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The Invariant Unscented Kalman Filter

Jean-Philippe Condomines®, Cédric Seren® and Gautier Hattenberger®

Abstract— This article proposes a novel approach for non-
linear state estimation. It combines both invariant observers
theory and unscented filtering principles whitout requiring any
compatibility condition such as proposed in the 7-IUKF algo-
rithm. The resulting algorithm, named IUKF (Invariant Un-
scented Kalman Filter), relies on a geometrical-based construc-
tive method for designing filters dedicated to nonlinear state
estimation problems while preserving the physical invariances
and systems symmetries. Within an invariant framework, this
algorithm suggests a systematic approach to determine all the
symmetry- preserving terms without requiring any linearization
and highlighting remarkable invariant properties. As a result,
the estimated covariance matrices of the IUKF converge to
quasi-constant values due to the symmetry-preserving property
provided by the invariant framework. This result enables the
development of less conservative robust control strategies. The
designed IUKF method has been successfully applied to some
relevant practical problems such as the estimation of attitude
for aerial vehicles using low-cost sensors reference systems.
Typical experimental results using a Parrot quadrotor are
provided in this paper.

[. INTRODUCTION

An overview of nonlinear estimation methods can be
found in the litterature from many surveys or books [13],
[14]. As they merge different nonlinear estimation principles,
Kalman-based invariant observers can be qualified as hybrid
filters. Although dynamical systems possessing symmetries
have been studied in control theory, few results taking
benefit of system invariances for observers design exist
today. Invariant nonlinear estimation theory appears so as
a young research area in which the first main contributions
can be dated from the beginning of 2000s [1], [7], [2], [3],
[51, [6], [10], [11], [18], [20]. Initially, research was going
on in the development of constructive methods to derive
invariant observers for nonlinear estimation purposes which
preserve systems’ symmetries. If this kind of non-systematic
approaches keeps physical readiness, it may require to tune
an important number of setting parameters when computing
estimation gains, which can be cumbersome for complex sys-
tem modelings. That is why, more systematic techniques have
been developped which are able to facilitate estimators’ gains
computation. There exist two major approaches to permform
Bayesian filtering for a state evolving on an Euclidean space :
the Kalman filter (KF) such as (Extended Kalman filter or
Unscented Kalman filter) and the particle filters. Howerver
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among those methods only a few works tried to extend them
to manifolds (see table I). The Invariant Extended Kalman
Filter (IEKF - [6], [3]) permits to determine gain matrices for
minimum variance estimation. This optimality must be con-
sidered here w.r.t. an invariant state estimation error which
will be defined precisely further. An important drawback in
this method is that it requires to linearize the system of
differential equations which govern the invariant state es-
timation error dynamics. Such an operation appears suitable
for simple system modelings only s.t. UAVs whose dynamics
can be represented easily based on kinematics relationships.
Indeed, this kind of nonlinear state space representation can
be differentiated analytically towards its state vector. For
more complex system modelings, this linearization may be
difficult to carry out. Nevertheless, the IEKF, and more
generally invariant observers, are characterized by a larger
convergence domain, due to the exploitation of systems’
symmetries within the estimation algorithm (i.e., within filter
equations and gains computation), and present very good
performances in practice. In order to derive more tractable
nonlinear invariant state estimation algorithms, motivated by
the practical problems encountered by the authors with mini-
UAVs flight control and guidance, civil aircraft modeling and
identification and dynamic system fault detection, isolation
and recovery, an hybridization of the Unscented KF (UKF)
principles [17], [22] with invariant observers theory has been
recently proposed but requiring a compatibility condition see
[10], [11].

Approach State manifold System Filter
[6] Lie groups Continuous EKF
4] SO@3) Cont-Discrete  EKF
[23] Riemannian Discrete PF
[24] Stiefel Discrete PF
[21] Grassmann Discrete PF
[8] Matrix Lie groups  Discrete EKF
[9] Matrix Lie groups Cont-Discrete EKF
[16] Riemannian Discrete UKF
This paper Lie groups Discrete UKF
TABLE I

CATEGORIZATION OF THE STATE OF THE ART APPROACHES ON KALMAN
AND PARTICLE FILTERING FOR A STATE EVOLVING ON A MANIFOLD.

This article focuses on these recent research works and
proves that an Invariant UKF-like estimator (named IUKF)
could be simply designed by introducing both notions of
invariant state estimation and invariant output errors within
any UKF algorithm formulation, without requiring any com-
patibility condition such as proposed in the 7w-IUKF[10].
Besides, it has been shown that, for some well-known nav-
igation problems devoted to UAVs, equations of any IUKF-



based observer in discrete-time could be expressed quite
simply whitout requiring any compatibility condition which
is the main contribution. Similarly, an extension of nonlinear
invariant observers has been made for Rao-Blackwellized
Particle Filters (PF) that can be used for nonlinear state
estimation [3]. Invariant PFs (IPF) rely on the notion of
conditional invariance which corresponds to classical system
invariance properties, but once some state variables are
assumed to be known. It is those known states that will be
sampled throughout the estimation process. It is noteworthy
that, for the obtained IPF, the Kalman gains computed are
identical for all particles which drastically reduces the com-
putational effort usually needed to implement any PF. All the
previous estimation methodologies have allowed the invariant
observers theory to be applied in many application fields
since the beginning of the 2000s. Rather than enumerating
all of them, which would be out of the scope of this technical
paper, we prefer focusing here on the use, become popular in
the domain of electro-mechanical systems in robotics, of the
invariant observers for solving nonlinear attitude estimation
problems from both inertial/vision multisensors data fusion.
Many bibliographical references, such as for instance [2],
[19], [18], tackle this specific issue exploiting nonlinear
invariant observers. Both properties and capabilities of this
peculiar class of method make any invariant observer-based
estimation scheme dedicated to dynamical system navigation
appealing, especially when there exists, in addition, hardware
redundancy. In that case, automated vehicles can reach
an acceptable level of robustness w.r.t. degraded operating
conditions such as, for example, in indoor or GPS-denied
environments, and in case of single or multiple sensor faults.
Using an invariant observer-based algorithm to merge an ex-
tended (and potentially redundant) set of measurements can
still provide good performances and convergence properties
in such situations.

In the sequel, §II presents the theoretical background of
our proposed IUKF estimation algorithm and an illustrative
example fitted out with a tilt sensor system.§III gathers some
results obtained after solving the Attitude and Heading Refer-
ence System (AHRS) estimation problem in real conditions.

II. THE INVARIANT UNSCENTED KALMAN FILTER
A. IUKF algorithm

Inspired by the theory of continuous-time symmetry pre-
serving observer [5] a novel and original UKF-based ap-
proach has been developed in [12] to adress the approx-
imation issue of the invariant EKF without requiring any
linearization of the dynamical systems equations or compat-
ibility condition such as proposed in the 7-IUKF algorithm
[10]. The idea is to exploit the UKF principles within a
continuous-time invariant framework. This section presents
briefly the main theoretical principles of some research works
dealing with dynamical system symmetries, invariant ob-
server and IUKF algorithm. Without considering any system
description, the theory of invariant observer is formulated
using both differential geometry and transformation groups
theory presented in [5].

Definition 1: Considering a continuous nonlinear G-
invariant/equivariant dynamical system modelling 3, the
general form of a nonlinear continuous-time symmetry-
preserving state observer will be defined s.t.:

lle

n
x= f(x,w) + ) {Ki[E] E(&, B 2) fwi(®) (1)
i=1

In (1), x refers to the estimated state vector. z is the
measurements vector. All the measurements are assumed to
be corrupted by noises and some of them are subject to
bias-type errors. Both assumptions on noises and additive
state variables will permit to account for these disturbances
for invariant nonlinear state estimation. Equation (1) follows
the standard expression of many nonlinear state estimators
(such as Luenberger observers or Kalman filters) in which
a model-based prediction, calculated here from G-invariant
process equations, is corrected to produce estimation time
derivative. For invariant nonlinear state estimation however,
correction must be constructed s.t. Eq. (1) will be also G-
invariant. In other words, observer’s dynamics must verify
similar invariance properties w.r.t. the original system. Thus,
in formulation (1), the gain matrix Vi € [1;n], K;[E] =
K;[E(%,I%,2)] depends on the system’s trajectory only
through a known complete set of invariant I(X, u) = t¢-1(u)
and on the invariant output error E := pg—1(h(X,u)) —
pz—1(2). wi(X) := [Dpyx) (f()]_l - 0/0x; is an invariant
vector which projects the set of invariant correction terms
on each component of f(%X,u) (i.e. the tangent state space).
(0/0%;) is the i-th canonical vector field of R™.

The convergence properties of (1) depend on the choice
of K;[E] and in the way the state estimation error is defined.
Instead of considering the usual “linear” state estimation
error X — X, the invariant observer theory defines an invariant
state estimation error denoted 77(x,%) = x~'% which has
invariant properties.

Definition 2: The asymptotic convergence of X to x is
equivalent to the stability of the invariant state error dynamic
which takes the general form:

1 ="(nIx u)) )

where Y is a smooth function. It appears that 17 depends on
the system’s trajectory only through the invariant I(x, u).
For numerous applications, the invariant observer gain(s)
calculation can be addressed ad hoc by first, investigating the
observer detailed nonlinear equations, and then, by choosing
gain value(s) which will meet some predefined require-
ments in terms of: - convergence (guarantee and domain);
- decoupling purposes; - subsystems settling time/damping
ratio; - etc. This calculation can also be carried out with
more genericity by adapting well-proven optimal filtering
techniques. This has led to the development of the so-called
Invariant Unscented Kalman Filter (IUKF).

The IUKEF relies on the basic theoretical principles devel-
oped by Julier and Uhlmann at the beginning of 2000s [17]
which have been since widely applied to various nonlinear
state estimation problems [22]. The standard UKF algorithm



exploits a deterministic sampling technique, known as the
unscented transform, in order to pick a minimal set of sample
points, also called sigma points, around the mean state vector.
These latter are then propagated through the nonlinear state f
and output h equations, from which both estimated mean and
covariance are then recovered. The resulting filter captures
the true mean and covariance with more accuracy than any
other Kalman filtering techniques. In addition, this method
removes the requirement to explicitly calculate the Jacobian
matrices 0f/0x and 0h/0x w.r.t. standard Extended Kalman
Filter (EKF), which can be a difficult task in itself for
complex systems. Besides, to improve its computational effi-
ciency the standard UKF algorithm can be derived in several
factorized versions. In the sequel, the square-root formulation
will be considered. The developed IUKF algorithm (see [12])
permits to design a nonlinear discrete-time invariant state
observer by a numerical scheme using a fourth order Runge-
Kutta integration. ¥4 is defined as following :

Xpt1 = fa(Xp, up) + v
VEEN, 5
¢ {Yk = ha(Xp,up) + Wy

Integer k corresponds to the time index. vy, (resp. wy) refers
to the discrete Gaussian process (resp. observation) noise.
di; is the Kronecker symbol. The estimation process starts
with the computation of the 2n + 1 sigma points, denoted by
X,st. X Ef‘)k = Xy, This calculation is based on the scaled
unscented transformation which scatters the points according
to the estimated state error covariance matrix P}C“’; = Szl’z .
( EE)T at time k, and provides also two series of 2n + 1
scalar weighting factors, denoted by {W "} and {W "}
(¢t € [0;2n]), for mean and covariance approximations.
During prediction step, all sigma points are then propagated
through both G-invariant f; and G-equivariant hy in order
to deduce vectors X1 and yj 1k, but also covariance
matrices S’k"jl‘ o SZillk and P:quuk associated with both
state and output invariant errors.

Proposition 1: Considering the whole state space rep-
resentation of X4, the composite transformation ¢geg =
(g, Pg, pe) and starting from initial values %9 = E[xq],
PX* = E[n(xo,%0)nT (x0,%0)] the two-steps procedure
(prediction/correction) permit to design the following invari-
ant nonlinear state observer in discrete time:

Q Vie [[0 ; Qn]],
2n
(i) _ (i) s _ (i) (4)
Xk-s-l\k = fd(XHkauk') = Xp4+1lk = Z W Xk-HIk
i=0
XX J—
12} Sk+1\k =

qr[ W (n(imuka X )

e X0) V7|

cholupdate (S;;jllk, Nk 1)k X1 i) Wéo))
O Vie[0;2n],

2n
o (1) _ (i) 5 _ (1) (3)
Vit = hd(kauk) = Yk+1k = Z WY
=0
Yy —
o Sk+1|k -
x®

® qr[ W <E(X;€1_)H|ka|u:+lkzyk+1|k>

2
(2n) k+1llk & 1/2
E(Xk;+1|k7luk 7yk’+1|k') Wk

@ cholupdate (SZ’_{HM

(0)

X
(0) k+1llk -
E(X]H_”kaluk 7yk:+1|k)7Wc(0))

Xy
© Pk+1|k -
(4)

2n x

(i) (i) S T (i) k+1lk &
Zch n(Xk+1|k7Xk+1|k)E (Xk+1|k>luk 7yk+1|k>
1=0

@ Vie [1;n],
K;[E] = i*" row of K = (P;y_l|k/(Szil‘k)T)/SZin
0r: )A(k+1\k+1 =

Xp41|k +Z Ki[E]- E(Rppp1pi by ™" Zha1) W3 (R 1))

i=1

® S7%, .., — cholupdate (7%, KSYY, . ~1)
Previous matricial computations rely on both QR de-
composition and rank 1 update to Cholesky factorization
(cholupdate). Local transformations (t)g, g, pg) are here
defined as for system X4. In this formulation, state, output
and crossed error covariances are now defined from system
modelling invariants. It is clear by transitivity that these
matricial quantities are left unchanged by the composite
transformation ¢geg = (Vg, Yg, Pg)-

Unlike the Invariant Extended Kalman Filter (IEKF), the
proposed IUKF does not require a linearization of 7(x;, X;)
w.r.t 1 for its gain matrix computation step. When any given
permanent trajectory t — (x,(t),u,(t)) is followed (i.e.,
st vt B (t) = I), 1% order approximation of Eq. (2)
shows that if K is also determined s.t. matrix 0Y(0,1)/dn
is stable, then observer F' will converge locally around
(xp(t), up(t)). Reuse of system modelling invariances within
invariant observer design also guarantees that it will converge
for any group action image (¢g(u,(t)), e (Xp(t)))gec-

This property is remarkable especially for dynamical sys-
tems described by kinematics relationships whose dynamics
is invariant by translation and rotation movements inside an
invariant frame. By doing this, correction step procedure
relies on the determination of the n additive gain which
depend on system fundamental invariants and invariant in-
novation terms. Moreover, the invariant correction terms are
projected on each component of the dynamical equations by
considering the canonical basis of R™ such as B(Xj1|;) =
{wi(Xp+1)k) Yiep1;n] Vvectors form an invariant frame for
each X € X. Thus, the IUKF algorithm relies on a multiple
parametrization defined by local transformation groups. Con-
sidering the transformation group ¢, = (¢g4,%q4,pg) each
inverse of sigma point can be defined as a local parameter
of (2n + 1) invariant frame which project each sigma point
on the neutral element e thought the local application (.



The developped IUKF is a natural approach, by combining
both invariant observers theory and unscented filtering prin-
ciples, to dertermine all the summetry-preserving correction
terms, without requiring any linearization of the differential
equations or compatibility condition such as proposed in
[10]. It can be seen as a generic algorithm without involving
any form of the observation equation or relations defining
the transformation group p,.

B. illustrative example

In this section, we illustrate and prove that the proposed
algorithm retains the invariance of the problem, and that the
error’s evolution is independent of the system’s trajectory,
inheriting the properties of the deterministic continuous-
time case [5]. Thus, we consider a tilt sensor system as a
simple case study applied to an object attitude estimation
where we desire to determine only the pitch angle 6. The
nonlinear state estimation makes use of 3 accelerometers
give a measurement of the specific acceleration denoted by

am = (a1,as,az)’

()

0%

Fig. 1. A flying object in a vertical plane : the system remains unchanged
under the action group SO(2)

All these measurements are obviously corrupted by ad-
ditive noises for which it appears reasonable to assimilate
their stochastic properties to the ones of Gaussian processes.
Based on the application of Euler angles and direction cosine
matrix transformation, the pitch angle 6 can be determined
from the following system of non-linear equations s.t :

Yar \ _ (—sin(d)\
(1) = (et ) =10 ®
If the platform is stationary (the tilt angle do not change
throughout the measurement period), it is possible to assume

that the pitch angle is constant. The process equation be-
comes :

f=0 “)

The nonlinear state space representation can be described
in a compact form such as: x = f(x,u) and y = h(x,u)
where x = 0 ety = (Ya,, Ya,)" - Considering the expressions
of system modelling and the Lie-group G defined s.t. G = R,
the following input, state and output transformations prove

that the system is both G-invariant and G-equivariant. These
latter read Vg = 6p € G and V(u,x,y) €U x X x Y-

Ygo(n) = 0
Peo (X) = (9 + 90)
~ &)
(y) = Yay €08 0y — Ya, sin by
Peoly Yay €OS 0o + Yq, sinby

Therefore, the moving frame ~(x) which conveys any
state vector to e is given by x~! = —f. Consequently, the
analytical expression of the invariant output error E(%, I}, z)
reads in this applicative case:

E= Px—1 (gal ) gag) — Px-1 (ylh ) yaa)
_(cosOy —sinbo\ (Yo, \ (cosby —sinby) (ya,
“\sinfy cosfy Jas sinfy  cosfy Yas
B cosf  sind Ya; — Yas

—sinf cosf) \Jas — Yas

we note that the invariant output error correspond to a

classical output error projected in the Frenet frame. Based on

these results, the observer considered in the IUKF algorithm
takes the following form:

I—0+K CO.SHA smq Yar ~ Yau ©)
—sin @ cos 6 Yas — Yas

where K is a smooth 1 x 2 gain matrix whose entries depend
on the invariant error E but also on the invariants.

The effect of rotation ¢ on sigma points : UKF vs IUKF .

o
0.5 3
[IUKF ]:= 0 = 80°
04t .
A
T 03F - 1
o o, +
v 02t [U|<|=1:=f;=o°"e,:q 1
/Il h +
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<= . + .
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SN e |
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Fig. 2. The location of the sigma points errors and the effect of the rotation
6 for the UKF (cross) and the IUKF (circle, red)

Figure 2 illustrates the previous explanations by applying
the developed IUKF algorithm to simulated data corrupted
by a Gaussian white noises whose noise covariance matrices
are set to : Qg = le — 2 and R, = 0.5rad. The sigma
points output errors calculated by the IUKF converge as
expected in a linear way (i.e, V6) after a slight convergence
whereas those of the UKF have an irregular evolution due
to an estimation output error which is not projected into a
Frenet frame which does not preserve the symmetries of the
system.



III. BENCHMARK AND APPLICATION

A. Dynamic system modeling

This subsection details the generic modelling used to
tackle and solve the issue of estimating some key flight
variables (attitude-orientation, angle rates, etc.) of mini-
UAVs fitted out with an Attitude and Heading Reference
System (AHRS). UAVs dynamics representation corresponds
here to a pure quaternionial kinematics modelling (whose
related quaternion will be denoted by q), supplemented by
additive state variables which represent low frequency sen-
sors’ imperfections (such as slowly varying biases). Thereby,
we consider:

q=q* (wmn —wp)/2

|w,=0
as =0 ’
oF b 0 )

y— ya=a,q '*Axq
yB =bsq ' #Bxq

where w,, is seen as an imperfect and noisy, but known,
measured input, like B. Constant A = (0 0 g)T refers
to the local Earth’s gravity vector. Nonlinear state space
representation of Eq. (7) can be described in a compact
form s.t. x = f(x,u) and y = h(x,u) where u = w,,,
x = (@7 wl as bs)T and y = (yi y&)T are the
input, state and output vectors respectively. The nonlinear
state estimation problem makes use of 3 triaxial sensors
which deliver a total of 9 scalar measurement signals:
3 magnetometers permit to obtain a local measurement
of Earth’s magnetic field, which is known constant and
expressed in the body-fixed frame s.t. vector yg = q~'+*Bxq
(where B = (B, B, B,)T) can be considered as an output
of the observation equations; " 3 gyroscopes produce the
measurements associated with the instantaneous angular rates
gathered in w,, € R?® s.t. w,, = (Wne Winy Wiz )Ty
and 3 accelerometers provide the measured output signals
coresponding to the specific acceleration, denoted by a,, €
R? with a, = (@mz Gmy amz)T. As no velocity and
position information is available (no GPS, nor airspeed data
fusion), this AHRS is often qualified as non-aided. Thus,
to keep the whole nonlinear state representation observable
given these available measurements, the assumption that
the linear acceleration V remains negligible is also made
i.e., ' V = 0. Consequently, the specific acceleration vector,
expressed in the body-fixed frame, can be approximated by
—a,q '*A*q = —ya and compared with its corresponding
imperfect and noisy measurement a,,. Taking into account
the maximum number of sensors’ imperfections (such as
low frequency disturbances) within the estimation process
requires the introduction of 2 additive state variables due to a
1%t-order observability analysis (see [5] for more calculation
details). These 2 additive variables correspond to positive
constant scaling factors, denoted by a, and bs; adjust and
correct the predicted outputs ya and yp respectively. All
these sensor imperfections are modelled as pseudo-Gaussian

random walks which can be physically interpreted as slowly
varying parameters.

B. IUKF estimator derivation

Considering the expressions of system modeling given in
Eq. (7) and the Lie-group G defined s.t. G = H; x R
(where H; designates the differentiable manifold composed
of quaternions with unit norm which is homeomorphic to
R3), the following input, state and output transformations
prove that system modeling ¥ is both G-invariant and G-
equivariant (see definition in [5]). These latter read Vgo =
(af wl ag bo)T € G and V(u,x,y) e U x X x Y

Vg, (u) = qal*wm*%-f-wo

Pgo(x) = ((a*qo)” (qp' *wpxqo+wo)’ ...
Qas.QQ bs.b())T
Pee(¥y) = ((ao.ap' *ya o) (bo.ap' *ys *qo)?)T

®)
From Eq. (8), one can deduce easily that the composite
transformation ¢g = (Vg, Pg, pg) i equivalent to time-
constant rotations and translations in both Earth- and body-
fixed frames. By posing Q = q*qg, 2 = qal*wb*qo—&—wo
and Q,, = q, Ly wm *qo + wo, it can be demonstrated that,
for instance, the 15 equation of x = f(x,u) is indeed G-
invariant:

. —
2Q = 2(q*dqo)=q* (wWm —wp) *qo
= Q*(qO*qal*Wm_QO*qal*wb)*QO
= Q*(Qm_nb>

It follows that the neutral element e of G associated with g,
is given by (17 07 1 1)” (where 1 = (1 0 0 0)7 and 0 =
(00 0)T). Therefore, the moving frame (x;) which conveys
any state vector to e is given by x ! = (@77 (—q * wy *
qa Y7 1/as 1/bs)T. Consequently, the analytical expression
of the invariant output error E reads in this applicative case:

E(x X, 2) he,IX) — pyi(z)
Er=A-— d;l.(i*am Q-

1
- (EB_B—le.q*bm*q1>

In Eq. (II-B), b, is the magnetic field measurement. Be-
sides, the invariant bgsis vectors can be also clarified. By
posing W(X) = {(Wi)ie1:37 (W™ )ief1;37 W wh=} the
invariant vectors basis and considering B = ('Ui)ie[[l ;37 the
canonical basis of R3, we have:

v; * q 0 0 0
0 arvirq o |0
0 0 as 0
0 0 0 b,

i€[1;3] i€[[1;3]



Mixing all these results allows to derive the observer con-
sidered in the TUKF algorithm s.t.:

A q*(wm_&"b)

9 + ...
3 — —
> (KF[E].Ea+K{[E].Ep)v; * q + Cq
i=1 . i
Wy = §~ 2 (K!3[E EA+K;*:6[E].EB)> *q
i, = Z (K3 [E] Ea+K¥S[E].Ep)
bs = bs.(KL?[E].Eao +K{[E].ER)
€))
Thereby, we consider the invariant state estimation error s.t.:
n Gxq—1
Bl [ax@ —wy) gt
al| as/&s
v bs/bs

In the previous equation, the notation K7**[E] (with i e
[1;n] and (j, k) € (N*)?) designates the gain submatrix
obtained by concatenating the columns of K;[E] between
the jt" and the k*" positions. The additive (and invariant)
vector C4, which reads (1 — |g[?)q, permits to keep || =
1 through time along the estimation process. By denoting
n(x,x) = (@ B pv)" = (@xa—1)" (q* (@ —wy)*
a7 as/as by/by)T, the invariant state estimation error
dynamics is given by:

3

_ 1
= (D (K}?[E].Ea + K{[E].Eg)v;) * m — SRR
1=1

B=(n* «I5%m) x B+

3

Y (KIO[E]Ea+KE[E] Eg) « 7

i=1
& = —a(KY3[E].Ea + K49[E].Ep)
¥ = —v(K§?[E].EA +K{O[E].Ep)

As it was beforementioned, the reader can notice that the
invariant state estimation error dynamics depends on sys-
tem’s trajectory ¢ — (x;,u;) through the invariant quantity
I, which is a major difference with most of nonlinear esti-
mators. Unlike the Invariant Extended Kalman Filter (IEKF
-[6]), the proposed IUKF does not require a linearization of
1(x¢, %) w.r.t. n for its gain matrix computation step. This
linearization can appear as a difficult operation in itself and
especially for any practical implementation.

C. Experimental results

Due to a lack of space, we briefly evaluate the IUKF
performances experimentally by post-processing a set of ex-
perimental data on the basis of both the dynamical modelling
of Eq. (7) and the filtering equations of Eq. (9). Figure 3
displays a picture of the Parrot quadrotor mini-UAV under
test and an image of the indoor flight performed to gather
these real data. It also illustrates that this experiment has
been made using an OptiTrack system which permits to
have at disposal absolute references (see http://www.

(a) Parrot quadrotor mini-UAV.

(b) Indoor flight experiment.

Fig. 3. Experimental materials: Parrot quadrotor mini-UAV and OptiTrack
device.

optitrack.com/). As no specific autopilot hardware
device has been designed for this experiment, it is noteworthy
that data fusion will merge low quality measurement signals
delivered directly by the cheap electromechanical sensors
which equip any Parrot quadrotor. The interest of the follow-
ing results relies less on the ability of the IUKF algorithm to
estimate systems’ states and outputs than on the practical ver-
ification of the theoretical properties asserted by the invariant
observers framework when dealing with real data. To point
out these latter, the results obtained with the IUKF algorithm
have been systematically compared with the ones provided
by a standard UKF approach. To lead a fair comparison,
both techniques share identical setting parameters values
i.e., similar estimated process and measurement covariances
values for matrices V and W. Figure 4 shows the estimation
results of the quaternion state components obtained by both
UKF and IUKEF algorithms. It is noticeable that both methods
provide correct estimates w.r.t. the absolute references plotted
in solid red lines. The differences between the two algorithms
appear when we consider the dispersion around the estimated
state trajectory. Indeed, the black dashed lines plotted on each
subfigure, which correspond to the ¢(t) =3 x 4(t) standard
deviations around the mean estimated value, tend to prove
that the IUKF estimation algorithm calculates more trustful
quaternion estimates, or at least reduces the dispersion of
these state estimates, due to the invariant framework used.
Based on these quaternion estimates, the instantaneous Euler
attitude angles values, which describe at any time instant the
orientation of the flying Parrot, have been deduced through
time and compared with the absolute references determined
by the OptiTrack system (Fig. 5). It appears that both
algorithms allow to reconstruct a suitable attitude estimation
for control purposes. The 3-axis (¢, 0,) estimation state
errors w.r.t. the absolute references are also drawn using
a logarithmic scale and show comparable results for both
techniques.

Expected differences brought by the invariant observer
theory used to design our IUKF algorithm can be observed
on Figure 5, which display, through time, both computed
theoretical standard deviations and filters correction gains.
By merging these results, it can be concluded that our
proposed IUKF estimation technique is characterized by
quasi-constant estimated standard deviations and correction
gains w.r.t. any standard UKF estimation algorithm. Ex-
ploiting system’s dynamics invariances in order to design
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nonlinear state estimation approaches allows to construct
powerful nonlinear observers whose properties will be quasi-
independent from the current followed trajectory. Therefore,
state estimation uncertainties can be quantified by quasi-
constant values through time (see for instance standard
deviations on q). This paves the way for designing less con-
servative, but robust, estimated state-feedback control laws
in order to improve mini-UAVs flying and handling qualities.
Similarly to the theoretical standard deviations computed by
the IUKF observer, the correction gains (cf. Fig. 5) appear
less sensitive to the non-stationary noises levels, so that we
can conclude that the invariant framework offers a better
high frequency perturbations rejection in terms of filtering
capabilities. In the case of the IUKF estimator, these gains
could be also approximated by constant values, after a given
transient regime, rather than in the case of the standard UKF
algorithm.

IV. CONCLUSION AND FUTURE PROSPECTS

This article has presented an innovative procedure to
derive an invariant observer for nonlinear state estimation.
This latter, named IUKF, combines both invariant observers
theory and unscented filtering principles. Its methodological
foundation, which forms the main contribution of this paper,
consists in adapting the computational steps of any UKF-like
technique (standard or square-root version) to calculate the
estimation correction terms. This adaptation relies firstly on
the introduction of an invariant innovation vector in the ob-
server filtering equation. Then, an invariant state estimation
error is also defined and used jointly to update through time
all covariance matrices. It is noteworthy that, by construction,
these covariances are left unchanged by dynamical systems’
symmetries (i.e., all combinations of translation and rotation
motions). This confers to K some properties of invariance
which leads, by transitivity, to design an ITUKF symmetry-
preserving state observer. In comparison with the state-
of-the-art, our proposed IUKF nonlinear state estimation
algorithm presents one main advantage when considering
computational aspects. Indeed, it does not require any dif-
ferential equations linearization unlike IEKF or compatibility
condition such as proposed in the 7-IUKF. The experimental
results presented in §III-C have shown an equivalent capa-
bility of our proposed IUKF technique in comparison with
an UKF method for nonlinear state estimation. These results
have also permitted to check in realistic conditions some in-
variance properties which characterize our designed observer.
Among these latter, stability of estimated standard deviations,
which characterize estimated state trajectory uncertainties,
must be highlighted since it could facilitate new control
strategies design with less conservatism. Future works will be
on the theoretical development and mathematical justification
of our proposed filter. We will also investigate the possibility
to use constant gain matrices, optimized offline by the IUKF,
into a complementary observer. The benefit of this solution
would be to take advantage of the computational simplicity
of the complementary observer but with optimal correction
terms provided by the IUKF.
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