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Abstract— This article provides the reader a focused 

and organised review of the research progresses on 

neurophysiological indicators, also called 

“neurometrics”, to show how neurometrics could 

effectively address some of the most important Human 

Factors (HFs) needs in the Air Traffic Management 

(ATM) field. The state of the art on the most involved 

HFs and related cognitive processes (e.g. mental 

workload, cognitive training) is presented together with 

examples of possible applications in the current and 

future ATM scenarios, in order to better understand and 

highlight the available opportunities of such 

neuroscientific applications. Furthermore, the paper will 

discuss the potential enhancement that further research 

and development activities could bring to the efficiency 

and safety of the ATM service. 

I. INTRODUCTION 

Nowadays, Air Traffic Control Officers (ATCOs) 
tend to work in very complex systems, in which a 
proficient interaction between humans and computer 
systems is crucial to provide a safe and efficient 
service. Dealing with an exponentially increasing of 
automation systems, the urgent need is to have reliable 
and precise tools to support the design phase of new 
technology and solutions, to increase the availability of 
advanced automations (e.g. adaptive automation, [1]), 
and to enhance the operators' training assessment and 
effectiveness. Technologies and techniques based on 
the analysis of neurophysiological signals (e.g. the 
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Electroencephalogram, EEG) have the potential of 
providing reliable information about operators’ internal 
state [2]–[5], understanding, for example, if the 
operator's workload is exceeding his/her cognitive 
capacity, or if some kind of incapacitation is occurring. 

The paper is structured in three main sections. In the 
first one, the Air Traffic Control (ATC) domain is 
briefly introduced, highlighting the importance of 
Human Factor (HF) concepts in operational 
environments. Then, the main benefits from the 
introduction of neurophysiological measurements of the 
operator’s cognitive state are presented. In the second 
section, the topic is the selection of the most relevant 
HF concepts in the ATC field, and the discussion of the 
corresponding research studies. In particular, the mental 
workload assessment during ATC activities, Human-
Machine Interaction (HMI) in adaptive automation 
applications, and operators’ training and expertise 
assessment are presented. 

In the third section, examples of future application 
of neurometrics in the ATM domain are provided. 

II. HUMAN FACTORS IN ATM 

A. Air Traffic Management (ATM) 

Air Traffic Management (ATM) is a term largely 
used to encompass all systems that assist aircraft from 
departing, transit airspace, to landing. It includes 
different sectors, such as Air Traffic Control (ATC), Air 
Traffic Flow Management (ATFM), and Aeronautical 
Information Services (AIS). Rather than discussing all 
these aspects of the ATM systems, the remainder of this 
review will focus on the ATC area. In this domain, the 
operator, i.e. the ATCO, has to monitor the aircraft 
assumed in the air - sector of his/her responsibility, and 
provide assistance to the pilots for safe, efficient and 
smooth navigation, intervening in case of risk of 
infringing the prescribed safety separations between 
aircraft. In their review, “The levels of automation”, 
Parasuraman, Sheridan and Wickens [6] argue that 
safety critical systems, such as the ATC systems, are 
typically less automated than one could expect. 
Compared to other safety critical and high-hazard 
domains, ATC is characterized by the key role played 
by human actors. As a matter of fact, safety relevant 
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decisions are made mostly by humans, whereas 
computer systems are used as supporting tools, assisting 
the controller in monitoring and communication tasks. 
Automation systems mainly support information 
acquisition and information analysis activities. 

B. Human Factors measurement needs in ATC 

In the ATC system the controller’s work is very 
cognitively demanding. Activities for managing air - 
traffic, such as solving conflicts, maintaining separation 
between aircraft and coordinating air-traffic, involve 
cognitive processes such as visual scanning, 
information processing, decision making and attention. 
Controllers have a key-role in facing system 
complexity, because their main objective is to anticipate 
and manage unpredictable situations affected by 
multiple elements. Complexity does not regard only the 
environment. Radio communications, phone 
communications, radar displays and computers are also 
system elements that increase the ATC system 
complexity. A peculiar characteristic of the ATC work 
is that controllers usually perform few recurring tasks in 
addition to the routine activity, such as welcoming 
aircraft on the frequency and handing them off to 
adjacent sectors. Even if these tasks are well known, 
their order remains largely unpredictable because of the 
dynamic nature of weather, traffic demands, operational 
conditions, and so on.  

HFs have been always a major research topic in the 
Aviation field [7] and most of the advanced 
technologies are studied and applied in this domain [8]. 
In other words, Aviation recognised the importance of 
"the design and evaluation of operational and humans 
limits" since a long time ago1. With the contribution of 
other disciplines, such as cognitive psychology, 
neuroergonomics, engineering and industrial design, 
several methods have been developed over time in 
order to better understand the interaction between 
humans and complex systems [9]. These methods have 
been recognised to be crucial elements in the design, 
management and analysis of the ATM system. The 
knowledge about human factors has evolved along the 
years to cope with technological and social changes. 

It is expected that these changes will stress the need 
for more accurate and reliable methodologies to 
investigate, understand and assess the human role in the 
challenging future ATM scenarios. 

C. The ATC expected needs in the upcoming future 

At present, the ATC systems in Europe (and in other 
parts of the world, most notably the United States) are 
not drastically different from their historic predecessors 
in the 1950’s (when the primary radar was introduced) 
and 1960’s (when secondary radar came about)2. 
 

1 http://www.iso.org/iso/catalogue_detail?csnumber=35885  
2 http://www.eurocontrol.int/sites/default/files/publication/files/prr-2013.pdf  

Furthermore, due to changes in traffic volume, traffic 
complexity and economy, the main concerns of ATM 
(e.g., flights delay, cost-efficiency) changed with 
respect to a decade ago. The Single European Sky 
(SES) initiative aims at enhancing the current air traffic 
safety, to contribute to the sustainable development of 
the air transport system and to improve the overall 
performance of ATM. Its primary objective is to meet 
future capacity, safety and cost-efficiency needs 
through legislation and technology changes. A key 
point to reach the full implementation of SES initiative 
is the development of new ATM technologies and 
procedures. The Single European Sky ATM Research 
(SESAR) programme represents the technological pillar 
of the SES initiative. It will provide new technologies, 
systems and procedures with a view to modernising and 
optimising the future European ATM network3. The 
SESAR programme aims to: 1) improve safety 
performance, 2) gain additional capacity and reduce 
delays, 3) enhance efficiency by reducing the costs of 
ATM services. 

SESAR admits that, despite the need to promote the 
use of technology, human actors will still play a key 
role for implementing the new changing of the future 
European ATM system. No matter how advanced the 
concepts and systems become, the controllers, pilots, 
engineers, maintenance technicians and other front-line 
operators will continue to be a critical element to 
ensuring safety. In other words, despite advances in 
automation, human actors will be on centre stage as 
decision makers and new technologies should support 
their activities and tasks. As a consequence, HF and 
neurophysiological measurements will play a central 
role by studying and applying knowledge about the 
performance of operators in their working 
environments. 

D. The strategic research agenda for Human Factors 

Flightpath 20504 sets out the vision for the 
ambitions of European aviation over the next three 
decades. In order to realise this vision, the Advisory 
Council for Aviation Research in Europe (ACARE) 
called on several experts from the entire Air 
Transportation System (ATS), and developed a 
roadmap called the Strategic Research and Innovation 
Agenda (SRIA)5. This roadmap lays out what is needed 
to be done in three timeframes (2020, 2035 and 2050) 
for all the five pillars of Flightpath 2050: Mobility 
(suitable and sustainable for passengers and freight), 
Competitiveness (in world air transport markets, 
supported by a strong research network and balanced 
regulatory framework, in the face of fierce competition 
from both established and emerging rivals), 

 
3 http://www.sesarju.eu/solutions  
4 http://ec.europa.eu/transport/modes/air/doc/flightpath2050.pdf 
5 http://www.acare4europe.com/sria 
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Environmental Protection (producing liquid fuels and 
energy from sustainable biomass), Education and 
Infrastructure (supported by training and simulation 
tools), Safety and Security (to ensure that passengers 
and freight as well as the air transport system and its 
infrastructure are protected). A special focus is laid on 
Human Factors: Safety and human performance are 
inextricably linked. The importance of integrating 
human performance into the system to increase its 
resilience and tolerance to error is vital. The human 
dimension needs significant attention to ensure that the 
future workplace, the procedures and the supporting 
systems will be designed for the individual, as opposed 
to the individual adapting to the workplace. Vigilance is 
maintained and systems are able to monitor, detect and 
correct abnormal behaviours6.  

The Flightpath 2050 vision on HF is: “The 
occurrence and impact of human error is significantly 
reduced through new designs and training processes 
and through technologies that support decision 
making”. A precise goal is set: "The objective is the 
80% of reduction of human errors in accident causes". 

In the United States (US), The Federal Aviation 
Administration (FAA) and National Aeronautics and 
Space Administration (NASA) undertake human factors 
research as part of their NextGen-related programs and 
projects to assess the envelope of human performance 
capabilities and limitations with new concepts and 
automation.  

Europe and U.S. vision on the importance and role 
of Human Factors are more and more aligned, and in 
2015 FAA and Eurocontrol jointly produced the white 
paper “A Human Performance Standard of 
Excellence”7, with the aim of helping the air traffic 
management industry realise better usage and 
integration of human performance approaches in its 
pursuit of excellence in business performance and 
Safety. 

E. The top 5 Human Factors Research and Innovation 

priorities 

In July 2014, the FP7 European project OPTICS 
organised a workshop to discuss major HF research 
needs to increase the current level of safety in aviation. 
OPTICS is a project funded through the European 
Commission with the objective of reviewing the degree 
of contribution of the various European ATM-related 
projects to the objectives of the SRIA. The workshop 
attracted 70 experts in HF from 17 countries across the 
ATS spectrum. The aim of the workshop was to ask 
experts to determine the major Human Factors 
Research & Innovation (R&I) priorities for aviation 

 
6 http://www.eurosfaire.prd.fr/7pc/doc/1349425601_sria_acare_vol1.pdf  
7 http://skybrary.aero/bookshelf/books/3291.pdf  

safety. The OPTICS workshop results8, integrated with 
information coming from the HF state of the art in the 
aviation domain, showed that the following are the top 
5 HF capabilities needed. 

Table 1: The top 5 Human Factors capability needs 

 Capability Explanation 

1 Human 
Performance 
Envelope 
(HPE) 

“Human Performance refers to the 
adequate performance of jobs, tasks 
and activities by operational personnel 
– individually and together9”. The 
envelope is a metaphor to indicate the 
boundaries within which the 
performance is good or within system 
tolerance. The capability of assessing if 
controllers are within their HPE (i.e. 
with an optimal level of situation 
awareness, workload, fatigue and so 
on), so capable to provide adequate 
performance, is considered vital both 
for system safety and workers’ 
wellbeing. 

Currently, for only a part of the factors 
composing the HPE validated 
assessment tools are available. 

2 Design and 
Manufacturi
ng 

It is known that HF aspects should 
be taken into consideration from the 
early phases of design. This does not 
impact only on the usability, safety and 
utility of new systems and tools, but 
also on the effectiveness of the process 
itself, reducing costs and risks. 

While there are pockets of guidance 
and good practice, there is no 
regulation on Human Factors 
encompassing the entire aviation 
transport system and its design life 
cycle, stating when to do HF, with 
what guidance, and against which 
standards. A common framework is 
needed for integrating HF into the 
design of ATM, Avionics and Airframe 
systems, encompassing all system 
developers and users. 

3 Adaptive 
Automation 
(AA) 

Develop and test concepts of 
adaptive automation is an approach to 
automation design where tasks are 
dynamically allocated between the 
human operator and computer systems 
[10]: both the user and the system can 
initiate changes in the level of 
automation. ATM systems are moving 
towards high automation to face the 
grown in traffic that is expected in the 

 
8http://www.optics-project.eu/wp-content/uploads/2014/07/OPTICS-

Workshop-Highlights.pdf  
9https://www.eurocontrol.int/sites/default/files/article/content/documents

/nm/safety/hp_white_paper_2010_low.pdf  

http://www.eurosfaire.prd.fr/7pc/doc/1349425601_sria_acare_vol1.pdf
http://skybrary.aero/bookshelf/books/3291.pdf
http://www.optics-project.eu/wp-content/uploads/2014/07/OPTICS-Workshop-Highlights.pdf
http://www.optics-project.eu/wp-content/uploads/2014/07/OPTICS-Workshop-Highlights.pdf
https://www.eurocontrol.int/sites/default/files/article/content/documents/nm/safety/hp_white_paper_2010_low.pdf
https://www.eurocontrol.int/sites/default/files/article/content/documents/nm/safety/hp_white_paper_2010_low.pdf


1937-3333 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/RBME.2017.2694142, IEEE Reviews
in Biomedical Engineering

  

upcoming years. 

A better understanding of how highly 
automated systems impact human 
performance as well as tools able to 
inform system about the internal state 
of operators is vital for the design of 
safe and effective tools as well as the 
design of new roles and jobs for 
controllers. 

4 Monitoring 
of crew/team 
capacity 

Develop the capability to monitor 
in real-time crews concerning their 
mental state, such as workload, fatigue 
and degradations in vigilance. This is 
considered fundamental for the 
prevention of safety issues related to 
degraded individual conditions. 

Today, there are few validated and 
usable during operations means 
available for the real time assessment 
of operators capacity. 

5 Training 
design and 
expertise 
assessment 

Initial and ongoing training are crucial 
(and expensive) activities to ensure 
efficiency and safety. There is an 
innovation gap in current training 
approaches: trainers have few tools to 
support their work, with assessment 
only based on subjective assessment, 
self-introspection and few performance 
metrics. Both the designing of new 
training methods and their 
administration could greatly benefit 
from the use of tools able to understand 
the level of training reached by 
operators and for which specific areas 
they need to practice more. 

F. Human Factors evaluation by using neuroscience 

knowledge 

Enhancing the ability to investigate the human 
cognition and assess specific mental states is mandatory 
to address the capabilities listed above and provide 
reliable, simple and easy-to-use tools to the HF teams 
working in the ATC field. 

Very recent studies in the cognitive research have 
demonstrated the applicability and the effectiveness of 
neurophysiological metrics in assessing ATCOs’ 
mental states, such as mental workload, cognitive 
training, attention, vigilance, crew cooperation, 
cognitive control behaviour [11]–[18]. To better explain 
the different contributions that neuroscience could bring 
to the ATC domain, we present some HF gaps that 
could be closed thanks to the recent research results. 
For the sake of simplicity, we will focus on the five 
capabilities listed above (i.e. Human Performance 
Envelope, Human Factors in Design and 
Manufacturing, Adaptive Automation, Monitoring of 
crew/team capacity, Training design and Expertise 

assessment) and related mental states whose 
measurement, even in real time, could be used to close 
or at least reduce such HFs related gaps. 

1) Human Performance Envelope 
The idea behind the Human Performance (HP) 

envelope is that human performance is a product of 
many interacting factors. Some of these aspects play a 
role before the actual operations, as the level of training 
and expertise achieved. Some others factors take place 
while the operators are working, like, for instance, 
workload, fatigue, stress, situation awareness, decision 
making [19] . More generally, workload concept has 
been demonstrated to directly impact on the other 
mentioned mental states [20]. In this context, it 
represents the most studied mental state due to its 
strong relationship with the increasing or degrading of 
user’s performance [21]. By understanding the impact 
of such factors on the operators’ performance, specific 
countermeasures can be proposed, e.g. controllers can 
compensate accordingly, external parties or proper 
automations can augment human performance or take 
over the control. The gaps that could be addressed by 
the neurometrics are the following two: 

 Provide objective measures of the various HP 
envelope factors. Current measurements are often 
derived from self-reports, provided by operators or 
observers (i.e. experts or trainers), as the NASA-
Task Load Index (NASA-TLX) questionnaire [22], 
the Instantaneous Self-Assessment (ISA) technique 
[23], which have well known limitations [11], [15], 
[24], [25]. For example, they cannot follow the 
envelope of the task without requiring the additional 
activity of filling the questionnaire regularly 
(invasiveness) and with accurate time resolution (no 
real – time evaluation) Additionally, it has to be 
considered the biases related to their intrinsic 
subjective nature (operator–dependent bias). On the 
contrary, neurophysiological measurements of the 
HP envelope would be ideally carried out in real-
time, to detect risky drifts towards the envelope 
boundary and trigger dynamic responses. 

 Provide input to better understand some of the 
current factors composing the HP envelope. In fact, 
HFs are mostly rooted in cognitive psychology 
concepts, often based on introspection. Objective 
measurements could break HF concepts down into 
more elementary measurable cognitive processes 
like perception, attention, decision making. 

2) Human Factors in Design and Manufacturing 
Many HF issues encountered during ATC operations 

are currently credited to non-optimal design, resulting 
in limited usability, incorrect mental models, and lack 
of understanding of the actual work practise and context 
[26]. Effective HF integration could cover the design of 
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all the system elements, e.g. tools, human-machine 
interface, procedures, roles and communication flows. 
In fact, it could span from detailed design elements 
(lights and bottoms positioning and colours), to high 
level aspects and decisions (assessing the cumulative 
workload or fatigue induced in the operator by a new 
sector configuration). Also, it should provide the 
understanding of how all these factors interact, to 
ensure that individual elements are designed with a 
systemic perspective. System designers should possess 
at least a basic appreciation of HF, whereas HF experts 
should become part of the design team due to their 
technology maturity. 

The main gap is the lack of appropriate data to steer 
design and validate proposals in the R&D phases, as HF 
input is typically seen as highly subjective and not 
standardised, therefore impossible to compare across 
time and situations, and hard to integrate with current 
design and development industrial processes. Typical 
HF concepts used in R&D to steer design are workload, 
usability, situation awareness, number and type of 
errors. In particular, from a cognitive point of view, 
objective measurement of the operator’s mental 
workload might help in having a deeper comprehension 
of the advantages of alternatives designs in terms of 
requested cognitive resources. Quantitative information 
could then support and help the comparison among the 
different technologies in order to better identify the best 
choice for specific operative condition [24]. The use of 
neurometrics could address this gap by: 

 Providing objective and standard data to compare 
alternatives designs [24]. Neurometric Data could 
also be collected after the technology has been 
introduced into operations, to monitor its actual use 
(typically to some extent different than the intended 
use). These data could provide valuable input for 
design and safety departments. The use of 
neurometrics in operations would also address the 
small sample problem, as R&D projects typically 
have limited budget to involve professional 
controllers (or operators in general). However, these 
aspects require a (validated) link between HF 
concepts and neurophysiological indicators. 

3) Adaptive Automation 
The concept of Adaptive Automation goes beyond 

traditional modes of human-computer interaction. It 
entails that the system receives information on the 
operators’ physical and cognitive status, to then adapt 
its behaviour. Examples of such application are:  

 Interface changes to reduce visual clutter (e.g. 
filtering non relevant flights), or to ease visual 
scanning tasks (e.g. increasing salience of alarms);  

 Changes to interaction modalities to support hands-
free operations or to offload the visual channel (e.g. 
haptic or aural feedback would be typical cases);  

 Shifts in the processing logic for data filtering or 
decision-support, e.g. moving to a less conservative 
detection logic to reduce the number of non-relevant 
alerts being displayed.  

In extreme cases, like operator’s incapacitation, 
automation can take full control and bring the system 
safely to an equilibrium point. Fox example, on Mig-
29, F-117 and EFA2000 jetfighters there is a button 
called “Panic Button” by which the pilot, who is losing 
consciousness, can give the full control of the jet to the 
system and recover it to a safe configuration. 

The idea of adaptive automation is not new, but to 
date attempts have focussed mainly on linking the 
status of information and functions provided on a 
human–machine interface to descriptors of the 
situation, e.g. traffic load. Only with recent advances in 
neurophysiology, adaptive systems that are driven by 
the operators’ mental state have become an important 
research topic. In the last years, several 
neuroergonomic systems, that use neurophysiological 
measures to trigger changes in the state of automation, 
have been studied and their impact on operators 
performance analysed. [27]. Evidences show that 
people not only think of adaptive systems as “co-
workers”, they may even expect them to behave like 
humans.  

Despite its potential advantages, adaptive 
automation also holds a potential pitfall. The dynamic 
behaviour changes of adaptive systems makes it more 
complex and less predictable for the user. Situations in 
which users are surprised and confused by “what is the 
system doing?” must be minimized. Some lessons can 
be learned from flight deck automation, most notably 
the introduction of first generation of glass cockpits 
[28], [29]. The concept of adaptive automation may 
hence need to be revisited or fine-tuned, to increase the 
operator acceptance. It may be that an intermediate 
stepping - stone is needed, such as adaptable 
automation. In this scenario, the user can trigger 
advanced automation at her/his discretion, avoiding 
confusion and retaining the sensation of being in 
control. Users could also regain control if things go 
wrong, and the automation can no longer cope with the 
situation. Several strategies regarding the triggering 
mechanism of automation have been proposed [30]. 
Generally, three are the main approaches described in 
the literature: (i) the Critical-event strategy, based on 
the a-priori assumption that human workload may 
become too high when the critical events occur [31]; 
(ii) the Performance-measurement strategy, based on 
the use of operator’s performance during the task itself 
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or additional ones (also called behavioural measures) to 
estimate current and predicted operator’s state and to 
infer whether workload is excessive or not; (iii) 
Neurophysiological measurement strategy, based on the 
recording of operator’s neurophysiological signals, e.g. 
electroencephalogram (EEG) to infer his actual mental 
workload [32], [33]. 

In this context, the research contribution of 
neurometrics could address two important issues: 

 Neurometrics could define the thresholds by which 
to activate the transitions between the automation 
levels (lower or higher than the previous one). 
Thresholds may be binary (on-off), or more accurate 
along larger time windows, to avoid continuous 
transitions, and to consider cumulative effects. For 
instance, a medium-high workload level lasting for 
several minutes could trigger the same transition as 
a very high workload peak. Similarly, after a 
sustained period of work with high automation, the 
same level could be maintained for some time even 
with low workload to ease recovery. 

 Neurometrics could provide scientific validation of 
the adaptive automation effectiveness, for instance 
by showing an actual workload decreasing after the 
adaptive automation intervention. 

4) Monitoring of crew/team capacity 
Aircraft accident investigations had revealed that 

80% of accidents were based on human error, but 
further investigation indicated that a significant portion 
of human error was attributable to HF failures primarily 
associated with inadequate communication and 
coordination within the crew [34]. Beyond the 
technology and equipment progress, specific HF 
training methods (e.g. Crew Resources Management – 
CRM) have led to the reductions of aviation accidents. 
In fact, since the end of 90s, CRM training has been 
required for all military and commercial US aviation 
crews and air couriers [35]. The general concept of 
crew\team capacity monitoring is based on the use of 
smart technologies to monitor in real time signs of 
possible operators impairments, such as drowsiness, 
fatigue, excessive workload, or degradation of vigilance 
[18]. Detection should be done in real-time, to enable 
correction by the crew and/or by the system itself. 
Monitoring of team capacity is closely linked to the 
HPE concept, as the choice of what to monitor derives 
from the envelope definition. Current works are mainly 
directed to workload and to cases of physical 
incapacitation (e.g. hypoxia) measurement [36].  The 
Advisory Council for Aviation Research and innovation 
in Europe (ACARE) expects, as an objective to achieve 
within the 2020, the employment of technologies in 

aviation able to measure and correct/prevent in real-
time overload situations10. 

The research contribution of neurometrics is to 
develop objective indexes to detect such conditions (i.e. 
overload situations), and to customise these indexes to 
the various aviation scenarios in operational 
environments and during training activities. 

5) Expertise assessment 
Even when indications are given, the feedback may 

not be detailed enough to understand which skill is still 
lacking. Is it a manual skill or cognitive demanding 
process? Trainers mostly rely on their experiences in 
“reading” Trainees’ cues, or on Trainees’ self-
perception.  

Moreover, Trainees sometimes fail the exam mostly 
because of poor stress management, not because of lack 
of skills. The cost of a failed test can be extremely high, 
for instance in those curricula where the Trainee can 
only take the final exam twice or three times. If the 
Trainee fails, the whole investment made on her/him 
will be lost.  

Finally, the workforce must receive appropriate 
training to perform safely and effectively with the new 
automated solutions that will be implemented in the 
near future11. This includes regular training on fallback 
procedures to ensure competency in the event of system 
failure and to prevent the degradation of skills needed 
in such an event. This is relevant both for the training of 
new controllers and for the transition of current 
professionals to new systems during their career. For 
such a reason, there is the necessity of objectively 
monitoring and assessing operators’ performance [37], 
especially in terms of cognitive resource and brain 
activations [15]. 

Neurometrics can play a key role for this capability, 
providing an objective measure of the training 
progresses of the Trainee or the Operator [13], [38]–
[40]. Such information could be very useful for the 
Trainer, supporting him during his evaluation activity. 
Such improvement in the training evaluation should 
produce: 

 Increased Efficiency: Trainees can devote less time 
to topics  already mastered, and focus more on 
topics they find hard-to-learn; 

 Training Personalisation: Trainers will acquire clear 
and objective feedback on how each Trainee is 
progressing. Such data can be used to define ideal 
personalised learning paces for each Trainee; 

 
10 http://www.acare4europe.com/new-crew-and-team-concepts-19  
11https://publicapps.caa.co.uk/docs/33/CAP%201377%20final%20Mar%

202016.pdf  

http://www.acare4europe.com/new-crew-and-team-concepts-19
https://publicapps.caa.co.uk/docs/33/CAP%201377%20final%20Mar%202016.pdf
https://publicapps.caa.co.uk/docs/33/CAP%201377%20final%20Mar%202016.pdf
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 Avoidance of Unnecessary Fails in Final Tests: 
Trainees sometimes fail an exam mostly because of 
poor stress management, not because of lack of 
skills. Neurometrics can help to single out the 
causes, by measuring the stress level during the 
training, or during the test. Dedicated stress 
management training can then be organised to 
address the events where the stress impacts strongly 
on the Trainee’s performance. 

III. NEUROPHYSIOLOGICAL MEASURES: CURRENT 

STATE-OF-THE-ART 

In the previous section, the top five HF needs in the 
ATC domain have been widely discussed. In this 
regards, we reported some practical applications of the 
neuroscience, stressing its importance for the future 
development of the ATC system. 

In this part of the paper, we present some important 
results with the aim of showing the progresses that have 
been made on the possibility to measure HF concepts 
by using neurometrics, and the possibility to develop 
and use specific tools in the ATC work environment. 
The concepts at the basis of the HFs described 
previously are mainly two: 

 Mental workload; 

 Training and Expertise. 

These aspects represent clear examples of 
fundamental topics and crucial issues within the ATC 
domain. Their objective evaluation would directly 
influence the top-5 capabilities presented before. For 
example, workload (together with fatigue) is involved 
in the human performance envelope, error prevention of 
operators, design of new tools and systems and 
triggering of adaptive automation solutions. Moreover, 
training and expertise are key factors not only at the 
beginning of the ATCOs’ careers, but throughout all 
their work experience, therefore they have to be 
periodically checked.  

A. Which neurometric to be used for the investigation 

of the HF concepts? 

In recent decades, neuroscience has been focusing 
on the evaluation of user’s mental states in operational 
environments, by means of neurophysiological signals. 
Neuroscientific researches are based on the use of 
neuroimaging technologies and neurophysiological 
measures, including Electroencephalography (EEG), 
functional Near-InfraRed (fNIR) imaging, functional 
Magnetic Resonance Imaging (fMRI), 
Magnetoencephalography (MEG), and other types of 
biosignals such as Electrocardiography (ECG), 
Electrooculography (EOG) and Galvanic Skin 
Response (GSR) [41]–[43]. Neuroimaging methods 
such as Positron Emission Tomography (PET) and 

fMRI are excellent tools in this endeavour, enabling the 
examination of how the brain adapts itself in response 
to practice or repeated exposure to particular tasks. 
However, their limitations in terms of cost, space and 
invasiveness make them not suitable for real working 
environment settings, where a less invasive approach 
would be preferable and the costs for its 
implementation and usage has to be limited. In fact, 
PET and fMRI techniques require expensive 
instruments and high maintenance costs, In addition, 
fMRI [44] and MEG techniques require room-size 
equipment that are not portable. On the other hand, 
EOG, ECG and GSR activity measurements highlighted 
a correlation with some mental states (stress, mental 
fatigue, drowsiness), but they were demonstrated to be 
effective only in combination with other neuroimaging 
techniques directly linked to the Central Nervous 
System (CNS), i.e. the brain [40], [41], [45]. 
Furthermore, it has been showed in few works as brain 
signals recordings (i.e. EEG) represents the best 
performing information in mental states evaluation in 
respect to other peripheral physiological signals (i.e. 
EOG, ECG, GSR, [46]). In this regard, EEG and fNIRs 
are the most likely candidates that can be 
straightforwardly employed to investigate human brain 
behaviours in operational environments. The propensity 
for using EEG or fNIRs techniques has not been 
clarified yet. There are several factors to take into 
account about real operational scenarios. For example, 
both EEG and Fast Optical Signal (FOS)-based fNIR 
have similar bandwidth and sample rate requirements, 
as the FOS appears to directly reflect aggregated neural 
spike activity in real-time and can be used as a high-
bandwidth signal akin to EEG [47]. However, EEG and 
fNIRs systems have different physical interfaces, sizes, 
weights and power budgets, thus different wearability 
and usability in real operational contexts. In this regard, 
the presence of hair may impact negatively on both 
photon absorption [48] and the coupling of the probes 
with the underlying scalp, thus the fNIRs technique is 
very reliable only on those un-hairy brain areas, like the 
Pre Frontal Cortex (PFC). For the mental states 
investigation, also other cortical regions, such as the 
parietal brain sites play an important role. Derosière et 
al. [49] pointed out how some fNIRs-measured 
hemodynamic variables were relatively insensitive to 
certain changes during the brain activity. In conclusion, 
due to its higher temporal resolution and usability, in 
comparison with the fNIRs technique, the EEG 
technique overcomes such issues related to the fNIRs 
and appears as the better candidate for such kind of 
applications in the operational environments, and in 
particular in the ATC domain. 
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B. Mental states evaluation by neurophysiological 

approach 

As stated before, two mental states are the most 
important to focus our attention on:  

 the mental workload experienced by the operator 
during  working activities; 

 the training level and expertise degree of operators. 

In the following, the two mental states will be 
discussed in order to better understand their correlation 
with neurophysiological reactions, in particular in terms 
of brain activity. 

1) Mental workload 
The mental workload monitoring is of particular 

interest especially in safety-critical applications where 
human performance is often the least controllable 
factor. In fact, as the mental workload increases, it 
became harder to maintain the user’s task performance 
within an acceptable range, resulting then into an 
increasing of errors’ occurrence. Focusing on the 
aviation domain, for example, the Aviation Safety 
Network reported 19 accidents with 960 casualties 
during the last years; in many cases factors related to 
workload, situation awareness and monitoring were a 
cause or contributing factor. Consequently, ensuring 
that operator performance remains within the 
performance envelope is of greatest importance, and 
reliable indicators measures of cognitive activity and 
related states such as mental workload and situation 
awareness are of great interest. 

Cognitive psychology literature demonstrated that 
the mental workload has an ‘‘inverted U-shape’’ 
relationship with performance. In other words, some 
levels of mental workload may help the user to reach 
high performance level [50], since it stimulates 
positively the user and it keeps him/her awake with 
high attention level. On the contrary, a period of mental 
inactivity and “under-stimulation” can cause a 
monotonous and boring state (underload), a low level of 
vigilance and attention, with low cognitive resources 
demand. Additionally, an operative condition 
characterized by demanding multi-tasks can lead the 
user to an overload condition and to a likely occurrence 
of errors [51].  

It is difficult to give a unique definition of mental 
workload. Various definitions have been given during 
the last decades, for example:  

 “Mental workload refers to the portion of operator 
information processing capacity or resources that is 
actually required to meet system demands” [52] 

 “Workload is not an inherent property, but rather it 
emerges from the interaction between the 
requirements of a task, the circumstances under 

which it is performed, and the skills, behaviours, and 
perceptions of the operator” [22];  

 “Mental workload is a hypothetical construct that 
describes the extent to which the cognitive resources 
required to perform a task have been actively 
engaged by the operator” [53]; 

 “The reasons to specify and evaluate the mental 
workload is to quantify the mental cost involved 
during task performance in order to predict operator 
and system performance” [54]. 

These definitions show how the mental workload 
may not be a unitary concept because it is the result of 
different aspects interacting with each other. In fact, 
several mental processes can be involved in every 
situation and these are a function of the demands of 
various sub-tasks.  

In the mental workload related literature, 
psychophysiological measurements are often used to 
evaluate the level of cognitive demand induced by a 
task [55], [56].  

In particular, characteristic changes in the EEG 
spectra reflecting levels of mental workload have been 
identified in different works [57]–[61]. Several studies 
described the correlation of spectral power of the EEG 
with the complexity of the task that the subject is 
performing. In fact, an increase of the theta band 
spectral power (4-7 (Hz)), especially on the frontal 
cortex, and a decrease in alpha band (8-12 (Hz)), over 
the parietal cortex, have been observed when the 
required mental workload increases [41], [61]. In this 
regard, Smith et al. [62] recorded continuous EEG 
while 16 participants were performing specific 
computer-based flight simulation task, the Multiple-
Attribute Task Battery (MATB; [63]), under low, 
moderate and high difficulty. As the task difficulty 
increased, the frontal midline theta EEG activity 
increased while parietal midline alpha decreased. In 
such research field, Wilson [64] reported a study 
involving ten pilots who performed an approximately 
90-minutes flight simulation scenario, containing both 
visual and instrumental stimuli and different flight 
conditions. Multiple variables including EEG 
parameters were analysed. Wilson [64] found that 
parietal alpha band showed significant reduction under 
high workload condition, but an increasing in the theta 
power spectrum could only be observed on few 
electrode sites. Workload can be influenced by different 
factors, such as variations of alertness and vigilance, 
mental fatigue, mental effort, complexity of the task, 
attentional variations and drowsiness [65], so it is 
fundamental to establish a valid method for the mental 
workload measurement. Furthermore, several mental 
processes are affected by such factors. Thus, the 
neurophysiological measurements of the mental 
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workload (even in real-time) could become very 
important, not only as monitoring techniques, but 
especially as supporting tool for the user during 
operational activities. In fact, as the changes in 
cognitive activity can be measured in real - time, it is 
possible to manipulate the task demand by adapting the 
user interface in order to help the user in keeping 
optimal levels of mental workload (and performance). 
In this regard, different methodologies have been 
proposed to evaluate mental workload by using 
neurophysiological (i.e. EEG) measurements. Many 
works combined EEG features related to workload for a 
reliable neurophysiological index, for example, by 
using the ratio between power bands [66]–[68]. Pope et 
al. ([67]), who reported the first brain-based adaptive 
system, established a model to measure the task 
engagement based upon ratios of EEG power bands. 
Borghini et al., [24] proposed a study in which a 
workload index, calculated as the ratio between frontal 
theta and parietal alpha power bands, has been used to 
compare different avionic technologies from cognitive 
demand point of view. 

Another approach towards real-time assessment of 
mental workload is to use machine learning approaches, 
e.g. linear discriminant analysis (LDA), support vector 
machine (SVM), artificial neural network (ANN), etc. 
Several studies classified workload into different levels 
by using EEG features in either a simple, single-task 
[69], [70] or complex tasks with skilled operators [71]–
[73]. The use of the machine learning techniques allows 
to assess the subject's mental workload in a short time 
(i.e. few seconds) reaching a high accuracy (>90%). 
Another interesting approach regarding the real-time 
mental workload evaluation has been explored by 
Dimitriadis and colleagues [74], who proposed a novel 
functional connectivity–based approach. In particular, 
they used a Tensor Subspace Analysis (TSA) to 
represent connectivity data, achieving a high correct-
recognition-rate (~96%) of difficulties in an arithmetic 
task by using a k-NN classifier. In the following, the 
application of neurophysiological measurements for the 
mental states evaluation in ATM environment will be 
reported. 

2) Mental workload in ATM 
Different studies showed the possibility to assess the 

ATCO’s mental workload by using the brain activity 
(EEG signal). In this regard, in the last decade the EEG 
has been highlighted to be the most reliable 
neurophysiological measure related to mental workload. 
For example, Brookings et al. [14] have investigated the 
mental workload changes, associated with variations in 
difficulty levels of Terminal Radar Approach Control 
(TRACON), in a simulated ATM, on 8 military 
ATCOs. The task included multiple measures such as 
performance, subjective and physiological metrics to 

evaluate the changes in controller workload. The results 
showed that the effects of the difficulty level were 
particularly evident in the theta band power, at central, 
parietal, one frontal and one temporal brain sites, since 
it showed significant increases as the task difficulty 
increased, and in the alpha band, where the activity 
decrement was influenced by the interactions between 
the difficulty level and traffic manipulations. The 
results obtained by Brookings et al. [14] are consistent 
with those reported by the other studies using similar 
indexes in ATC. For example, in a recent study, authors 
[75] tried to evaluate mental fatigue and workload 
during an ATC experiment using a time-frequency 
Independent Component Analysis (tfICA) method. 
They found that “the frontal theta EEG activity is a 
sensitive and reliable metric to assess workload and 
time-on-task effect during an ATC task at the resolution 
of minute(s)”. Moreover, they showed “the potential 
capability of tfICA method in probing neural 
activations from continuous EEG in real world tasks”. 
In several very recent studies involving professional 
ATCOs and trainees, it has been demonstrated how, by 
using machine-learning techniques and brain features 
extracted from EEG data, it is possible to compute a 
brain Workload Index able to significantly discriminate 
various ATM tasks on the basis of their difficulty level 
[11], [32]. Moreover, in another study this index was 
able to evaluate the impact of different avionic 
technologies on the mental workload of helicopter’s 
pilots [24]. Furthermore, it has been demonstrated that 
such kind of Workload Index can be used as a reliable 
measure of the mental workload experienced by an 
ATCO also in ecological working scenario, where the 
difficulty of the task has not a discrete, but a 
continuous, profile [15], [76]. In particular, in this study 
six professional ATCOs had to perform an ecological 
ATM task by using the eDEP software, a validated 
simulation platform developed by EUROCONTROL. 
In a similar study, twelve professional ATCOs have 
been asked to manage simulated high realistic ATM 
scenarios under different difficulty levels [11]. In order 
to simulate a realistic situation, tasks were developed 
with a continuously varying difficulty level, i.e. starting 
form an easy level, then increasing up to a harder one 
and finishing with an easy one again. The EEG-based 
mental workload index was shown to be directly and 
significantly correlated with the actual mental demand 
experienced by the operator during the whole task, and 
collected by using the ISA technique. Finally, in a very 
recent study authors proposed an EEG-based system 
able to trigger Adaptive Automation (AA) solutions 
integrated in a realistic ATM research simulator hosted 
at the École Nationale de l'Aviation Civile (ENAC, 
Toulouse, France) depending on the actual measured 
mental workload of the operator. The system has been 
tested on twelve ATCOs, while performing high-
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realistic ATM scenarios at different difficulty levels. 
Results of the study demonstrated the effectiveness of 
the proposed system, since it enabled the AA mostly 
during the high-demanding conditions (i.e. overload 
situations) inducing a reduction of the mental workload 
under which the ATCOs were operating. On the 
contrary, as desired, the AA was not activated when 
workload level was under the threshold, to prevent too 
low demanding conditions that could bring the 
operator’s workload level towards potentially 
dangerous conditions of underload [32] (Figure 1).  

 

Fig. 1. It has been reported a real experience of how an 
EEG-based workload index (WEEG) can be used to trigger 
Adaptive Automation (AA) solutions embedded within an 
ATM simulator hosted at the Ecole Nationale de l'Aviation 
Civile (ENAC, Toulouse, France). 

In all these studies, [11], [12], [15], [25] the brain 
features related to the mental workload were sought 
within the frontal theta, parietal alpha and occipital 
theta rhythms. Also, the BOLD signal of the fNIR 
technique has been demonstrated to be a reliable 
indicator of the ATCO’s workload. For example, in two 
recent studies [77], [78], the fNIR technique has been 
investigated in the ATM sector. Based on the 
hypothesis that the hemodynamic response (i.e. rapid 
increase in the blood delivery to active neuronal tissue) 
over the PFC was responsive to mental workload, i.e. 
greater workload is consistently associated with greater 
cortical activation, in a realistic command and control 
task [79], [80], Ayaz et al. [78] demonstrated how the 
BOLD signal is a reliable workload index: in fact by 
using this index, it was possible to discriminate 
significantly the different workload requested by two 
different communication types (Data and Voice), on 24 
professional ATCO. Furthermore, Ayaz et al. [77] 
showed that fNIR can be successfully used in 
ecologically valid environments to assess: 1) mental 
workload levels of ATCOs performing standardized (n-
back) and complex cognitive tasks, and 2) expertise 

development through learning a complex cognitive and 
visuo-motor tasks in Unmanned Aerial Vehicles (UAV) 
pilots. 

C.  Training and Expertise 

Technological developments are changing the nature 
of ATC activity, and shifting emphasis from skilled-
based to knowledge-based behaviours are bringing to 
select new types of skill set [81], [82]. Skill-based 
behaviours are highly-practiced, and often semi-
automatic ones that occur in highly familiar situations 
[83]–[85]. A large portion of the expert controller’s 
behaviour is skill-based. Knowledge-based behaviour 
(like problem solving), on the other hand, are necessary 
in novel situations, when the accustomed skills are 
ineffective [83]–[85].  

Controllers in future will be confronted with the 
combined requirements to handle more air traffic, to 
use new methods of data presentation and handling, and 
use new automated aids. These developments are likely 
to have a considerable influence on the abilities 
demanded of the future controller.  

In fact, some aptitudes that are usually important, 
now they will become more important, whereas some 
will become less important in the future [86]12: 

 Scanning (of visual sources), Perceptual Speed and 
Accuracy, Translating Information, Chunking, and 
Interpreting Information will increase in importance 
to achieve successful performance in ATM, in terms 
of aptitudes relating to acquiring information 
(“input”). 

 From a “process” perspective, the importance of 
attention and memory aptitudes, such as Sustained 
Attention, Recall from Interruption, Situational 
Awareness, and Long-Term Memory, for successful 
job performance will increase in the mid-term. The 
increase in the importance of Sustained Attention 
and Recall from Interruption is driven by the 
projected increases in ATC operations. The increase 
in the importance of Situational Awareness and 
Long-Term Memory is coupled to the tools needed 
to handle the increase in traffic (e.g. Decision 
Support Tool – DST).  

 Problem Identification and Prioritization will 
become more complicated and more important in 
the mid-term, depending on the transparency, 
operational acceptability and reliability of the 
ATCO-supporting tools\systems. The importance of 
the aptitudes Time-Sharing, Information Processing 
Flexibility, and Task Closure/Thoroughness will 

 
12https://www.faa.gov/data_research/research/med_humanfacs/oamtechr

eports/2010s/media/201305.pdf  

https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/201305.pdf
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/201305.pdf
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increase with both traffic and the implementation of 
supporting tools\systems. 

 Two new aptitude requirements were identified in 
the mid-term: Dispositional Trust in Automation and 
Computer Human Interface (CHI) Navigation.  

 In terms of “output,” the importance of the aptitude 
Manual Dexterity (in using a keyboard, mouse, 
touch screen, and/or numeric keypad) will depend 
on the actual CHI implementations but is likely to 
increase. 

Whereas specific skills have been essential so far, 
what is likely more important in future are more 
generalised knowledge about system dynamics, 
decision making and diagnosis and problem solving 
skills, driven largely by the introduction of advanced 
automation. This is certainly a concern in ATM, in 
which the advent of advanced automated tools 
(especially strategic aids like the Multi Strategic 
Platform - MSP, [87]) forced a rethinking in the types 
of skills for which controllers should be selected [88], 
[89], the roles of the executive and planner controllers 
become more inter-twined, and teamwork becomes 
more of a concern. Some have focused attention on 
providing automation-specific training [80], [90]. Such 
new ATM concepts and demanded new skills will have 
significant implications for the selection and training of 
ATCOs. Furthermore, new training procedures will 
have to be developed to turn a controller accustomed to 
positive control of the airspace into a “manager by 
exception” [91]–[94]. One of the greater overarching 
trends in recent training research appears to have been 
the increased attention paid to individual learning styles 
[95], [96]. Rather than a passive “one-size fits-all” 
approach, the so-called Learner-Directed Training [97] 
process relies on the trainee to be more active in the 
process of On the Job Training (OJT), as in soliciting 
feedback, asking technical questions, etc. One final 
training trend seems to have been the increased use (or 
interest in) emerging technologies, such as Virtual 
Reality (VR), Expert Systems, and so-called Electronic 
Performance Support Systems, or EPSSs [98]. Recent 
advances in technology have made such systems 
feasible (or almost feasible) in the operational training 
settings. They can serve either as a direct training tool 
(perhaps letting trainees learn from simulation), or as a 
means of augmenting training—for instance by off-
loading the routine (e.g. data retrieval) tasks and 
allowing the trainee to better focus on the salient and 
critical aspects of training. 

The main limitation of standard methods for the 
training assessment is the lack of objective and 
quantitative information about the requested cognitive 
resources during the execution of the proposed task. In 
fact, the learning progress of trainees is generally 

evaluated by the supervision of experts and/or by 
asking the trainees to fill questionnaires with the aim to 
gather information on the workload or difficulty 
perception of the considered task. It is easy to 
understand how such methods are highly operator-
dependent, and how experience and emotions, both for 
the expert and trainees, could affect the evaluation of 
the training. To overcome such limitation, it is 
necessary to analyse the cognitive processes and 
consequences involved when learning to execute 
correctly a new task. In this regard, even if task 
performance data are available, this could not be 
enough to assess a comprehensive training profile of the 
operator. For example, although the results in terms of 
performance should be the same, the cognitive demand 
for the same operator could be not. In other words, after 
a certain time the operator should still be able to 
execute the same task by achieving the same 
performance level, but it might require less amount of 
cognitive resources. Therefore, different operators 
could achieve the same results, but involving a different 
amount of cognitive resources (Figure 2). 

 

Fig. 2. The graph shows an example of training 
assessment of students from a cognitive point of view, 
with respect to task performance alone, along a 
training program. In particular, although the two 
trainees reached the same task performance level 
across the training sessions, the trainee 1 needed one 
more training session then the other operator, since 
cognitive resources used to accomplish the task were 
still too much high. On the contrary, the trainee 2 
reached already at the 2nd session the highest 
performance level, together with the lower amount of 
cognitive resources employed. 

When presented with a new task, an individual will 
acquire a level of expertise most efficiently by utilizing 
the most effective mode of practice and/or spending 
more time engaged in the task. Natural abilities 
contribute to the pace of the individual’s improvement 
and they will determine individual differences in each 
individual’s progression toward obtaining expertise in a 
specific course of training. There is an extensive 
literature regarding the effect of practice and expertise 
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on the functional anatomy of task performance. The 
development of expertise has been studied across a 
wide range of motor, visuo-motor, perceptual and 
cognitive tasks, and from disparate research 
perspectives [99]. Four main patterns of practice-related 
activation change have been identified in literature 
[100]–[102], including either 1) increased or 2) 
decreased activation in the brain areas involved in task 
performance, or, 3) a functional redistribution of brain 
activity, in which some initial areas of activation 
increase while others decrease, or 4) a functional 
reorganization of brain activity, in which the pattern of 
increasing and decreasing activation occurs across 
distinct brain areas in addition to the initial areas. 
According to Petersen et al. [103] a set of attention and 
control areas of the brain (the scaffolding) is used to 
support or cope with novel demands during unskilled, 
effortful performance. With practice, processes or 
associations that can be more efficiently stored and 
accessed elsewhere are offloaded to those areas, after 
which the scaffolding network is pruned away. 
Decreased reliance on the ‘scaffolding’ is demonstrated 
by decreased activation in those areas during 
performance with a concomitant increase in activation 
brain areas underlying the task-specific processes. 
Therefore, activations seen earlier in practice involve 
generic attentional and control areas. Prefrontal cortex 
(PFC), anterior cingulate cortex (ACC) and posterior 
parietal cortex (PPC) are thought to be the predominant 
constituents of the scaffolding consistent with theories 
of PFC function and the involvement of these areas in 
the distributed working memory system [104]. 
Increases brain activities associated with highly 
practiced performance are primarily seen in task-
specific areas such as representational cortex — 
primary and secondary sensory or motor cortex, or in 
areas related to the storage of those representations, 
such as the parietal or temporal cortex. A majority of 
the studies examining task practice have found 
decreases in the extent or intensity of activations with 
ongoing practice, particularly in the attention and 
control areas [101], [105], [106]. Decreases in 
activation are thought to represent a contraction of the 
neural representation of the stimulus [107] or a more 
precise functional circuit [108]. These evidences 
suggest that overall, both practice and the development 
of expertise typically involve decreased activation 
across the attention and control areas, particularly in 
prefrontal and frontal brain areas [77], [106], [109], 
[110]. Some studies performed in laboratory settings 
have been designed to explore the possibility to track 
training-related changes by using biomarkers based on 
EEG activity. Most of them are based on spectral 
properties of EEG signals or Event Related Potentials 
(ERPs), and the extracted features are often subjected to 
cutting-edge mathematical tools based on machine 

learning theory to discriminate mental states [111]. For 
example, changes in P300 ERP amplitude as well as in 
Delta and Alpha EEG power bands have been 
highlighted during a complex game learning, due to 
changes in attentional processes along the training 
[112]. In addition, frontal EEG Alpha power during 
early phase of the game training anticipated following 
learning rates [113]. An interesting study performed by 
Taya and colleagues [114], [115], proposed a method 
for cognitive training assessment by using brain 
network analysis, the brain connectome approach [116]. 
Since the brain is a complex network consisting of a 
huge number of brain patterns devoted to different 
functions, it has been suggested that cognitive functions 
emerged from the dynamic interactions of the 
distributed areas in large-scale network, not a result of 
an activation of a single brain region [117]. In 
particular, such method has been demonstrated to be 
able to provide valuable biomarkers for monitoring and 
discriminate different mental states across training.  

3) Training assessment in the ATM domain 
Regarding the ATM context, recent studies 

demonstrated that measuring ATCOs’ brain activation 
relative to task performance can provide an index of i) 
the level of training across the different sessions [39] 
and of ii) the expertise within the considered training 
session [109]. Such a relative quantification of the 
attentional and control resources necessary to perform 
at a given level could also serve as an index of the 
trainee’s Cognitive Spare Capacity, that is the capacity 
that can be used to perform effectively under greater 
situational demands or unexpected events (e.g. 
emergencies situations). 

In addition, Borghini et al. [40] and Aricò et al. 
([11], [38]) demonstrated that it was possible 1) to track 
online the learning progress of professional ATCOs by 
means of a machine – learning approach across a period 
of a month without recalibrating the classification 
algorithm. Furthermore, the same authors proposed an 
EEG-based algorithm able to assess the operators’ 
cognitive control behaviours accordingly to the skill-
rule-knowledge (SRK) taxonomy. The algorithm has 
been tested on thirty-seven professional ATCOs, while 
performing high-realistic ATM scenarios. Results of the 
study demonstrated that specific brain features could 
characterize and discriminate the different SRK levels, 
therefore enabling an objective assessment of the 
degree of cognitive control behaviours in realistic 
setting [109], [118].  

As quoted previously, the emerging wearable brain 
recording technologies (e.g. EEG) can help to measure 
and to quantify the cognitive status and capacities of the 
trainee during the execution of the work in operational 
settings in order to provide such objective metrics 
directly driven by brain-based measures [119]–[121]. 
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IV. DISCUSSION 

In this review, we provided the current state-of-the-
art of the research and application of 
neurophysiological measurement for the assessment of 
the most relevant Human Factors in the ATC field. All 
the evidences point to a real opportunity to establish a 
link between HFs involved in ATC and 
psychophysiological indicators. Such a linkage would 
go a long way in promoting innovative ATC system 
development. Despite of the evident benefit that 
neurometrics integration could have on HF research 
area, two gaps still need further investigation: 

 The invasiveness of sensors, which need to be 
accepted by the Controllers and used during normal 
operations. Miniaturisation and minimal 
invasiveness are two key requirements. In this 
regards, several improvements have been done in 
terms of invasiveness of the measuring instruments. 
For example, Aricò et al., [11] proposed a machine 
learning technique able to evaluate the workload of 
the ATCO, even in real-time, by using a light EEG 
configuration (e.g. 2 or 3 electrodes). In addition, 
several industries are working on the development 
of reliable dry EEG electrodes, that do not require 
gel or saline solutions to reduce impedance between 
electrodes and brain skin, and considerably reduce 
the time of the EEG cap setup procedure. 

 Understanding the time dimension of human actions 
from the point of view of neurometrics. For some 
concepts, for example workload, detection of 
workload peaks and triggering of adaptive 
automation solutions can happen in real-time. On 
the other hand, it can be decided to delay the 
adaptive automation intervention to keep the 
situation stable for Controllers, in order to avoid 
mode transitions in high workload moments. Fatigue 
may profit instead from detection before the work 
starts, as intervention at this stage can be much more 
effective. In short, different triggering mechanisms 
and time frames should be considering, depending 
on HF dimension being monitored, but also on the 
neurometrics being used. 

It has however to be highlighted that, even if 
cognitive processes can be observed via neurometrics 
indicators, their interpretation requires an understanding 
of the context, i.e. the task and situational parameters. A 
combination of various indicators may be required in 
most situations; for example identifying the visual scan 
via eye movement tracking (for example dwelling on an 
aircraft symbols on the radar screen) whilst at the same 
time identifying the cognitive process (for example 
visual attention) could allow interpreting the 
controller’s action. 

V. CONCLUSION AND FUTURE DIRECTIONS 

Several cognitive states have been discussed and 
taken into account, specifically for the ATC context. 
We have also discussed how mental workload, 
expertise and training are key HFs aspects involved in 
this operational environment. 

Attempts of linking cognitive states to 
psychophysiological indicators have been partly 
successfully addressed, most notably in the area of 
mental workload and training assessment. A complete 
framework based on the combination of operators’ 
biosignals, that would allow a reliable tracking of all 
mentioned cognitive states, has yet to be developed.  

The state of the art presented demonstrates the 
feasibility and usefulness of the application of 
neurophysiological indexes in the ATC domain, in 
order to achieve a better understanding of human 
behaviour and to foresee and support it in this complex, 
technology-based domain. Based on the previous 
assumptions, two scenarios of application of 
neurometrics in ATC, especially of mental workload 
evaluation, have been outlined both in a short and a 
long term. 

In the short term, neurophysiological measurements 
research is expected to directly contribute to Human 
Performance Envelope and Monitoring of crew 
capacity. The goal is to detect issues before they could 
cause any problem. In fact, US data from 2009 to 
201413 show how much aviation safety is impacted by 
disruption of human performance: 4% of incidents can 
be directly related to fatigue monitoring, 18% of 
incidents to excessive workload, 23% to operators' 
distraction, 34% to confusion, 56% to lack of 
Situational awareness. The main advantages of 
neurometrics would be:  

 Early detection and possibly mitigation of factors 
negatively impacting on performance;  

 More reliable data, collected ongoing the operational 
activities, to better understand the causes of human 
performance degradation. In fact, the statistics 
collected so far are related to self-reports (subjective 
data), and the variability of the measures could be 
very high and in some cases even unreliable due to 
operator biases. 

In the long term, the research on neurometrics in 
aviation is expected to enhance Human Factors in 
Design and Manufacturing, Training and Expertise 
Assessment and Adaptive Automation. These three 
capabilities aim to close the loop between HF aspects 
and operations. HF in Design, by informing the design 

 
13https://www.faa.gov/about/office_org/headquarters_offices/ato/service

_units/safety/media/ato-2014-safety-report.pdf  

https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/safety/media/ato-2014-safety-report.pdf
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/safety/media/ato-2014-safety-report.pdf
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with HF measurements, to inform changes and design 
choices; HF in Training and Expertise Assessment, by a 
new objective evaluation methodology, i.e. 
neurometrics, to support the Trainer’s activity; 
Adaptive automation, by triggering system adaptation 
in real-time. 
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