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A 3D Split-Step Fourier Algorithm Based on a
Discrete Spectral Representation of the Propagation

Equation
Hang Zhou, Alexandre Chabory, and Rémi Douvenot

Abstract—A propagation method self-consistent in the discrete
domain for the simulation of large distance scenarios in a
3D inhomogeneous atmosphere is proposed. First, a spectral
representation of the field in a discrete 3D domain over an infinite
perfect ground is introduced in cylindrical coordinates. A discrete
spectral propagator is then derived. As in 2D methods, the
inhomogeneous atmosphere is considered in the spatial domain
using phase screens. An explicit numerical scheme is introduced.
For directive sources, a sectoral propagation is proposed to
reduce the computation time by limiting the computation do-
main. The method is tested by simulation scenarios involving
refractive effects in both vertical and azimuthal directions. The
3D refractive effects are shown to be properly simulated.

Index Terms—Atmospheric propagation, discrete Fourier
transforms, electromagnetic propagation, modeling, operators,
parabolic wave equation, refraction.

I. INTRODUCTION

THE parabolic equation method is an approximation of the
wave equation valid along a paraxial direction neglecting

backward propagation. This equation has been used exten-
sively in radio wave propagation [1], e.g., for radar coverage
prediction. One of the most efficient method for applying the
parabolic equation is based on split-step Fourier methods as
pioneered by Hardin and Tappert [2].

These algorithms can take into consideration the antenna
pattern, the ground composition, the relief, and the atmo-
sphere. Nevertheless, the backscattering is neglected. In or-
der to evaluate the field propagation iteratively at increasing
distances, the computation is realized going back and forth
from a spatial to a spectral representation of the wave. Indeed,
derivatives become multiplications in the spectral domain
which simplifies and alleviates the computations.

The electrical characteristics of the atmosphere are taken
into account in the spatial domain using phase screens [1]. The
ground is taken into account by choosing a spectral transform
consistent with the boundary condition. If the ground is a per-
fect electric conductor, the spectral transform corresponds to a
sine or cosine Fourier transform depending on the considered
field. For an impedance ground, the discrete mixed Fourier
transform is usually used [3]. Note also that the ground relief
can be accounted by means of a staircase approximation [1].
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These methods have initially been introduced for 2D cases,
with either an axial symmetry in Cartesian coordinates or
a rotational symmetry about the vertical axis in cylindrical
coordinates. To model a 3D scene with the latter, a N × 2D
model approximation scanning all azimuth angles is classically
used [2]. However, N × 2D models neglect lateral effects.
These latter can be significant, especially in the case of an
irregular relief and/or non-constant refractive index.

In the context of underwater propagation of acoustic waves,
3D finite-difference or split-step Fourier methods have been
used [4] [5] [6] [7]. The 3D models demonstrate a better
accuracy than N×2D models where azimuthal couplings are
present. The acoustic pressure and electromagnetic fields both
satisfy the 3D Helmholtz equation, so the 3D propagation can
be developed similarly for acoustic and electromagnetic propa-
gation. Later on, for electromagnetic propagation, an extension
of split-step methods based on the parabolic equation to 3D
has been developed in Cartesian coordinates [8] [9].

The previous 3D methods are based on the parabolic equa-
tion, in which a paraxial approximation is applied to split the
vertical and azimuthal derivative components. In this paper,
this approximation is here bypassed by using an exact spectral
representation of the field in a homogeneous atmosphere. This
representation is obtained through a diagonalisation of the ver-
tical operator as proposed by Chabory et al. [10]. Janaswamy
has also derived a similar representation [11]. Besides, this
operator has been extended to 3D in cylindrical coordinates
in [12]. These methods are more accurate since no paraxial
approximation is assumed. Indeed, they are derived from the
Helmholtz equation, not from its parabolic approximated form.

Since the aforementioned methods are used for numerical
simulations, the computed fields or potentials are expressed
in the discrete domain. Therefore, a discrete formulation of
the propagation equation is derived to achieve self-consistency
according to the discrete electromagnetic theory [13]. The
discrete mixed Fourier transform (DMFT) [3] has been a first
effort towards this discrete formulation. Indeed, the boundary
condition is given in the discrete domain by expressing the
partial derivative along z with a finite-difference approxima-
tion. However, the propagator is derived from the continuous
spectral equation. This is an inconsistency in the DMFT
theory.

In this paper, we fill the gap by deriving a 3D propagator
from the discrete equations directly. Consequently, it is self-
consistent in the framework of the discrete electromagnetic
theory. The approach is also valid in 2D. The ground and at-
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Fig. 1. Grids along z and θ on the initial cylinder at the distance r0 and on
a cylinder at distance r > r0.

mosphere effects are considered in the spatial domain as in 2D
methods. For the sake of clarity, the theoretical development
is given over a perfect metallic ground. Considering a slowly
varying inhomogeneous atmosphere, the 3D split-step Fourier
method is applied. Its explicit numerical scheme is introduced.

In Section 2, a homogeneous atmosphere is considered to
express the problem in cylindrical coordinates by means of
potentials. The propagation is expressed by means of the
discrete spectral representation. The discretized form of the 3D
formulation is presented. In Section 3, the explicit numerical
scheme in an inhomogeneous atmosphere is obtained from
phase screens and a 3D split-step algorithm. In Section 4,
a sectoral propagation method is introduced. In Section 5,
the sectoral propagation method and the 3D formulation are
validated by comparison with an analytic expression. Finally,
numerical tests are performed in the presence of inhomoge-
neous atmospheres to show the accuracy of the method.

II. EXACT DISCRETE SPECTRAL REPRESENTATION IN A
HOMOGENEOUS ATMOSPHERE

A. Configuration and continuous formulation

We use the cylindrical coordinate system (r, θ, z) with unit
vectors (r̂, θ̂, ẑ). We assume that the sources are located in
the cylinder r ≤ r0 and that the fields are known at r = r0. A
perfect metallic and infinite planar ground is located at z = 0.
The propagation is computed in the region r > r0, z > 0.

In a preliminary step, a homogeneous refractive index, i.e.
n constant, is considered and the vertical domain is limited to
z = zmax where a PEC condition is applied. In this case, the
fields can be decomposed in one transverse electric (TE) and
one transverse magnetic (TM) components with respect to z
by means of Hertz potentials oriented along ẑ. For the electric
field, omitting the time-dependence ejωt yields

E = k2
0n

2Πe + ∇∇ ·Πe − k0ζ0n∇×Πh, (1)

where Πe and Πh are the electric and magnetic vectorial
potentials, k0 is the wavenumber in free-space, and ζ0 is the
free-space impedance.

Finally, replacing Πe by Ψ√
r
ẑ gives the TM electric field

E =
∂

∂r

(
r−

1
2
∂

∂z
Ψ

)
r̂ + r−

3
2
∂2Ψ

∂z∂θ
θ̂

+

(
r−

1
2
∂2Ψ

∂z2
+ k2

0n
2Ψ

)
ẑ,

(2)

where Ψ is the solution of
∂2Ψ

∂r2
+

1

r2

∂2Ψ

∂θ2
+
∂2Ψ

∂z2
+

(
k2

0n
2 +

1

4r2

)
Ψ = 0. (3)

Furthermore, due to the perfectly conducting walls at z = 0
and z = zmax, Ψ fulfills the boundary conditions

Ψ|z=0 = 0,

Ψ|z=zmax = 0.
(4)

Note that the TE case can be formulated in a similar way
from a z-directed magnetic potential Πh = Ψ√

r
ẑ. The main

differences are Neumann boundary conditions and a different
expression for the electric field.

In the proposed method, the potentials are propagated. The
electric field is obtained afterwards from the potentials.

B. Discrete formulation

For obvious numerical reasons, the computation domain is
discretized and of finite size. Thus, the vertical domain is
limited to z ∈]0, zmax[ and the following uniform grid is used

z = pz∆z for pz = {1, ..., Nz − 1},
θ = pθ∆θ for pθ = {0, ..., Nθ − 1}, (5)

with ∆z = zmax/Nz and ∆θ = 2π/Nθ.
The grid is shown in Fig. 1. To obtain the discretized

counterpart of (3), the second-order spatial derivatives with
respect to θ and z are discretized on the interior points of the
grid using the central-difference approximation. This yields

∂2Ψ

∂r2
+

1

r2
d2
θΨ + d2

zΨ +

(
k2

0n
2 +

1

4r2

)
Ψ = 0, (6)

with

d2
zΨpz,pθ =

1

∆z2
(Ψpz+1,pθ − 2Ψpz,pθ + Ψpz−1,pθ ),

d2
θΨpz,pθ =

1

∆θ2
(Ψpz,pθ+1 − 2Ψpz,pθ + Ψpz,pθ−1),

(7)

where Ψpz,pθ = Ψ(r, pθ∆θ, pz∆z).

C. Discrete spectral representation

To render our spectral representation numerically self-
consistent, we directly work from (6). Since Dirichlet and
periodic boundary conditions are imposed along z and θ,
the discrete spectral representation amounts to a discrete sine
transform along ẑ and a discrete Fourier transform along
θ̂. Hence, the spectral transform, denoted as Ψ̃ = UΨ, is
explicitly given by

Ψ̃qθ,qz (r) =
1√
Nθ

1√
2(Nz + 1)

Nθ−1∑
pθ=0

Nz−1∑
pz=1

Ψpθ,pz (r)

e
−j 2πpθqθ

Nθ sin

(
π
pzqz
Nz

)
.

(8)
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Using fast trigonometric transforms, the computation of
either UΨ or U−1Ψ̃ can be efficiently performed, typically
in NθNz log2NθNz operations. Applying U to (6) yields

r2 ∂
2Ψ̃

∂r2
+ (r2k2

r − κ2)Ψ̃ +
1

4
Ψ̃ = 0, (9)

where

κ =
2

∆θ
sin

(
πqθ
Nθ

)
for qθ = {0, ..., Nθ − 1}, (10)

and k2
r = k2

0n
2 − k2

z with

kz =
2

∆z
sin

(
πqz
2Nz

)
for qz = {1, ..., Nz − 1}. (11)

Note that an impedance boundary condition could be consid-
ered by replacing the DST by the DMFT [14].

In a homogeneous atmosphere, the field can be propagated
from r0 to any distance r > r0 in the spectral domain. Indeed,
the analytical solution of (9) is [15]

Ψ̃(r) =
H

(2)
κ (krr)

H
(2)
κ (krr0)

√
r

r0
Ψ̃(r0), (12)

where H(2)
κ denotes the Hankel function of the second kind

and order κ.
This equation is similar to the propagation of cylindrical

harmonics except for the expressions of kr and κ because of
the discrete formulation. When qθ � Nθ, i.e. for modes slowly
varying with θ, the order of the Hankel function becomes an
integer (κ ≈ qθ ) as in the continuous case [16].

For κ is fixed and |krr| → ∞, the Hankel function can
be simplified to reduce the computation load. Doing so, the
spectral propagation from r0 to r becomes

Ψ̃(r) ≈ exp(−jkr(r − r0))Ψ̃(r0). (13)

III. EXPLICIT NUMERICAL SCHEME FOR A SLOWLY
VARYING REFRACTIVE INDEX

A. Phase screens

We aim at computing the effects of refraction in a 3D con-
figuration in the presence of a planar and perfectly conducting
ground. The atmosphere is characterized by a slowly varying
refractive index n. To treat an inhomogeneous atmosphere, a
method of phase screens similar to [3] is proposed.

From equation (3), we have[
1

k2
0

∂2

∂r2
+ (A+B + 1)

]
Ψ = 0, (14)

where
A =

1

k2
0

(
1

r2

∂2

∂θ2
+

∂2

∂z2
+

1

4r2

)
,

B = n2 − 1.

(15)

The equation (14) is decomposed as a forward and a backward
propagation terms. The backward term is neglected. Therefore,
Ψ fulfils (

1

k0

∂

∂r
− j
√
A+B + 1

)
Ψ = 0. (16)

This formulation is exact for the forward propagation in a
homogeneous atmosphere. In the case of a slowly varying

refractive index, an approximation on the square root operator
is necessary to end up with the phase screen method.

We split the operator by means of the approximation
proposed by Feit and Fleck [14] that provides a wide-angle
approximation. It is given by

√
A+B + 1 ≈

√
1 +A+

√
1 +B − 1. (17)

This is the basic of the split-step algorithm where the free-
space propagator

√
1 +A is computed in the spectral domain

while the effect of refraction
√

1 +B − 1 corresponds to
a multiplication in the spatial domain by a phase screen.
A higher-order approximation valid at wider angles can be
applied [17].

B. Numerical scheme

To simulate the propagation, the domain r ∈ [r0, rmax]
is discretized in Nr points, such that r = r0 + pr∆r for
pr ∈ {1, ..., Nr}. As with other split-step methods [1], the
computation is performed marching on in distance. Between
two consecutive cylinders, we propagate the potential through
a homogeneous medium using the spectral propagator. Then
we apply a phase screen to account for the refraction index
variations.

At each iteration pr, the propagation, the apodization and
the local refractive index are considered using the 5 steps
described below:

1) The potential Ψ on the cylinder at distance r0 + pr∆r
is expressed in the spectral domain by means of the
transform U defined by (8).

2) The spectrum is multiplied by the spectral operator
Λpr,qθ,qz representing the propagation from pr∆r to
(pr + 1)∆r given by

Λpr,qθ,qz =
H

(2)
κ (kr(r + ∆r))

H
(2)
κ (krr)

√
r + ∆r

r
, (18)

with r = r0 + pr∆r.
3) The spectrum is expressed in the spatial domain with

the transform U−1.
4) To remove reflections over the top boundary, an apodiza-

tion is applied with a Hanning window on the top half
area in the spatial domain. This amounts to a term by
term multiplication represented by a diagonal operator
W .

5) A phase screen is applied which corresponds to a
multiplication by

Rpr,pθ,pz = exp (jk0(npr,pθ,pz − 1)∆r) , (19)

where npr,pθ,pz is the refractive index at the position
(pr∆r, pθ∆θ, pz∆z). The refraction term can be seen
as a perturbation of the homogeneous case.

To conclude, the propagation from pr∆r to (pr + 1)∆r is
simulated step by step as

Ψpr+1 = RWU−1ΛUΨpr (20)

where R, W , and Λ are diagonal operators, i.e. term-by-term
multiplications.



4

Fig. 2. Propagation sector of azimuthal width θs =
2π
Ns

(in pink).

The final computation complexity of this method is of order
NrNθNz log2NθNz .

In the final step, the field is calculated from the potentials.
To do so, the field spectrum is obtained from the potential
spectrum by applying (2) in the spectral domain. Indeed,
derivatives are easier to compute in the spectral domain.
Finally, U−1 is applied to obtain the fields.

IV. SECTORAL PROPAGATION

When computing the propagation in a complex environment,
two situations may occur. In the first one, you are only
interested in the field within a limited angular width. In such a
case, the most suitable solution in terms of computation time
is to limit the computation domain to this angular sector and to
impose absorbing boundary conditions [18]. In the second one,
you want to compute the complete field, without truncating
any energy. This is our aim here. Rather than simulating the
propagation in the entire space with θ ∈ [0, 2π[, the simulation
can be limited to the sector where the power is located, denoted
as the ”propagation sector” thereafter. The azimuthal sector is
chosen so that no energy reaches its boundaries.

Doing so, any kind of boundaries can be imposed. Periodic
boundary conditions are used because they maintain the va-
lidity of the spectral Fourier representation, which renders its
computation achievable by FFT.

A propagation sector of width θs in azimuth is chosen.
The calculation domain is represented in Fig 2. For the split-
step algorithm to remain unchanged, we impose θs = 2π

Ns
,

where Ns is an integer. Finally, the computation domain is
θ ∈ [−θs/2, θs/2[ and z ∈]0, zmax[.

If periodic boundary conditions are imposed at ± θs
2 , the

sectoral propagation is similar to the 2π-propagation except
for a decrease of the angular period by a factor of Ns. Thus,
the truncation on θ amounts to a decimation of factor Ns in
the spectral domain. This means a Ns times replication in the
spatial domain as illustrated in Fig 3. To avoid signal overlap,
the sector should be chosen such that no power goes through
its boundaries. A numerical criteria is proposed in the test
sections.

Finally, only a slight change in the previous formulation
is necessary. The expression of the propagator (18) is kept,
except for the order of the Hankel function κ that becomes
2

∆θ sin
(
πNsqθ
Nθ

)
for qθ = {0, ..., Nθ − 1}.

Fig. 3. Decimation of a factor Ns in the spectral domain amounts to a Ns
times duplications in the spatial domain (Ns = 8 in this figure).

V. NUMERICAL TESTS OF THE 3D PROPAGATION

The aims of the simulations are to test the sectoral propa-
gation and to show that the proposed 3D method achieves to
model vertical and azimuthal effects. On the contrary, N×2D
methods cannot take the lateral effects into account.

In the simulations, the choice of the steps ∆z and ∆θ
depends on the Nyquist sampling theorem. The vertical and
azimuthal samplings should be as [19]

∆z ≤ λ

2 sin(αmax)
, (21)

and
∆θ ≤ λ

2rmax sin(αmax)
, (22)

where αmax is the maximum divergence angle of the beam
with respect to the propagation direction.

In the numerical simulations, the aim is to test the validity
of the proposed 3D propagation method. For the sake of
simplicity, we use a fixed azimuthal grid, even if this yields
a large number of points in azimuth to satisfy the Nyquist
condition at the final step, which are not necessary for the
previous steps. Several schemes could be used to adapt the
number of points in azimuth with range [19] [20]. These
schemes could be applied to the proposed formulation to
reduce the computation time.

A. Validation of the sectoral propagation in free space

In order to test the sectoral propagation, a complex point
source [21] is propagated and compared to its analytic expres-
sion.
The frequency is 3 GHz. The complex source is located at
xs =

jk0W
2
0

2 , ys = 0 m, zs = 1000 m, with W0 = 1 m.
The simulation parameters are: r0 = 2 km, rmax = 12 km,
∆r = 200 m, zmax = 2000 m, ∆z = 0.2 m, and Nθ = 1000.
The propagation is in free space.

Because a complex source corresponds to a Gaussian beam
upon assuming the paraxial approximation, an angular sector
of width 2 arctan

(
2

k0W0

)
contains 88.47 % of the beam power

in the far field zone [22]. To guarantee that no power reaches
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(a) Normalised electric field at the final step of the sectoral
propagation

(b) Difference between the 3D sectoral propagation and the
analytic solution

Fig. 4. Comparison between the 3D sectoral propagation and the analytic
solution.

the boundaries, the sector is chosen 5 times larger. This yields
θs = π

10 and Ns = 20.
The electric field at distance rmax computed with the sectoral

propagation is shown in Fig 4(a). The difference between the
sectoral propagation and the analytic solution is shown in
Fig 4(b). The maximum difference is of order −73dB. This
difference is negligible. Therefore, the 3D sectoral propagation
method is considered as successfully tested.

This simulation is performed on a standard desktop comput-
er. The computation time of the sectoral propagation method
is about 1.1 hours, whereas the total 2π propagation spends
about 21 hours. The computation time is thus significantly
reduced.

B. Test of a 45◦-slanted linear refractivity index model

The atmosphere effects are considered through the refractive
index n and the modified refractivity M given by [23]

M = (n− 1)× 106 +
z

RE
, (23)

where z is the height above the Earth’s surface and RE is the
Earth’s radius.

The method is now applied on a 3D scenario with an
inhomogeneous atmosphere characterized by a 45◦-slanted
linear refractivity index.

The configuration parameters are as follows: the frequency
is 3 GHz. The complex source is at an altitude of 500 m
with W0 = 3 m. The modified refractivity M varies linearly
along the direction v̂ = 1√

2
(ŷ + ẑ). The modified refractivity

gradient along v̂ is c = dM/dv = 1 M-unit/m. This value is
chosen strong in order to obtain significant refraction effects,
even at few kilometers.

The parameters of the simulation are as follows: r0 = 2 km,
rmax = 12 km, ∆r = 500 m, zmax = 1000 m, ∆z = 0.2 m,
and Nθ = 30000.

The initial and final fields are plotted in Fig. 5. The beam
center of the final field is shifted in both altitude and azimuth
due to refraction effects. The shifts of the beam center in z
and θ are 35.81 m and 34.80 m respectively. According to ray
theory [24], this shift is given by

lshift =
(rmax − r0)2c× 10−6

2
. (24)

The numerical application yields lshift = 35.36 m.
The ray approximation and the simulated values in the 2

directions are the same within an acceptable error. Therefore,
the effects of the inhomogeneous atmosphere on vertical and
horizontal directions are properly simulated. Note that the
displacement along θ could not be simulated by a N × 2D
method.

C. Tests on a 2D atmospheric duct

A more complex scenario with 3D effects along both
vertical and azimuthal directions is presented. We consider
a refractive index model identical in both directions with 2
ducts along the vertical and azimuthal directions. Therefore,
similar effects are expected along both directions.

The refraction index in the z− θ plane is obtained by M =√
MzMθ, where Mz and Mθ are functions associated with the

modified refractivity index along z and θ.
In the vertical direction, we consider a surface-based duct,

which is modelled by a trilinear function Mz , as illustrated in
Fig 6.

The parameters are: M0 = 330 M-units, zb = 950 m,
zt = 100 m, zmax = 2000 m, gradients c0 = 0.118 M-units/m,
c2 = −1.0 M-units/m. To remove the discontinuities of the
gradient that are not realistic, we smoothen the duct by using
the moving averages method on 200 points. The resulting
modified refractivity Mz is shown in Fig 7(a).

In the azimuthal direction, we use the same model mapped
into cylindrical coordinates, as shown in Fig 7(b). Such large
index variation in azimuth are not realistic in the troposphere,
but are used to compare the 3D effect in θ and z.

Finally, the modified refractivity index on the z−θ plane is
obtained and the gradient of the refractivity index are shown
in Fig 8 on one cylinder.

For the simulation, the frequency is 3 GHz. The complex
source is at an altitude of 1000 m with W0 = 1 m. The
simulation parameters are: r0 = 2 km, rmax = 12 km, ∆r =
500 m, zmax = 2000 m, ∆z = 0.2 m, and Nθ = 30000.

Similar results along the 2 directions are expected since the
ducts are the same along the 2 axes.
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(a) Initial field

(b) Final field

Fig. 5. Initial and final normalised electric fields (dB) about the direction of
propagation.

The normalised electric field obtained at distance rmax =
12 km is shown in Fig 9. We can see the 3D effects due to
the 2 ducts along the azimuthal and vertical directions. The
maximum value of the final field is located at 63.0 m away
from the centre on the vertical direction and at 62.8 m away
on the azimuthal direction. The 2 values are the same within
an acceptable error.

In Fig 10, we compare the electric field at ±50 m away
from the source beam center. The cuts correspond to the white
dotted lines and solid lines in Fig 9. The plots match within
0.05 dB. Therefore, the differences of the fields along the 2
directions are negligible. The effects due to the ducts are the
same in both directions. The method is successfully tested
since 3D complex effects are simulated.

For a comparison, the result of a N×2D method is shown
in Fig 11. Only the vertical effects are accounted in this case.

VI. CONCLUSION

The propagation method introduced in this work is based on
a discrete spectral representation of the propagation equation
related to both vertical and azimuthal variables in cylindrical
coordinates.

Firstly, the discretised form of the 3D formulation has been
presented. A homogeneous atmosphere has been considered to

Fig. 6. Surface based duct trilinear model.

(a) Along z (b) Along θ

Fig. 7. Trilinear refractivity models.

Fig. 8. Gradient vectors of the M index (M-units/m) on the z − θ plane.
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Fig. 9. Final field of the simulation using the proposed 3D method.

(a) Final fields along azimuthal direction at altitude 950 m (blue
line) and along vertical direction at the distance −50 m away on
azimuthal direction from the center (red dotted line)

(b) Final fields along azimuthal direction at altitude 1050 m (blue
line) and along vertical direction at the distance 50 m away on
azimuthal direction from the center (red dotted line)

Fig. 10. Comparison of the fields along z and θ directions.

Fig. 11. Final field of the simulation using N×2D method.

express the problem by means of Hertz potentials. Then, the
transform from the field to the spectrum has been explicitly
given in discrete coordinates. A discrete spectral propagator
has been derived.

Secondly, an explicit numerical scheme for considering a
slowly varying refractivity has been introduced. The phase
screen method valid at wide-angles is applied in the spatial
domain. The propagation is considered with Hankel functions.
An apodization is finally applied on the top half area to remove
reflections over the top boundary.

In many cases, the source is directional. Therefore, a sec-
toral propagation method has been introduced. The propaga-
tion is modified to fit with the reduced computation domain.
Depending on the angular size of the propagation sector, the
computation time can be drastically reduced.

Finally, three numerical tests have been presented. Firstly,
the sectoral propagation and the 3D formulation have been
validated by a comparison with an analytical solution. Then
the method has been applied in a 3D scenario with an inho-
mogeneous atmosphere characterized by a 45◦-slanted linear
refractivity index. The effects of the inhomogeneous atmo-
sphere along vertical and horizontal directions are properly
simulated. In the third simulation, a scenario with complex
3D effects along both vertical and azimuthal directions has
been introduced. We have considered refractivity conditions
with 2 atmospheric ducts along both the vertical and azimuthal
directions. Note that the refractive effects have been success-
fully modelled along both directions. This method takes into
account the azimuthal effects which is an advantage over
N × 2D models.

Numerical tests have proven that the simulation time is
significantly reduced when using the sectoral propagation. This
is a first step but other speed-up approaches are currently
investigated. Besides, the relief and depolarization effects
should be introduced. Also, confrontations with measurements
in the presence of azimuthally inhomogeneous atmosphere
could be considered.
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Rémi Douvenot was born in Chartres, France, in
1982. He received the engineer degree from the
ENAC (French National Civil Aviation School), the
M.Sc. from Toulouse University, France, in 2005,
and the Ph.D. degrees in electrical engineering from
Nantes University, France, in 2008. His Ph.D. was
on refractivity from clutter. In 2009, he worked
with the Laboratoire des Signaux et Systèmes (L2S),
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