 𝐼𝑌

) =
(𝜇𝑍 + 𝜇𝑊)

(𝜇𝑋 + 𝜇𝑌)
 

√
  
  
  
  
  
  
  

[
 
 
 
 
 
 

𝜎2(𝑛𝑍) + 𝜎2(𝑛𝑊) + 2𝑐𝑜𝑣(𝑛𝑍𝑛𝑊)

(𝜇𝑍 + 𝜇𝑊)
2

+
𝜎2(𝑛𝑋) + 𝜎2(𝑛𝑌) + 2𝑐𝑜𝑣(𝑛𝑌𝑛𝑋)

(𝜇𝑋 + 𝜇𝑌)
2

−2
𝑐𝑜𝑣(𝑛𝑋𝑛𝑍) + 𝑐𝑜𝑣(𝑛𝑌𝑛𝑍) + 𝑐𝑜𝑣(𝑛𝑋𝑛𝑊) + 𝑐𝑜𝑣(𝑛𝑌𝑛𝑊)

(𝜇𝑍 + 𝜇𝑊)(𝜇𝑋 + 𝜇𝑌) ]
 
 
 
 
 
 

 

 

 

Sum ratio metric normalized by a virtual prompt 

Using the same process, the metric standard deviation of a 

sum ratio metric can be modelled as: 

 

𝜎 (
𝐼𝑍 − 𝐼𝑊
𝐼𝑋 + 𝐼𝑌

) =
(𝜇𝑍 + 𝜇𝑊)

(𝜇𝑋 + 𝜇𝑌)
 

√
  
  
  
  
  
  
  

[
 
 
 
 
 
 

𝜎2(𝑛𝑍) + 𝜎2(𝑛𝑊) − 2𝑐𝑜𝑣(𝑛𝑍𝑛𝑊)

(𝜇𝑍 + 𝜇𝑊)
2

+

𝜎2(𝑛𝑋) + 𝜎2(𝑛𝑌) + 2𝑐𝑜𝑣(𝑛𝑌𝑛𝑋)

(𝜇𝑋 + 𝜇𝑌)
2

−2
𝑐𝑜𝑣(𝑛𝑋𝑛𝑍) + 𝑐𝑜𝑣(𝑛𝑌𝑛𝑍) − 𝑐𝑜𝑣(𝑛𝑋𝑛𝑊) − 𝑐𝑜𝑣(𝑛𝑌𝑛𝑊)

(𝜇𝑍 + 𝜇𝑊)(𝜇𝑋 + 𝜇𝑌) ]
 
 
 
 
 
 

 

 

Abacuses for Galileo E1C and E5a signals 

 
For each signal, an abacus is necessary to make the link 

between metrics standard deviation and theoretical 𝐶 𝑁0⁄ . 

The abacus is also dependent on the metric normalization. 

Considering simple ratio metrics (normalized by a virtual 

prompt) introduced in the publication, the abacus for 

Galileo E1C is shown on the top and the abacus for Galileo 

E5a is shown on the bottom.  

 

 
Figure A-1. Metric standard deviations compared to 

theoretical values. Galileo E1C signal on the top, Galileo 

E5a signal on the bottom. 


