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Optimizing the Design of a Route in Terminal
Maneuvering Area Using Branch and Bound

Jun Zhou, Sonia Cafieri, Daniel Delahaye, and Mohammed Sbihi

Abstract The sharp increase in air traffic flow causes traffic congestion in airspaces
near airports, called Terminal Maneuvering Areas (TMA). The departure and arrival
traffic of airports follow pre-designed routes named Standard Instrument Departure
(SID) routes and Standard Terminal Arrival Routes (STAR). Optimizing these routes
is crucial to regulate air traffic. Currently, SIDs and STARs are designed manually,
based on the airport layout and nearby constraints. The objective of this research is
to propose a methodology for designing an arrival/departure route in TMA, taking
into account some constraints including obstacle avoidance. The shape of a route
in horizontal plan is a succession of arcs of circles and segments. The originality
of our study is, on the one hand, that the horizontal route is associated with a cone
in vertical plan enveloping all ascent (or descent) aircraft profiles, and on the other
hand, a branching strategy in a Branch and Bound (B&B) framework tailored on the
problem is proposed.
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1 Introduction

The continuously increase in air traffic flow density causes traffic congestion in the
areas surrounding airports, thus affecting the normal operation of air traffic. An area
surrounding one or more neighboring airports is called Terminal Maneuvering Area
(TMA), and it is designed to handle aircraft arriving to and departing from the air-
ports. Optimizing departure and arrival procedures in TMA is therefore crucial to
regulate air traffic flows. Most of the airports have pre-designed procedures indi-
cating how aircraft depart from or arrive to airports. These procedures are called
Standard Instrument Departure (SID) routes and Standard Terminal Arrival Route
(STAR). A SID is a flight route followed by aircraft after take-off from an airport
until the start of en-route phase. A STAR is a route which connects the last en-route
way-point to the Initial Approach Fix. Currently, SID/STARs are designed manu-
ally according to operational requirements (ICAO Doc 8168), taking into account
airport layout and nearby constraints. However, this kind of design is generally not
very efficient and not expected to optimize any specific criterion. The objective of
this work is to automatically design SID/STARs in 3D with respect to certain opti-
mization criteria. Being this study at a strategic level, only static obstacles are taken
into account. Rather than considering an individual flight, we deal with flows of
flights, that is to say the flights following the same SID (or STAR) belong to the
same flow.

The considered problem is in the framework of path planning. Specifically, it
is a route design problem: as contrarily to trajectory design, we aim at designing
routes that are not associated to the notion of time. The problem of path planning
has been studied since 1980s in the robotic domain [3] [9]. Nowadays planning
optimal aircraft paths becomes a rich and dynamic research area, some approaches
have been summarized in [1]. In particular, computing the shortest path between two
points, given a number of obstacles, is one of the most extensively studied topic [5]
[8] [10] [7] [4]. Most of these works search for the shortest path in a horizontal plan,
while in our study we consider searching for the shortest path in 3D. Moreover, in
several works the obstacle is modeled as polygon [5] [8] [10], and in a few works as
circle [7] [4]. In the present study we model the obstacle as cylinder in 3D and the
projection to the horizontal plan is in form of circle.

Specifically in aircraft paths designing domain, even though there is a large num-
ber of researches, routes design in TMA is a particular problem for which to our
knowledge there is not a rich literature. In [6] the author designs terminal routes
getting around obstacles with a modified A* algorithm. In our study, we design a
route not only getting around obstacles, but also allowing level flights. Indeed, im-
posing a level flight in vertical plan is also an effective way to avoid obstacles, as
it enriches the possible maneuvers and corresponds to what is done in the reality in
a TMA. The different ways to avoid obstacles allow us to define specific branching
strategies in a Branch and Bound tailored on the problem, that is another contribu-
tion of this work.

This paper is organized as follows. Section 2 introduces the route and obstacles
modeling. Section 3 presents the proposed approach to solve the problem. Section 4
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gives some preliminary simulation results. Finally, Section 5 draws conclusions and
proposes future directions.

2 Problem Modeling

TMA is one of the most complex types of airspace. Many constraints have to be sat-
isfied, falling into two categories: operational constraints related to air traffic opera-
tions (such as obstacle avoidance and flyable routes), and environmental constraints
(such as noise abatement). SID/STARs are designed to satisfy these constraints and
to deal with the dense traffic converging to and diverging from airports. The con-
straints in TMA make the SID/STARs design a very complex problem. Therefore in
this study we consider the simpler subproblem of designing a single route avoiding
obstacles and satisfying some other operational constraints. The obstacles in TMA
could be mountains, cities, military area, etc. In the following, we present the way
we model routes and obstacles.

A 3D route γ is defined by two elements: a curve γH in a horizontal plan which is
composed by a succession of arcs of circles (to bypass obstacles) and segments (to
connect tangentially two arcs); a cone γV in a vertical plan that contains all ascent
(or descent) profiles of the aircraft flying on this route. The cone is defined by two
straight lines whose slopes are the minimum and maximum values of the take-off
(or landing) rate of the aircraft on this route. The idea of taking a cone that contains
all vertical profiles is inspired by the behavior illustrated in Fig. 1, which shows
some real take-off data in runway 08L of Paris CDG airport. From the figure we can
see clearly that the vertical profiles are contained in a cone defined by two straight
lines. The vertical profiles for landing are similar. This behavior is mainly due to the
different aircraft mass and performance and to the effect of the wind.

In a horizontal plan, we define a starting point A (xA,yA) and an ending point
B (xB,yB). In a SID case, the starting point is at the runway threshold and the ending
point is an exit point of a TMA. In a STAR case, the starting point is an entry point

Fig. 1 Take-off Profiles in
CDG Airport
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Fig. 2 An Example of γH and γV

of a TMA and the ending point is the Final Approach Fix (FAF). The horizontal
route γH is a smooth mapping defined as:

γH : [0,1]→ R2 (1)

where γH(0) = (xA,yA) and γH(1) = (xB,yB). In a vertical plan, γV is defined as:

γV : [0,1]→ IR

t → [zin f (d(t)),zsup(d(t))]
(2)

where IR defines the set of intervals of R, and d(t) =
∫ t

0 ‖γ ′H(s)‖2 ds is the flown
distance until t in horizontal plan, [zin f (d),zsup(d)] is the interval defined by the
cross section of the cone at d. The vertical profile γV is associated to the horizontal
curve γH through the flown distance d. Figure 2 illustrates an example of how γH is
associated with γV in the case of a SID, where αmin and αmax are the minimum and
maximum values of take-off rate of aircraft on this route.

In the case of a SID, the starting point A is associated with an altitude zA; the
ending point B is associated with an altitude interval [zB,zB] which indicates the
altitude interval to exit TMA. Therefore the boundary conditions are γV (0) = [zA,zA]
and γV (1) ⊂ [zB,zB]. Similarly, in the case of a STAR, the altitude interval of the
starting point A is [zA,zA] which indicates the interval to enter TMA; the altitude of
the ending point B is zB. The boundaries conditions are: γV (0) = [zA,zA] and γV (1) =
[zB,zB]. Note that, in order to guarantee that any SID reaches B within [zB,zB], we set
zB = zA +αmin ·d(A,B), where αmin is the minimum taking-off slope, and d(A,B) is
the Euclidean distance between the starting and ending points A and B. Similarly, to
guarantee that any STAR reaches zB at FAF, we set zA = zB+αmin ·d(A,B) and zA =
zB +αmax ·d(A,B), where αmin (αmax) is the minimum (maximum) landing slope. A
level flight can be imposed to ensure that zB (respectively, zB) is not exceeded in the
case of a SID (respectively, STAR).

The obstacles, together with their protection areas, in number of m∈N, are mod-
eled as cylinders in 3D, whose bases are parallel to the horizontal plan as presented
in Fig. 3. Each cylinder Ωi, i = 1, · · · ,m is defined by (Ci(xi,yi),ri,ziin f ,zisup), where
Ci(xi,yi) and ri are the center and the radius of the two bases respectively; ziin f and
zisup are the altitude of the lower and upper bases. These obstacles are numbered in
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Fig. 3 Obstacle Modelization

Fig. 4 Obstacles Numbering

an increasing order of length(A,Pro j(AB)Ci) where Pro j(AB)Ci is the projection of
Ci onto the line (AB). An illustration is presented in Fig. 4.

Let us define an active obstacle as an obstacle that is touched by a route and has
to be avoided according to one of the following maneuvers: turn counter-clockwise,
turn clockwise or impose a level flight. Each cylinder Ωi is associated with two
decision variables si and ti: si defines whether Ωi is active or not:

si =

{
0, if Ωi not active
1, if Ωi active (3)

while ti defines the ways an active obstacle Ωi is avoided:

ti =

0, if turn counter-clockwise
1, if turn clockwise
2, if impose level flight

(4)

Once the values of decision variables are chosen, the horizontal route is com-
puted by connecting tangentially the successive active (si = 1) obstacles with ti = 0
or ti = 1 in the increasing order of their numbering. Active obstacles with ti = 0
are bypassed counter-clockwise and those with ti = 1 are bypassed clockwise. This
horizontal route is hence built piecewise: it is composed by (∑m

i=1 si−∑
m
i=1 max(ti−

1,0)+ 1) straight line segments and (∑m
i=1 si−∑

m
i=1 max(ti− 1,0)) arcs of circles.

Routes are therefore constrained to lie on the border of obstacles. In order to ensure
flyable routes, the radius of the arcs of circles is imposed to be at least equal to 3 Nm
(FAA Orders 8260.54A and 8260.58). Note that these arcs can be followed using a
type of Performance Based Navigation (PBN) named Required Navigation Perfor-
mance (RNP). Then, a vertical profile is associated to the horizontal route, taking
into account αmin, αmax, and imposing a level flight below (respectively above) the
active obstacle Ωi in a SID (respectively STAR) case when ti = 2. If some active
obstacles with ti = 2 is not intersected by the cone associated with the horizontal



6 Jun Zhou, Sonia Cafieri, Daniel Delahaye, and Mohammed Sbihi

a b

c d

Fig. 5 The Routes Associated to Different Values of the Decision Variables. a si = 0, 3D View. b
(si, ti) = (1,0), 2D View. c (si, ti) = (1,1), 2D View. d (si, ti) = (1,2), 3D View

route, then the route is unfeasible regarding to our definition of “active obstacle”.
Note that the way of building a horizontal route simplifies the computation but it
does not necessarily lead to the shortest horizontal route between A and B.

An illustration of different values of the decision variables for an example of a
SID in a TMA with one obstacle is presented in Fig. 5. In Fig. 5a, the obstacle is not
active, so si = 0. The horizontal route is a straight line segment connecting A and B.
It is associated with a cone in the vertical plan. This route in the considered example
is not a feasible one, because it intersects the obstacle. Then when the obstacle is
active (si = 1), 3 possibilities are considered to avoid it (Figs. 5b, 5c, 5d): turn
counter-clockwise, turn clockwise and impose a level flight under the obstacle at
altitude ziin f , corresponding to ti = 0,1,2 respectively.

Two examples of SIDs are presented in Fig. 6 showing how a route is com-
puted, given the values of the decision variables, in the case with more than one
obstacle. In example 1 (Figs. 6a, 6b), given (s1, t1) = (1,0),(s2, t2) = (1,1), the
horizontal route is composed by five parts: three segments and two arcs of circles.
The three segments are used to connect tangentially the starting point to Ω1, Ω1
to Ω2 and Ω2 to the ending point respectively. The two arcs are used to bypass Ω1
counter-clockwise and Ω2 clockwise respectively. In example 2 (Figs. 6c, 6d), given
(s1, t1) = (1,2),(s2, t2) = (1,1), the horizontal route is constructed by only bypass-
ing Ω2, thus it is composed by two segments and one arc of circle. In vertical plan,
when the route reaches the altitude of the lower basis of Ω1, a level flight is im-
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a b

c d

Fig. 6 Routes Construction. a Example 1: Horizontal Plan. b Example 1: Vertical Plan. c Example
2: Horizontal Plan. d Example 2: Vertical Plan. Note that in b and d, slopes appear discontinuous
as an effect of a projection of a 3D image on a plan

posed. The level flight ends at the flown distance where the horizontal route passes
the boundary of Ω1 and is no more intersected by Ω1.

Besides obstacle avoidance, further constraints are related to level flights. First,
the number of level flights is bounded by a maximum number Nmax, usually fixed to
2, for each route:

m

∑
i=1

max(ti−1,0)≤ Nmax (5)

Second, as the altitudes of imposed level flights have a direct impact on the noise
pollution, a minimum altitude Hmin for each level flight is defined. In practice, we
impose the following constraints: in a SID case (respectively a STAR case), for an
obstacle Ωi, if ziin f < Hmin (respectively zisup < Hmin), then no level flight is imposed
below (respectively above) it, therefore ti ∈ {0,1}.

Third, as to take into account the passengers comfort, the length of each level
flight should not be too short, a minimum length Lmin for each level flight is imposed.

We minimize a weighted sum Lγ of the length of the route γ in the horizontal
plan and the length related to the level flights. More precisely:
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Fig. 7 Branch and Bound
Branching Strategy

Lγ = c1×
(∫ 1

0
‖γ ′H(t)‖2 dt

)
+ c2×Lmin×

m

∑
i=1

max(ti−1,0) (6)

The coefficients c1 and c2 are two penalty parameters, their values depend on the
importance of the corresponding term. The obtained problem (denoted by (P)) is
a combinatorial optimization problem. In the next section we explain the proposed
solution approach for this problem.

3 Solution Approach: Branch and Bound

To solve the problem, we apply a Branch and Bound method. In [2], a path planning
problem avoiding circular obstacles is studied in 2D. A branching strategy is pro-
posed, where, for each obstacle, two branches are created depending on the clock-
wise or counter-clockwise obstacle bypassing. We extend this branching strategy to
take into account the specificity of our problem, where obstacles can be avoided also
by imposing a level flight below (SID case) or above (STAR case) the obstacle. Our
branching strategy is illustrated in Fig. 7. We start by setting Ωi as active (si = 1)
or not (si = 0); when it is active, we develop three branches in order to account for
the 3 possibilities of avoiding it: counter-clockwise (ti = 0), clockwise (ti = 1) or
imposing a level flight (ti = 2).

The lower bound for each subproblem is computed by generating the route which
bypasses only the active obstacles and by calculating its length according to the
objective function (6). The obtained lower bound is then used to identify whether a
branch requires further subdivisions.

We present a step-by-step illustration (Fig. 8) to show how the Branch and Bound
method works. The starting and ending points as well as two obstacles Ω1,Ω2 are
presented in Fig. 8a. We take c1 = 1,c2 = 1, that is to say we penalize the length of
level flights in the objective function.

Step 1: We develop 4 branches on Ω1. We start by deviating the route counter-
clockwise, and we obtain a route that does not intersect Ω2. The lower bound in
this case is 100320 m. Besides, the value of the objective function associated with
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solution (s1, t1) = (1,0), s2 = 0 is equal to the lower bound. Therefore, no further
exploration is needed.

Step 2: Another branch on Ω1 is developed by deviating the direct route clock-
wise around Ω1. The length of this horizontal route is the lower bound of this sub-
problem, the value is greater than the current best value. There is no possibility to
get a better solution by further branching on Ω2, therefore we cut this branch.

Step 3: The third branch on Ω1 is obtained by imposing a level flight, as shown
in Figs. 8d, 8e. The lower bound is greater than the current best value, so the branch
is cut.

Step 4: The last branch on Ω1 is with s1 = 0. The route intersects Ω2 and its lower
bound, which corresponds to the length of the direct route, is less than the current
best length, thus 4 branches on Ω2 are developed. In the case s2 = 0, the route is not
feasible thus not accepted.

Step 5: By branching counter-clockwise around Ω2, the obtained route is still
intersecting Ω1, thus it is not accepted.

Step 6: By branching clockwise around Ω2, we obtain a feasible route with length
greater than the current best value, so it is not accepted.

Step 7: The last branch is obtained by imposing a level flight under Ω2 as shown
in Figs. 8i, 8j. This route is still encountered by Ω1, so it is not accepted.

All the possible branches are considered. The best distance is 100320 m by taking
(s1, t1) = (1,0),s2 = 0.

The maximum size of the search space of our problem is 4m, where m is the
number of obstacles. Indeed we have 4 possibilities to deal with each obstacle. The
size of the search space can be reduced significantly by applying the pre-processing
techniques developed in [4]. In fact, the authors prove firstly that the shortest path
connecting two points and avoiding circular obstacles must lie into an ellipse con-
taining these two points. Moreover, they prove that the shortest path lies in a con-
vex hull of a few circular obstacles around the line segment connecting the starting
and ending points. We apply these pre-processing techniques to reduce the number
of considered obstacles before applying our approach. These filters still hold when
considering cylindrical obstacles. A 3-dimensional feasible route can be indeed built
based on the 2D shortest path avoiding the obstacle projections on the plan. Some
simulation results with and without the pre-processing techniques are presented in
Sect. 4.

4 Simulation Results

In this section we present two simulation examples. The first one is the case of a
SID, the second one is the case of a STAR. Tests were run on a Linux platform with
a 2.4 GHz processor and 8 GB RAM.

Different strategies are applied to choose the next sub-problem to solve and the
next obstacle to branch on. The simulation results presented in this section use the
Best Lower Bound (BLB) for selecting the next sub-problem, and use the First In-
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a b

c d

e f

g h

i j

Fig. 8 Branch and Bound Illustration. a Step 0. b Step 1. c Step 2. d Step 3, Horizontal Plan. e
Step 3, Vertical Plan. f Step 4. g Step 5. h Step 6. i Step 7, Horizontal Plan. j Step 7, Vertical Plan
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tersected Obstacle (FIO) for selecting the next obstacle to branch on. In fact, the
combination of strategies “BLB+FIO” gives the minimum computing time together
with the minimum number of iterations in most of the tests.

In the first example, the input data are (unit in meter):

• Starting point A, (xA,yA,zA) = (0,0,0)
• Ending point B, (xB,yB, [zB,zB]) = (70376,70376, [4777,9754])
• αmin = 4.8%, αmax = 9.2%
• Nmax = 2, Lmin = 9260, Hmin = 914

There are nine obstacles. Table 1 gives the center (xi,yi), radius ri and altitudes of the
two bases (ziin f ,zisup) of obstacle Ωi, i= 1, · · · ,9. The unit is in meter. The simulation
results are presented in Table 2 and Fig. 9. We carried out two tests with different
values of c1,c2: the first one with c1 = 1,c2 = 0; the second one with c1 = 1,c2 = 1.
When c1 = 1,c2 = 0, the length of level flights is not penalized in the objective
function, thus Figs. 9a, 9b show that the optimal route is obtained with a level flight
to avoid the obstacle with the center coordinates (29632,25928). However, when
c1 = 1,c2 = 1 the length of level flight is penalized in the objective function, and
as a result a counter-clockwise turn is made to avoid the mentioned obstacle instead
of using a level flight, as shown in Figs. 9c, 9d. Moreover, thanks to the ellipse and
convex hull filters, which reduces the number of the potential obstacles from 9 to 5,
the computation time and the number of iterations are reduced effectively.

In the second example, the input data are (unit in meter):

• Starting point A, (xA,yA, [zA,zA]) = (0,0, [4454,7722])
• Ending point B, (xB,yB,zB) = (96304,96304,914)

Table 1 Example 1: Characteristics of Nine Obstacles

(xi,yi) (m) ri (m) (ziin f ,zisup ) (m)

(7408,14816) 3704 (701,2377)
(9260,35100) 11112 (884,1707)
(9260,57412) 4630 (2286,4389)
(29632,25928) 9260 (2682,3109)
(33336,48152) 5556 (2835,5425)
(42596,14816) 5556 (2286,4389)
(48152,51856) 7408 (3536,6828)
(61116,29632) 9260 (3048,6706)
(70376,51826) 9260 (4154,8022)

Table 2 Example 1: Simulation Results

(c1,c2)
no pre-processing with pre-processing Lγ (m)Time (s) Iterations Time (s) Iterations

(1,0) 0.47 254 0.09 46 100082
(1,1) 0.57 307 0.20 115 102478



12 Jun Zhou, Sonia Cafieri, Daniel Delahaye, and Mohammed Sbihi

a b

c d

Fig. 9 Example 1: Simulation Results. a γH ,c1 = 1,c2 = 0. b γV ,c1 = 1,c2 = 0. c γH ,c1 = 1,c2 = 1.
d γV ,c1 = 1,c2 = 1

• αmin = 2.6%, αmax = 5%
• Nmax = 2, Lmin = 9260, Hmin = 914

Table 3 Example 2: Characteristics of Seven Obstacles

(xi,yi) (m) ri (m) (ziin f ,zisup ) (m)

(22224,22224) 9260 (0,5486)
(27780,74080) 14816 (0,3048)
(48152,96304) 7408 (0,4572)
(59264,51856) 12964 (0,4572)
(72228,24076) 9260 (0,4572)
(77784,81488) 14816 (0,3048)
(96304,48152) 12964 (0,4572)

There are seven obstacles defined by the parameters presented in Table 3. The
simulation results are presented in Table 4 and Fig. 10. Note that the optimal route
in the case with c1 = 1,c2 = 0 is the same as the one in the case with c1 = 1,c2 =
1. Even though by taking c2 = 0, level flights are not penalized in the objective
function, no level flight is imposed in the optimal solution. The reason is that the
routes with level flights do not offer a better value of the objective function or do
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Table 4 Example 2: Simulation Results

(c1,c2)
no pre-processing with pre-processing Lγ (m)Time (s) Iterations Time (s) Iterations

(1,0) 0.64 349 0.09 45 142230
(1,1) 0.36 188 0.09 45 142230

a b

Fig. 10 Example 2: Simulation Results. a γH ,c1 = 1,c2 = 0 or c1 = 1,c2 = 1. b γV ,c1 = 1,c2 = 0
or c1 = 1,c2 = 1

not satisfy the constraints that mentioned before. By applying the pre-processing
techniques, the number of the potential obstacles is reduced from 7 to 3, therefore
the computation time and the number of iterations are reduced significantly.

5 Conclusion and Perspectives

In this paper, we introduce a methodology for generating a 3D route in TMA at
strategic level, performed by a deterministic global optimization approach. The
route is represented by a horizontal curve associated to a cone in the vertical plan.
We develop three ways to avoid an obstacle: turn clockwise or counter-clockwise
(2D) and level flight (3D) which correspond to branching strategies in a Branch
and Bound tailored on the problem. By setting appropriately the penalization coeffi-
cients, it is possible to obtain continuous and smooth routes which are available for
Continuous Climb Operations (CCO) and Continuous Descent Operations (CDO).
To summarize, this approach can be regarded as a decision support tool for the de-
signing of SID/STARs.

In future work, we will consider the problem of designing several routes taking
into account the avoidance of obstacles and the separation between them. One pos-
sible approach is to decompose the problem in three parts: (a) generating each route
separately by applying the Branch and Bound method presented in this paper; (b)
detecting the conflicts between the generated routes; (c) eliminating the conflicts by
adding fictitious cylinder obstacles at the position of the conflicts.
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5. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collison-free paths among poly-
hedral obstacles. Commun. ACM. 22, 560–570 (1979)

6. Pfeil, D.M.: Optimization of airport terminal-area air traffic operations under uncertain
weather conditions. PhD thesis, Massachusetts Institute of Technology, 2011

7. Pocchiola, M., Vegter, G.: Minimal tangent visibility graphs. Comput. Geom. Theory Appl.
6, 303–314 (1996)

8. Rohnert, H.: Shortest paths in the plane with convex polygonal obstacles. Inf. Process. Lett.
23, 71–76 (1986)

9. Souissi, O. et al.: Path planning: A 2013 survey. In: Proceedings of the 2013 International
Conference on Industrial Engineering and Systems Management, pp. 1-8. Rabat (2013)

10. Storer, J.A., Reif, J.H.: Shortest paths in the plane with polygonal obstacles. J. ACM. 41,
982–1012 (1994)


