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Distributed algorithm for controlling

scale-free polygonal formations. ⋆
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Abstract: This paper presents a distributed algorithm for controlling the deployment of a team
of mobile agents in formations whose shapes can be characterized by a broad class of polygons,
including regular ones, where each agent occupies a corner of the polygon. The algorithm shares
the appealing properties of the popular distance-based rigid formation control, but with the
additional advantage of requiring the control of fewer pairs of neighboring agents. Furthermore,
the scale of the polygon can be controlled by only one pair of neighboring agents. We also exploit
the exponential stability of the controlled formation in order to steer the formation as a whole
with translations and rotations in a prescribed way. We provide both theoretical analysis and
illustrative simulations.

Keywords: Formation control, Distributed control, Multi-agent system.

1. INTRODUCTION

Accomplishing the tasks of surveillance, exploration, and
search & rescue, among others, often requires formation
control of multi-agent systems (see for instance Oh et al.
(2015)). In particular, an appealing formation control
framework based on rigid frameworks for the above men-
tioned tasks has been discussed in Krick et al. (2009).
In such setups the agents can form a desired shape by
only controlling the distances between neighbors. It is
worth mentioning as follows some of the properties of
distance-based rigid formation control. Firstly, the agents
do not need to share a common frame of coordinates.
Secondly, the system is robust against biases when sensing
the distances between of neighboring agents (see Garcia de
Marina et al. (2015)). Thirdly, the motion of the formation
can be de-coupled into rotational, translational and scaling
movements (we refer to Garcia de Marina et al. (2016a,b)).
Forthly, the stability of the closed-loop system is exponen-
tially stable for agents modelled by first or second-order
integrators Sun et al. (2016). On the other hand, the main
drawback of this distance-based approach is that to control
the formation, one needs to control at least 2n−3 distances
in 2D, in order to be able to achieve a desired shape. This
is not required for other approaches such as the position-
based control Oh et al. (2015), but with the possible price
of loosing many of the above listed advantages.

This paper presents an algorithm for controlling forma-
tions in the shapes from a broad class of polygons, i.e., a
plane figure that is bounded by a finite chain of straight
line segments closing in a loop to form a closed chain,
⋆ The work of Hector Garcia de Marina was supported by Mistrale
project, http://mistrale.eu. The work of Cao was supported in
part by the European Research Council (ERC-StG-307207) and the
Netherlands Organization for Scientific Research (NWO-vidi-14134).

where each agent occupies a corner of the polygon. We
will show that the algorithm has all the advantages from
distance-based rigid formation control and at the same
time it only needs to control a smaller number of agent
pairs. In particular, the assignment of neighboring agents,
e.g., the sensing topology of the team, is based on a
daisy chain configuration, i.e., a configuration where the
agents are connected in series. We will also show that by
controlling only the distance between the first and last
agent in the sensing topology, one can scale the size of the
whole formation up and down freely.

The algorithm is motivated by the distance-based control
of non-rigid formations as recently studied in Dimarogonas
and Johansson (2008). In particular, we exploit the effect
of having mismatches in the prescribed distances between
neighboring agents. Although one cannot define a particu-
lar shape by controlling a non-rigid setup, it is reported in
Garcia de Marina and Sun (2017) that biases in the range
sensors of neighboring agents 1 can be used to lead the for-
mation to converge to a collinear configuration for a daisy
chain network consisting of three agents. In this work we
will employ a slightly different approach than in Garcia de
Marina and Sun (2017). In fact, we will strengthen the
resultant mismatched control law by clearly identifying
two terms. The first term is responsible for controlling
distances and derived from the standard gradient descent
technique for the chosen potential function. The second
term involving the mismatches has a clear interpretation
and is responsible for the steady-state collinear configura-
tion. Furthermore, as hindsight, the first term is surpris-
ingly in the same form as the control law presented in Kv-

1 In the cited paper, the mismatches have been addressed as a
biases. Nevertheless, mathematically speaking in the cited paper
both concepts are equivalent.
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into and Parsegov (2012) and Proskurnikov and Parsegov
(2016) for steering equally-spaced agents to a line. We
will show that with the technique introduced in Garcia de
Marina and Sun (2017), the second term responsible for
the alignment of the formation can be modified in order
to control a prescribed angle and a prescribed distance
between two pairs of consecutive neighboring agents in the
daisy chain. Furthermore, the scale of the whole formation
can be set by one pair of neighboring agents. The proposed
algorithm renders the controlled formation convergning to
the prescribed shape exponentially stable. This property,
combined with a non-fixed steady-state orientation, allows
us to achieve translations and rotations of the desired
shape by following the technique introduced in Garcia de
Marina et al. (2016a).

This paper is organized as follows. We introduce some
notation and the notion of framework in Section 2. Then
in Section 3 we introduce the daisy chain topology for
distance-based control. The addition of distance mis-
matches between neighboring agents in the control terms
leads to an algorithm for deploying agents in a collinear
and equally (or relatively) spaced configuration. We mod-
ify this algorithm by the addition of rotational matrices
in Section 4 in order to control the relative angle between
two consecutive relative positions in the framework. We
prove the exponential stability under the new algorithm
for a broad class of polygons, including regular ones. At
the end of Section 4 we exploit this exponential stability
in order to control the scale of the desired shape by only
controlling the distance between the first and the last agent
of the framework, and to induce rigid body motions, i.e.,
rotations and translations, to the polygon. We present a
numerical simulation in Section 5 in order to validate the
theoretical findings and we finish the paper with some
conclusions in Section 6.

2. NOTATIONS AND DEFINITIONS

For a given matrix A ∈ Rn×p, define A
∆
= A⊗I2 ∈ R2n×2p,

where the symbol ⊗ denotes the Kronecker product and
I2 is the 2 × 2 identity matrix. We denote by |X | the
cardinality of the set X .

Consider a formation of n ≥ 3 autonomous agents whose
positions are denoted by pi ∈ R2 with i ∈ {1, . . . , n}.
The agents are able to sense the relative positions of
their neighboring agents. The neighbor relationships are
described by an undirected graph G = (V , E) with the
vertex set V = {1, . . . , n} and the ordered edge set E ⊆ V×
V . The set Ni of the neighbors of agent i is defined by

Ni
∆
= {j ∈ V : (i, j) ∈ E}. We define the elements of the

incidence matrix B ∈ R|V|×|E| for G by

bik
∆
=







+1 if i = Etail
k

−1 if i = Ehead
k

0 otherwise

, (1)

where Etail
k and Ehead

k denote the tail and head nodes,
respectively, of the edge Ek, i.e., Ek = (Etail

k , Ehead
k ).

A framework is defined by the pair (G, p), where p is
the stacked vector of the agents’ positions pi with i ∈
{1, . . . , n}. The stacked vector of the sensed relative posi-
tions by the agents can then be described by

z = B
T
p. (2)

Note that each vector zk = pi− pj in z corresponds to the
relative position associated with the edge Ek = (i, j).

3. DISTANCE-BASED DAISY CHAIN
FRAMEWORKS, MISMATCHES AND THE

UNIFORM DEPLOYMENT ON A LINE PROBLEM

Assume that the agent’s dynamics are described by the
first-order model

ṗ = u, (3)

where u is the stacked vector of control inputs ui ∈ R2 for
i = {1, . . . , n}.

Consider the following incidence matrix defining a daisy-
chain topology

B =













1 0 . . . 0 0
−1 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . −1 1
0 0 . . . 0 −1













, (4)

where B ∈ R|V|×(|V|−1). The incidence matrix that will
help us to control the angles defined by the vectors zk
and zk+1 also corresponds to a daisy chain topology but
Bθ ∈ R(|V|−1)×(|V|−2), i.e., the first column of Bθ is related
to θ1 as the angle between z1 and z2 and so on.

3.1 Distance-based mismatched gradient-descent control

For illustration, let us consider the case when our daisy
chain framework consists of three agents. We then choose
for the distance-based control the following potential func-
tion

V (z) =
1

4
(||z1||

2 − d21)
2 +

1

4
(||z2||

2 − d22)
2, (5)

where d1 and d2 are the desired distances between the
corresponding neighboring agents. Taking the gradient-
descent of (5) (as used in Garcia de Marina et al. (2016a))
we arrive at the following system







ṗ1 = −z1e1

ṗ2 = z1e1 − z2e2

ṗ3 = z2e2,

(6)

where ek = ||zk||2 − d2k, k ∈ {1, 2} are the distance error
signals. Inspired by Garcia de Marina et al. (2016a), let
us now include a distance mismatch µk ∈ R in the edge
Ek = (i, j), namely

d2 tail
k = d2 head

k − µk, (7)

where dtailk and dheadk are the different desired distances
that the agents i and j respectively in Ek = (i, j) want
to maintain for the same edge. We consider that the
mismatches are assigned to the second agent in (6) such
that we can arrive at the following expression







ṗ1 = −z1e1

ṗ2 = z1e1 − z2e2 + µ1z1 − µ2z2

ṗ3 = z2e2.

(8)

One can identify that system (8) can be derived from
a potential function as it has been done for system (6)
with the exception of the term µ1z1 − µ2z2. In fact,
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the gradient-descent-derived terms are responsible for the
distance control between neighboring agents. If one drops
all the terms in (8) involving the control of the dk’s, then
one gets







ṗ1 = 0

ṗ2 = µ1z1 − µ2z2

ṗ3 = 0.

(9)

If one considers µ1 = µ2 = c then system (9) follows
precisely from the algorithm presented in Kvinto and
Parsegov (2012) and in Proskurnikov and Parsegov (2016)
for solving the problem of deployment on a line, i.e., two
fixed points p1 and pn defining a segment and the rest
of agents will be deployed on such a segment at spots
equally separated. In particular, as one will see in the
following section, the algorithm is stable for c ∈ R+ and
its compatibility with the distance-based gradient-descent
control and its relation with biases in range sensors have
been studied in Garcia de Marina and Sun (2017).

3.2 Deployment on a line problem

In this section we will prove the stability of the algorithm
introduced in system (9) for µ1 = µ2 = c but for a
general daisy chain topology. The stability analysis in this
section is different from the one presented in Kvinto and
Parsegov (2012) and in Proskurnikov and Parsegov (2016).
In particular, in this paper we analyze the derived error
signals from the algorithm. This approach serves as a
starting point for controlling polygons in the plane, not
only collinear configurations. Let us define the following
error vector

eθ = B
T

θ z, (10)

where eθ ∈ R(|V|−2). Then the extension to n agents from
system (9) can be generalized as































ṗ1 = 0

ṗ2 = ceθ1
...

ṗn−1 = ceθn−2

ṗn = 0,

(11)

where c ∈ R+ is a constant gain. Let us write the dynamics
of the signal eθ(t). We first derive the dynamics of z from
system (11), namely

ż = B
T
ṗ = −cBθB

T

θ z = −cBθeθ, (12)

and noting that ėθ = B
T

θ ż we have that

ėθ = −cBT
θ Bθeθ. (13)

Proposition 1. The origin of system (13) is globally expo-
nentially stable. That is, all the agents from system (11)
will converge to a fixed point, namely p(t) → p∗ as t → ∞,
where all the agents are equally spaced with respect to each
other in a collinear fashion.

Proof. Consider the following Lyapunov function V =
1
2 ||eθ||

2, whose time derivative is given by

dV

dt
= eTθ ė

T
θ = −ceTθ B

T
θ Bθeθ. (14)

We know that Bθ defines a daisy chain topology, i.e., it
does not contain any cycles, therefore the matrix BT

θ Bθ

is positive definite (Dimarogonas and Johansson (2008)).

Hence the exponential stability of the origin of eθ follows.
Since the signal eθ(t) converges exponentially fast to zero,

we know B
T

θ z(t) → 0 as t → ∞, i.e., zk(t) − zk+1(t) → 0
as t → ∞. Thus, by observing system (11), we have that
ṗ(t) also converges exponentially fast to zero. So one can
conclude that p(t) converges to a fixed point p∗ where all
the agents are equally spaced and collinearly positioned.�

Remark 1. Note that for the case p1(0) = pn(0), all the
agents will converge to the same point, i.e., z(t) → 0 as
t → ∞.

3.3 Controlling relative magnitudes between relative positions

The relative magnitude between two consecutive rela-
tive positions zk and zk+1 can be trivially defined as
rkzk = rk+1zk+1, where rk, rk+1 ∈ R+ are the scaling
factors that determine how the magnitude of one relative
position with respect to its next neighboring one. This
case encompasses, as in (9), the particular case of having
all the agents equally spaced in the steady state, e.g.,
rk = 1, ∀k{1, . . . , |E|}. In particular, we have that

z̃ = Drz, (15)

where Dr
∆
= diag ([r1 . . . rk]) , with k ∈ {1, . . . , |E|}. So

by redefining

eθ = B
T

θ z̃, (16)

we have that the error dynamics derived from (11), as we
have done before in Proposition 1, are given by

ėθ = −cBT
θ DrBθeθ, (17)

where the matrix −BT
θ DrBθ is Hurwitz since Dr is a diag-

onal positive definite matrix. Therefore, the set defined by
the vanishing of the signal (16) is globally exponentially
stable for system (11).

4. CONTROLLING POLYGONAL FORMATIONS IN
THE PLANE

It is possible to extend the results of Proposition 1 in
order to deploy the team of agents on the plane in a more
general way. We are going to show that by following the
technique introduced in Garcia de Marina and Sun (2017)
one is able to control the relative angle θk between two
consecutive vectors zk and zk+1. For formations where
all these consecutive angles are equal to θ∗, we provide a
bound to such an angle in order to assert the (exponential)
stability of the system. In particular, we will show that
such a bound applies to the particular case of controlling
regular polygons in the plane.

We introduce the consecutive angles θk to be controlled in
the redefinition of the error signal eθ as follows

eθk = W

(

θk

2

)

zk−W

(

θk

2

)T

zk+1, ∀k ∈ {1, . . . , |V|−2},

(18)
where θk ∈ (−π, π] and W (α) is the rotational matrix

W (α) =

[

cos(α) − sin(α)
sin(α) cos(α)

]

. (19)

Note that in (18) we are comparing the clockwise rotated
zk with the counterclockwise rotated zk+1.

https://www.researchgate.net/publication/221043320_On_the_Stability_of_Distance-based_Formation_Control?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==


We now write in a compact form the stacked vector of
errors in (18) as

eθ = BT
W z, (20)

where

BW =

























W

(

θ1

2

)

0 . . . 0 0

−W

(

θ1

2

)T

W

(

θ2

2

)

. . . 0 0

..

.
..
.

. . .
..
.

..

.

0 0 . . . −W

(

θn−1

2

)T

W

(

θn−2

2

)

0 0 . . . 0 −W

(

θn−2

2

)T

























.

(21)

Note that trivially BW is equal to Bθ, as defined in the
end of Section 2, if we set θk = 0, ∀k ∈ {1, . . . , |V| − 2}.
Therefore to deploy on a line is a particular case of the
problem considered in this section.

Let us now write the dynamics of z derived from system
(11) by employing the error signal (18)

ż = −cBθB
T
W z, (22)

so it allows us to derive the new error (linear) system
dynamics given by

ėθ = −cBT
WBθeθ = −A(θ)eθ, (23)

where θ ∈ R
(|V|−2) is the stacked vector of all θk and A(θ)

is shown in (24) in the next page. Note that now A(θ) is
not positive definite in general. Therefore in order to check
the stability of the origin of eθ in (23), one has to do an
eigenvalue analysis for A(θ).

Our numerical simulations have shown that not for all the
values of θ the origin of (23) is stable. In fact, the team
of agents might converge to a different shape at the same
time when they perform a steady-state motion. This effect
has been shown not only for rigid formations with distance
mismatches (see Mou et al. (2016)), but also for flexible
formations (as in Garcia de Marina and Sun (2017)) as
the daisy chain setup described in this paper. Nevertheless,
we can provide an analytical result for the stability of a
broad class of polygons where θk = θ∗. In particular we
provide a bound for θ∗ such that the formation is stable.
Fortunately, this bound also applies to the set of regular
polygons, which can be of interest in the field of formation
control Krick et al. (2009).

Theorem 2. Consider the n ≥ 3 agent system (11) with eθ
defined as in (18) and θk = θ∗, ∀k ∈ {1, . . . , n− 2} . Then,
the origin of eθ(t) in system (23) is exponentially stable if
and only if |θ∗| ≤ 2π

n−1 .

Proof. Since all the 2D rotational matrices W (α) as
in (19) commute, then A(θ) is unitarily similar to
diag{C(θ), C(θ)†}, where

C(θ) =

















2 cos

(

θ∗

2

)

−w(θ∗)

−w(θ∗)†
. . .

. . .

. . .
. . . −w(θ∗)

−w(θ∗)† 2 cos

(

θ∗

2

)

















, (25)

with C(θ) ∈ R(n−2)×(n−2), w(θ) = ej
θ
2 , j is the imaginary

unit, and the symbol † denotes for the complex conjugate

transpose. The matrix C is tridiagonal and Toeplitz, so
its eigenvalues have the following analytical expression
(Noschese et al. (2013)):

λk(θ
∗) = 2 cos

θ∗

2
+ 2 cos

(

kπ

n− 1

)

, k ∈ {1, . . . , n− 2}

(26)
hence C is positive definite (so the eigenvalues of A(θ) are
positive) if and only if |θ∗| ≤ 2π

n−1 . Therefore the origin

of eθ(t) in system (23) is exponentially stable. This fact
implies the (exponential) convergence of system (11) to
the set given by eθ = 0 with eθk as in (18). �

Remark 2. For the particular case of n = 3, we have that
for all the values of θ1 ∈ (−π, π] the system is stable, i.e.,
we are defining a triangle where its scale is determined by
the constant positions p1(0) and p3(0).

Remark 3. Note that for regular polygons we have that

θ∗ = π − π(n−2)
n

which satisfies the bound in Theorem 2.
The angle θk is not an inner angle of the polygon, but the
angle between two consecutives zk and zk+1.

Note that the algorithm presented in (11) with eθ as in
(20) is able to control 2D shapes employing (n− 2) edges,
which requires fewer than the (2n − 3) edges as in the
gradient-descent control of the distance-based rigid setup.
This is also the case if one employs position-based control
(Oh et al. (2015)). However, the algorithm presented
in this paper has two important features that are not
present in the position-based approach. First, the agents
can work employing their own local frames of coordinates.
Second, the steady-state orientation of the shape is not
fixed, therefore allowing for rotational motion as we will
show. These two advantages come from the fact that the
presented algorithm is an extension of the mismatched
distance-based formation control.

4.1 Controlling the scale of the prescribed shape

Consider the example where six agents want to form
an hexagon, so the four agents in the middle of the
chain would control the inter-angles θ1, . . . , θ4 = π − 2

3π
and by looking at (11) we notice that agents 1 and 6
are stationary. The idea is to apply the distance-based
control to these two agents at the ends of the daisy chain,
and therefore closing the chain. For example, if we are
controlling a regular polygon, then all the side-lengths are
equal, i.e., Dr is the identity matrix in (15). Therefore,
if we control the distance d between the first and the
last agent, then the rest of distances between neighboring
agents will also be equal to d.

For controlling the scale we assign the following control
law, derived from a potential function like in (5), to agents
1 and n

{

ṗ1 = −(pn − p1)(||pn − p1||
2 − d2)

ṗn = (pn − p1)(||pn − p1||
2 − d2)

. (27)

We have already noted that the convergence to the desired
distance between agents 1 and n in the nonlinear system
(27) is exponential (Sun et al. (2016)). One can treat the
terms (27) as a disturbance that vanishes exponentially
fast when they are into the dynamics of (11), and hence
the stability result in Theorem 2 is not compromised and
the scale of the formation can be controlled by only two
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. (24)

agents. In fact, only one agent is needed if we set ṗn = 0
in (27).

In case that one also desires to control the steady-state
orientation of the formation, then a position-based control
(with an exponential equilibrium) can be applied to agents
1 and n.

Remark 4. For the three agents example, the main differ-
ence of system (11) with respect to the one presented in
Garcia de Marina and Sun (2017) is that in the latter the
sensing of p3−p1 is not necessary for determining the scale
of the triangular formation. In Garcia de Marina and Sun
(2017), the agents are also controlling the size of zk as in
system (8) where the gradient descent terms have not been
dropped out.

4.2 Steering the prescribed shape in the plane

The exponential stability in Theorem 2 can be further
exploited. For example, one can employ the technique
in Garcia de Marina et al. (2016a) in order to steer the
whole group with rotational and translational motions. It
is obvious that a vector in the plane can be constructed as a
linear combination of two non-parallel vectors. Therefore,
agent i can construct a velocity vector ṗ∗i by just combining
two relative positions (available for the agent) from the
formation. We note that this is indeed possible for agent i
from the system (11) in combination with (27). The main
idea is to design a collection of steady-state velocities ṗ∗i
by employing the relative positions such that p ∈ {z :
(eθ = 0)∧ (||p1 − pn|| = d)} such that the desired shape is
not destroyed, i.e., rigid body motions. For example, the
control law introducing such an idea is given by


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
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













ṗ1 = −(pn − p1)(||pn − p1||
2 − d2)

+µ11(pn − p1) + µ12z1
...

ṗi = ceθi+1
+ µi1zi−1 + µi2zi

...

pn = (pn − p1)(||pn − p1||
2 − d2)

+µn1
pn − p1 + µn2

zn−1,

(28)

where i ∈ {2, . . . , (n − 1)} and µn{1,2}
are the motion

parameters responsible for the design of the velocities ṗ∗i .
We illustrate the physical meaning of (28) in Figure 1.

An algorithm describing how to compute these motion
parameters such that they define rigid motions for generic
shapes can be found in Garcia de Marina et al. (2016a).
In fact, these motion parameters can be considered as
a parametric disturbances for system (11) considered in
Theorem 2. In particular, it has been introduced in Gar-
cia de Marina and Sun (2017), inspired by the work in

Ob

Og

z∗
1

||p1 − p4||∗

z∗
3

z∗
2

θ∗
1

θ∗
2

Fig. 1. Explanation of control law (28) for a square as
a prescribed shape. The shape is achieved by the
control of the relative angles θ1 and θ2 by agents 2
and 3 respectively to π

2 < 2π
3 rads, satisfying the

bound in Theorem 2. Note that θ1 and θ2 do not
define the inner angles of the polygon, but the angles
between two consecutive zk and zk+1. An inner angle
is simply π − θk. We set Dr in (15) to the identity
matrix, so all the norms ||z∗k|| will be equal at the
steady-state. The scale of the square is determined by
the control of ||p1 − p4|| (black solid). The velocity
of an agent ṗ∗i , at the desired shape, is the linear
combination of the vectors from its associated relative
positions. This velocity ṗ∗i can be decomposed into
both translational (blue vectors) and rotational (red
vectors) components. Note that these velocities are
constant with respect to a frame of coordinates Ob

attached to the desired (body) shape.

Mou et al. (2016), that the error-distance system defined
by a rigid framework, whose equilibrium is the desired
shape described by θ, is autonomous and exponentially
stable. Therefore, the stability of the error-distance system
will not be compromised for small µn{1,2}

’s (Mou et al.

(2016)), or for big control gains (Garcia de Marina et al.
(2016a)). This fact can be employed for giving bounds to
the parameters µn{1,2}

’s and the gain c in (28) in order to
guarantee the exponential stability of the system for a set
of desired velocities ṗ∗i (Garcia de Marina et al. (2016a)).

Remark 5. It is important to note that by the addition
of the motion parameters in (28) we might add undesired
equilibria in the system.

5. SIMULATIONS

In this section we are going to validate the result of
Theorem 2 together with system (28). We consider a team
of six agents for achieving a regular hexagon, so Dr is
the identity matrix in (15). Since the inner angles of the
hexagon are 2π

3 , we then set θ∗ = π − 2π
3 = π

3 which

is smaller than the bound 2π
5 given in Theorem 2. We

define the error distance to be controlled by the agents 1

and 6 as ed
∆
= ||p1 − p6|| − d and we set d = 10 in (28).

After time t = 150 we set d = 30. In addition we want
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Fig. 2. The figure on top shows the trajectories of the
agents in solid color, where the crosses are the initial
conditions. The red and magenta agents are the agents
1 and 6 respectively. The red dashed line corresponds
to the controlled inter-distance between these two
ending point agents in the daisy chain. Note how these
two agents converge to the desired inter-distance d
(the side of the hexagon) describing almost a straight
line before the rotational terms are dominant. The
rest of the agents control the angles θk in order to
achieve a regular hexagon. All the agents converge
to a rotational motion about the centroid of the
formed hexagon. This motion is given by setting all
the motion parameters in (28) to same constant. At
time t = 150 the agents 1 and 6 change the distance d
to be controlled to three times the starting one. This
change results in a rescaling of the whole formation.

to induce a spinning motion of the hexagon around its
centroid. Such a motion can be accomplished by setting
all the motion parameters in (28) equal to µ = 0.025. This
can be checked by simple geometrical arguments or by
employing the algorithm given in Garcia de Marina et al.
(2016a). The simulation results are described in Figure 2.

6. CONCLUSIONS

In this paper we have presented a distributed algorithm for
controlling formations of a broad class of polygonal shapes,
including regular ones, defined by a daisy chain topology.
The first step is to construct an algorithm for deploying
agents equally spaced on a line, which is derived from
adding distance mismatches to a standard distance-based
controller in the literature. Consequently, a number of
properties, such as having agents working using their own
local frames of coordinates and non-controlled steady-state
orientation, are preserved. In the second step we show that
with the addition of rotational matrices one can control the
relative angle between two consecutive relative positions in
the framework. It turns out that the desired shape is then
exponentially stable for a broad class of polygons including
regular ones. By exploiting this stability property, one can

add a series of useful properties to the formation. Firstly,
one can control the relative size of consecutive relative
positions in the framework. Secondly, the scale of the whole
shape can be achieved by only controlling the distance
between the first and the last agent of the framework.
Thirdly, motion parameters can be employed in order
to steer the formation as a combination of translations
and rotations. We are currently working to implement the
proposed algorithm in a robotic testbed Garcia de Marina
et al. (2017).

REFERENCES

Dimarogonas, D.V. and Johansson, K.H. (2008). On
the stability of distance-based formation control. In
Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on, 1200–1205. IEEE.

Garcia de Marina, H., Cao, M., and Jayawardhana, B.
(2015). Controlling rigid formations of mobile agents un-
der inconsistent measurements. Robotics, IEEE Trans-
actions on, 31(1), 31–39.

Garcia de Marina, H., Jayawardhana, B., and Cao, M.
(2016a). Distributed rotational and translational ma-
neuvering of rigid formations and their applications.
Robotics, IEEE Transactions on, 32(3), 684–697.

Garcia de Marina, H., Jayawardhana, B., and Cao, M.
(2016b). Distributed scaling control of rigid formations.
In Proceedings of the Decision and Control Conference,
2016. CDC 2016. 55th IEEE Conference on. IEEE.

Garcia de Marina, H., Siemonsma, J., Jayawardhana,
B., and Cao, M. (2017). Design and implementation
of formation control algorithms for fully distributed
multi-robot systems. In Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on,
Submitted.

Garcia de Marina, H. and Sun, Z. (2017). Controlling a
triangular flexible formation of autonomous agents. In
Proceedings of the 2017 IFAC World Congress. IFAC.

Krick, L., Broucke, M.E., and Francis, B.A. (2009). Stabi-
lization of infinitesimally rigid formations of multi-robot
networks. International Journal of Control, 82, 423–439.

Kvinto, Y.I. and Parsegov, S. (2012). Equidistant arrange-
ment of agents on line: Analysis of the algorithm and its
generalization. Automation and Remote Control, 73(11),
1784–1793.

Mou, S., Belabbas, M.A., Morse, A.S., Sun, Z., and An-
derson, B.D.O. (2016). Undirected rigid formations are
problematic. IEEE Transactions on Automatic Control,
61(10), 2821–2836.

Noschese, S., Pasquini, L., and Reichel, L. (2013). Tridiag-
onal toeplitz matrices: properties and novel applications.
Numerical Linear Algebra with Applications, 20(2), 302–
326.

Oh, K.K., Park, M.C., and Ahn, H.S. (2015). A survey of
multi-agent formation control. Automatica, 53, 424–440.

Proskurnikov, A.V. and Parsegov, S. (2016). Problem of
uniform deployment on a line segment for second-order
agents. Automation and Remote Control, 77(7), 1248–
1258.

Sun, Z., Mou, S., Anderson, B.D.O., and Cao, M. (2016).
Exponential stability for formation control systems with
generalized controllers: A unified approach. Systems &
Control Letters, 93, 50–57.

View publication statsView publication stats

https://www.researchgate.net/publication/308611084_Distributed_scaling_control_of_rigid_formations?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/308611084_Distributed_scaling_control_of_rigid_formations?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/308611084_Distributed_scaling_control_of_rigid_formations?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/308611084_Distributed_scaling_control_of_rigid_formations?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/221043320_On_the_Stability_of_Distance-based_Formation_Control?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/221043320_On_the_Stability_of_Distance-based_Formation_Control?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/221043320_On_the_Stability_of_Distance-based_Formation_Control?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/221043320_On_the_Stability_of_Distance-based_Formation_Control?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/230538536_Tridiagonal_Toeplitz_matrices_Properties_and_novel_applications?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/230538536_Tridiagonal_Toeplitz_matrices_Properties_and_novel_applications?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/230538536_Tridiagonal_Toeplitz_matrices_Properties_and_novel_applications?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/230538536_Tridiagonal_Toeplitz_matrices_Properties_and_novel_applications?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/224367387_Stabilization_of_infinitesimally_rigid_formations_of_multi-robot_networks?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/224367387_Stabilization_of_infinitesimally_rigid_formations_of_multi-robot_networks?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/224367387_Stabilization_of_infinitesimally_rigid_formations_of_multi-robot_networks?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/301304814_Exponential_stability_for_formation_control_systems_with_generalized_controllers_A_unified_approach?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/301304814_Exponential_stability_for_formation_control_systems_with_generalized_controllers_A_unified_approach?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/301304814_Exponential_stability_for_formation_control_systems_with_generalized_controllers_A_unified_approach?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/301304814_Exponential_stability_for_formation_control_systems_with_generalized_controllers_A_unified_approach?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/267572889_A_survey_of_multi-agent_formation_control?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/267572889_A_survey_of_multi-agent_formation_control?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/301817403_Distributed_Rotational_and_Translational_Maneuvering_of_Rigid_Formations_and_Their_Applications?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/301817403_Distributed_Rotational_and_Translational_Maneuvering_of_Rigid_Formations_and_Their_Applications?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/301817403_Distributed_Rotational_and_Translational_Maneuvering_of_Rigid_Formations_and_Their_Applications?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/301817403_Distributed_Rotational_and_Translational_Maneuvering_of_Rigid_Formations_and_Their_Applications?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/272361258_Controlling_Rigid_Formations_of_Mobile_Agents_Under_Inconsistent_Measurements?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/272361258_Controlling_Rigid_Formations_of_Mobile_Agents_Under_Inconsistent_Measurements?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/272361258_Controlling_Rigid_Formations_of_Mobile_Agents_Under_Inconsistent_Measurements?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/272361258_Controlling_Rigid_Formations_of_Mobile_Agents_Under_Inconsistent_Measurements?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/309407581_Undirected_rigid_formations_are_problematic?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/309407581_Undirected_rigid_formations_are_problematic?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/309407581_Undirected_rigid_formations_are_problematic?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/309407581_Undirected_rigid_formations_are_problematic?el=1_x_8&enrichId=rgreq-456df17a8bd30d49f661bd23204e42e7-XXX&enrichSource=Y292ZXJQYWdlOzMxNTU3MzIyNDtBUzo0NzU3Mjk3Mzg2MzczMTJAMTQ5MDQzNDIxNjA0OA==
https://www.researchgate.net/publication/315573224

