
HAL Id: hal-01509884
https://enac.hal.science/hal-01509884

Submitted on 8 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Invariant Unscented Kalman Filter with application to
attitude estimation

Jean-Philippe Condomines, Cédric Seren, Gautier Hattenberger

To cite this version:
Jean-Philippe Condomines, Cédric Seren, Gautier Hattenberger. Invariant Unscented Kalman Filter
with application to attitude estimation. CDC 2017, 56th IEEE conference on decision and control,
Dec 2017, Melbourne, Australia. pp.ISBN: 978-1-5090-2874-0, �10.1109/CDC.2017.8264063�. �hal-
01509884�

https://enac.hal.science/hal-01509884
https://hal.archives-ouvertes.fr


Invariant Unscented Kalman Filter
with application to attitude estimation

Jean-Philippe Condominesa, Cédric Serenb and Gautier Hattenbergerc

Abstract— The Invariant UKF, named IUKF, is a recently
introduced algorithm dedicated to nonlinear systems possessing
symmetries as illustrated by the quaternion-based kinemat-
ics modeling of a mini-UAV (Unmanned Aircraft Vehicle)
considered in this paper. Within an invariant framework,
this algorithm suggests a systematic approach to determine
all the symmetry-preserving terms, without requiring any
compatibility condition such as proposed in the π-IUKF, by
introducing both notion of invariant output errors and UKF
algorithm formulation. We propose in this paper to evaluate
the applicability of our proposed IUKF observer to the case
of attitude estimation for small UAVs using low-cost sensors.
The IUKF algorithm is successfully validated in experiments
and demonstrates that nonlinear state estimation converges on
a much bigger set of trajectories than for more traditional
approaches.

I. INTRODUCTION
Many recent progresses in the miniaturization of elec-

tromechanical sensors have led to the design of small and
cheap integrated navigation system hardwares (complete
IMU: Inertial Measurement Unit, GPS : Global Positioning
System module, etc.), which have, for their part, contributed
to boost significantly the market of mini-UAVs (Unmanned
Air Vehicles) over the last decades, making them more
accessible to everyone. Nevertheless, this accessibility is fre-
quently inconsistent with good measurement performances.
For instance, the GPS modules commonly used with the
Paparazzi1 autopilot deliver an absolute position with an
average accuracy of 5 meters, up to 10m under certain
flight conditions. Therefore, a need for multiple micro-
electromechanical sensors (MEMS) data fusion arises, espe-
cially when the final objective consists in developing robust
and powerful advanced control strategies for mini-UAVs that
can be viewed as complex autonomous electromechanical
system. So much so that full state (or estimated state) feed-
back designs (cf. LQG/LTR syntheses) provide full authority
to control efficiently in terms of stability and performances
UAVs for accomplishing various missions. To this aim,
nonlinear estimation offers several well-proven algorithmic
techniques which permit to recover an acceptable level of
accuracy on some key flight parameters (anemometric angles,
orientation/attitude, linear and angular speeds, position, etc.)
for mini-UAVs closed-loop handling qualities.
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An overview of nonlinear estimation methods can be found
in the literature from many surveys or books (e.g.,[13],[14]).
Figure 1 attempts to propose a classification of these latter
and positions the article’s topic in it (white terms in grey
boxes). As they merge different nonlinear estimation prin-
ciples, Kalman-based invariant observers can be qualified
as hybrid filters. Although dynamical systems possessing
symmetries have been studied in control theory, few results
taking benefit of system invariances for observers design
exist today. Invariant nonlinear estimation theory appears so
as a young research area in which the first main contributions
can be dated from the beginning of 2000s ([1], [3], [2], [5],
[4], [6], [8], [9], [15], [10], [11], [17], [18]).

Approach State manifold System Filter

[Bonnabel et al. (2009)] Lie groups Continuous EKF

[Barrau and al. (2013)] SO(3) Continuous-Discrete EKF

[Snousi and al. (2006)] Riemannian Discrete PF

[Tompkins and al. (2007)] Stiefel Discrete PF

[Rentmeesters and al. (2010)] Grassmann Discrete PF

[Bourmaud and al. (2013)] Matrix Lie groups Discrete EKF

[Bourmaud and al. (2014)] Matrix Lie groups Continuous-Discrete EKF

[Hauberg and al. (2013)] Riemannian Discrete UKF

This paper Lie groups Discrete UKF
Table 1 Categorization of the state of the art approaches on Kalman and Particle filtering for a state evolving on a

manifold (PF:Particle Filter, EKF: Extended Kalman Filter, UKF: Unscented Kalman Filter

Kalman filter (KF) such as (Extended Kalman filter or Unscented Kalman filter) and the particle

filters. Howerver among those methods only a few works tried to extend them to manifolds (see

table 1). The Invariant Extended Kalman Filter (IEKF - cf. bibliographical references Bonnabel et

al. (2009); Bonnabel (2007)) permits to determine gain matrices for minimum variance estimation.

This optimality must be considered here w.r.t. an invariant state estimation error which will be

defined precisely further.

NONLINEAR ESTIMATION

Model-Based Methods Data-Based Methods

State
Estimation

Parameter
Estimation

Mixed‹
Estimation

Kalman approaches: EKF, MEKF, additive EKF, QUEST. . .

Unscented filters: UKF, sigma points and particles filters. . .

Nonlinear observers: high-gains, normal form, backstepping, moving

horizon, sliding mode, pseudospectral, invariant. . .

Adaptive techniques: noise/nonlinear adaptive estimators. . .

‹ ”Mixed” means joint state/parameter estimation.

Fig. 1. Classification of existing nonlinear state estimation techniques and paper topic positioning.

An important drawback in this method is that it requires to linearize a system of differential

equations which govern the invariant state estimation error dynamics. Such an operation appears
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Fig. 1. Classification of existing nonlinear state estimation techniques and
paper topic positioning.

Initially, research was going on in the development of
constructive methods to derive invariant observers for non-
linear estimation purposes which preserve systems’ sym-
metries. If this kind of non-systematic approaches keeps
physical readiness, it requires however to tune an important
number of setting parameters potentially when computing
estimation gains, which can be cumbersome for complex
system modelings. That is why, researchers have then tried
to develop more systematic techniques which are able to
facilitate estimators’ gains computation. There exist two
major approaches to perform Bayesian filtering for a state
evolving on an Euclidean space : the Kalman filter (KF)
such as (Extended Kalman filter or Unscented Kalman fil-
ter) and the particle filters. However among those methods
only a few works tried to extend them to manifolds. The
Invariant Extended Kalman Filter (IEKF - cf. bibliographical
references [8], [4]) permits to determine gain matrices for
minimum variance estimation. This optimality must be con-
sidered here w.r.t. an invariant state estimation error which



will be defined precisely further. An important drawback
in this method is that it requires to linearize a system of
differential equations which govern the invariant state esti-
mation error dynamics. Such an operation appears suitable
for simple system modelings only s.t. UAVs whose dynamics
can be represented easily based on kinematics relationships.
Indeed, this kind of nonlinear state space representation can
be differentiated analytically towards its state vector. For
more complex system modelings, this linearization may be
difficult to carry out. Nevertheless, the IEKF, and more
generally invariant observers, are characterized by a larger
convergence domain, due to the exploitation of systems’
symmetries within the estimation algorithm (i.e., within filter
equations and gains computation), and present very good
performances in practice. In order to derive more tractable
nonlinear invariant state estimation algorithms, motivated by
the practical problems encountered by the authors with mini-
UAVs flight control and guidance, civil Aircraft modeling
and identification and dynamic system fault detection, iso-
lation and recovery, an hybridization of the Unscented KF
(UKF) principles [20], [16], [19] with invariant observers
theory has been recently proposed in [10], [11]. Among other
things, it has been proved in these bibliographical references
that an Invariant UKF-like estimator (named IUKF) could
be simply designed by introducing both notions of invariant
state estimation and invariant output errors within any UKF
algorithm formulation, whatever this latter corresponds to the
standard version of the algorithm or to some square-root/UD
factorized ones. This article focuses on these recent research
works and details the theoretical aspects in the sequel.

In the sequel, §II presents the theoretical background of
our proposed IUKF estimation algorithm and an illustrative
example fitted out with a tilt sensor system.§III gathers all
the results obtained after solving the Attitude and Heading
Reference System (AHRS) estimation problem in real con-
ditions.

II. THE INVARIANT UNSCENTED KALMAN FILTER

Inspired by the theory of continuous-time symmetry pre-
serving observer [7] a novel and original UKF-based ap-
proach has been developed in [12] to address the approx-
imation issue of the invariant EKF without requiring any
linearization of the dynamical systems equations or compat-
ibility condition such as proposed in the π-IUKF algorithm
[10], [11]. The IUKF relies on the basic theoretical principles
developed by Julier and Uhlmann at the beginning of 2000s
(see [16]) which have been since widely applied to various
nonlinear state estimation problems (cf. [19]).

Proposition 1: Considering a whole state space represen-
tation, the composite transformation φgPG “ pψg, ϕg, ρgq
and starting from initial values x̂0 “ Erx0s, Pxx

0 “

Erηpx0, x̂0qη
T px0, x̂0qs the two-steps procedure (predic-

tion/correction) permit to design the following invariant
nonlinear state observer in discrete time:
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m ŷpiqk`1|k

Í Syy
k`1|k “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

À qr
„

a

W p1q
c

ˆ

EpX p1q
k`1|k, I

X p1q
k`1|k
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Previous matricial computations rely on both QR de-
composition and rank 1 update to Cholesky factorization
(cholupdate). Local transformations pψg, ϕg, ρgq are here
defined as for a dynamical system preserving symmetries
[7]. In this formulation, state, output and crossed error co-
variances are now defined from system modeling invariants.
It is clear by transitivity that these matricial quantities are
left unchanged by the composite transformation φgPG “

pψg, ϕg, ρgq. Unlike the Invariant Extended Kalman Filter
(IEKF), the proposed IUKF does not require a linearization
of 9ηpxt, x̂tq w.r.t η for its gain matrix computation step.
When any given permanent trajectory t ÞÑ pxpptq,upptqq
is followed (i.e., s.t. @t, Ixp

up
ptq “ Ī), 1st order approxi-

mation of the dynamical error η shows that if K is also
determined s.t. matrix BΥp0, Īq{Bη is stable, then observer F
will converge locally around pxpptq,upptqq. Reuse of system
modeling invariances within invariant observer design also
guarantees that it will converge for any group action im-
age pψgpupptqq, ϕgpxpptqqqgPG. This property is remarkable
especially for dynamical systems described by kinematics
relationships whose dynamics is invariant by translation and



rotation movements inside an invariant frame. By doing
this, correction step procedure relies on the determination
of the n additive gain which depend on system fundamental
invariants and invariant innovation terms. Moreover, the in-
variant correction terms are projected on each component of
the dynamical equations by considering the canonical basis
of Rn such as Bpx̂k`1|kq “ tωipx̂k`1|kquiPrr 1 ; n ss vectors
form an invariant frame for each x̂ P X . Thus, the IUKF
algorithm relies on a multiple parametrization defined by
local transformation groups. Considering the transformation
group φg “ pϕg, ψg, ρgq each inverse of sigma point can be
defined as a local parameter of p2n`1q invariant frame which
project each sigma point on the neutral element e thought the
local application ϕg .

III. BENCHMARK AND APPLICATION ON ATTITUDE
ESTIMATION

A. Dynamic system modeling

This subsection details the generic modeling used to tackle
and solve the issue of estimating some key flight variables
(attitude-orientation, angle rates, etc.) of mini-UAVs fitted
out with an Attitude and Heading Reference System (AHRS).
UAVs dynamics representation corresponds here to a pure
quaternionial kinematics modeling (whose related quaternion
will be denoted by q), supplemented by additive state vari-
ables which represent low frequency sensors’ imperfections
(such as slowly varying biases denoted by as and bs).
Thereby, we consider:
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yA “ asq
´1 ˚A ˚ q

yB “ bsq
´1 ˚B ˚ q

˙

(1)

where ωm is seen as an imperfect and noisy, but known,
measured input, like B. Constant A “ p0 0 gqT refers
to the local Earth’s gravity vector. Nonlinear state space
representation of Eq. (1) can be described in a compact
form s.t. 9x “ fpx,uq and y “ hpx,uq where u “ ωm,
x “ pqT ωT

b as bsq
T and y “ pyT

A yT
Bq

T are the
input, state and output vectors respectively. The nonlinear
state estimation problem makes use of 3 triaxial sensors
which deliver a total of 9 scalar measurement signals: à
3 magnetometers permit to obtain a local measurement
of Earth’s magnetic field, which is known constant and
expressed in the body-fixed frame s.t. vector yB “ q´1˚B˚q
(where B “ pBx By Bzq

T ) can be considered as an output
of the observation equations; à 3 gyroscopes produce the
measurements associated with the instantaneous angular rates
gathered in ωm P R3 s.t. ωm “ pωmx ωmy ωmzq

T ; à
and 3 accelerometers provide the measured output signals
corresponding to the specific acceleration, denoted by am P
R3 with am “ pamx amy amzq

T . As no velocity and position
informations are available (no GPS, nor airspeed sensor), this
AHRS is often qualified as non-aided.

B. IUKF estimator derivation

Let’s consider the observer in [11] for the IUKF algo-
rithm s.t.:
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The invariant state estimation error dynamics 9ηpxt, x̂tq is

given by:
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As it was mentioned, the reader can notice that the invariant
state estimation error dynamics depends on system’s trajec-
tory t ÞÑ pxt,utq through the invariant quantity Ix̂u which
is a major difference with most of nonlinear estimators.
Unlike the Invariant Extended Kalman Filter (IEKF - see
references [8]), the proposed IUKF does not require a
linearization of 9ηpxt, x̂tq w.r.t. η for its gain matrix computa-
tion step. This linearization can appear as a difficult operation
in itself and especially for any practical implementation.

C. Experimental results

We evaluate the IUKF performances experimentally by
post-processing a set of experimental data on the basis of
both the dynamical modeling of Eq. (1) and the filtering
equations of Eq. (2). Figure 2 displays a picture of the Parrot

(a) Parrot quadrotor mini-UAV. (b) Indoor flight experiment.

Fig. 2. Experimental materials: Parrot quadrotor mini-UAV and OptiTrack
device.

quadrotor mini-UAV under test and an image of the indoor
flight performed to gather these real data. It also illustrates
that this experiment has been made using an OptiTrack
system which permits to have at disposal absolute references
(see http://www.optitrack.com/).



Fig. 3. Quaternion states estimation.

As no specific autopilot hardware device has been de-
signed for this experiment, it is noteworthy that data fusion
will merge low quality measurement signals delivered di-
rectly by the cheap MEMS sensors which equip any Parrot
quadrotor. The interest of the following results relies less
on the ability of the IUKF algorithm to estimate systems’
states and outputs than on the practical verification of the
theoretical properties asserted by the invariant observers
framework when dealing with real data. To point out these
latter, the results obtained with the IUKF algorithm have
been systematically compared with the ones provided by a
standard UKF approach. To lead a fair comparison, both
techniques share identical setting parameters values i.e.,
similar estimated process and measurement covariances val-
ues for matrices V and W. Figures 3 and 6 gather some
estimation results due to a lack of space. Figure 3 shows
the estimation results of the quaternion state components
obtained by both UKF and IUKF algorithms. It is noticeable
that both methods provide correct estimates w.r.t. the absolute
references plotted in solid red lines. The differences between
the two algorithms appear when we consider the dispersion
around the estimated state trajectory. Indeed, the lines plotted
on figure 5 , which correspond to the q̂ptq˘3ˆσ̂qptq standard
deviations around the mean estimated value, tend to prove
that the IUKF estimation algorithm calculates more trustful
quaternion estimates, or at least reduces the dispersion of
these state estimates, due to the invariant framework used.

Based on these quaternion estimates, the instantaneous
Euler attitude angles values, which describe at any time
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Fig. 4. Euler angles attitude estimation on φ and associated errors

instant the orientation of the flying Parrot, have been deduced
through time and compared with the absolute references
determined by the OptiTrack system. It appears that both
algorithms allow to reconstruct a suitable attitude estimation
for control purposes. Due to a lack of space only the
φ-axis estimation state error w.r.t. the absolute references
is drawn in figure 4 using a logarithmic scale and show
comparable results for both techniques. Expected differences



Fig. 5. Estimated theoretical standard deviations: comparison UKF/IUKF (state components).

Fig. 6. Correction gains: comparison UKF (red) /IUKF (blue) (state components).



brought by the invariant observer theory used to design our
IUKF algorithm can be observed on Figures 5 and 6, which
display, through time, both computed theoretical standard
deviations and filters correction gains. By merging these
results, it can be concluded that our proposed IUKF estima-
tion technique is characterized by quasi-constant estimated
standard deviations and correction gains w.r.t. any standard
UKF estimation algorithm. Exploiting system’s dynamics
invariances in order to design nonlinear state estimation
approaches allows to construct powerful nonlinear observers
whose properties will be quasi-independent from the current
followed trajectory.Therefore, state estimation uncertainties
can be quantified by quasi-constant values through time (see
for instance standard deviations on q̂).

This paves the way for designing less conservative, but
robust, estimated state-feedback control laws in order to
improve mini-UAVs flying and handling qualities. It is
noteworthy that the reasoning made previously about the
residual estimation uncertainties which impair pω̂b, âs, b̂sq
for both techniques is still valid when analyzing the results
of Figure 5. Although it has not been demonstrated by any
theoretical proof, we can notice that, when they are consistent
with UKF-based results (i.e., not for the state components re-
lated to gyrometer biases), the theoretical standard deviations
computed by our proposed IUKF estimation technique mini-
mize along the whole experiment the ones determined by the
standard UKF methodology. This is especially remarkable
for quaternion components estimates q̂ “ pq̂0 q̂1 q̂2 q̂3q

T .
Similarly to the theoretical standard deviations computed by
the IUKF observer, the correction gains (cf. Fig. 6) appear
less sensitive to the non-stationary noises levels, so that we
can conclude that the invariant framework offers a better
high frequency perturbations rejection in terms of filtering
capabilities. In the case of the IUKF estimator, these gains
could be also approximated by constant values, after a given
transient regime, rather than in the case of the standard UKF
algorithm.

IV. CONCLUSION AND FUTURE PROSPECTS

This article has presented an innovative procedure to de-
rive an invariant observer for nonlinear state estimation. This
latter, named IUKF, combines both invariant observers theory
and unscented filtering principles. The experimental results
presented and gathered in §III-C have shown an equivalent
capability of our proposed IUKF technique in comparison
with an UKF method for nonlinear state estimation. These
results have also permitted to check in realistic conditions
some invariance properties which characterize our designed
observer. Among these latter, stability of estimated standard
deviations, which characterize estimated state trajectory un-
certainties, must be highlighted since it could facilitate new
control strategies design with less conservatism.

Future works will investigate the possibility to use con-
stant gain matrices, optimized offline by the IUKF, into a
complementary observer. The benefit of this solution would
be to take advantage of the computational simplicity of the

complementary observer but with optimal correction terms
provided by the IUKF.
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