Experimental Wind Field Estimation

Gautier Hattenberger

Joint work with : Jean-Philippe Condomines and Murat Bronz

ENAC UAV Lab, French Civil Aviation University, France gautier.hattenberger@enac.fr

ISARRA2016 - Toulouse - mai 2016

Introduction

- 2 Wind Field Estimation
- 3 Improvements with Aircraft Model
- 4 Conclusion and Future Work

SkyScanner Project

Founded by STAE Foundation, outcome from the Micro Air Vehicle Research Center of Toulouse

https://www.laas.fr/projects/skyscanner

http://websites.isae.fr/mav-research-center

- Study and experimentation of a fleet of mini-drones that coordinate to adaptively sample cumulus-type clouds
 - refine aerological models of clouds
 - conceive enduring and agile micro-drones
 - fleet control and trajectory optimization

Objectives

Within the global scope of the project, some particular objectives:

Aircraft performances identification aerodynamic and propulsion performances are required for aircraft control and trajectory planning

Wind field estimation real-time estimation of the local wind field for the atmospheric studies but for the trajectory planning as well

Introduction

2 Wind Field Estimation

3 Improvements with Aircraft Model

4 Conclusion and Future Work

Principles

Image: A matrix

A direct measure of the wind is not possible

э

A direct measure of the wind is not possible

Full airspeed measurement

3D airspeed sensors compatible with mini-UAVs are available but can be fragile and expensive

A direct measure of the wind is not possible

Full airspeed measurement

3D airspeed sensors compatible with mini-UAVs are available but can be fragile and expensive

No flow sensor

Without airspeed measurement, wind-field can still be estimated from GPS/IMU data, but needs special trajectories:

- flying in circle for the horizontal components
- gliding for the vertical component

A direct measure of the wind is not possible

Full airspeed measurement

3D airspeed sensors compatible with mini-UAVs are available but can be fragile and expensive

No flow sensor

Without airspeed measurement, wind-field can still be estimated from GPS/IMU data, but needs special trajectories:

- flying in circle for the horizontal components
- gliding for the vertical component

This solution gives too much constraints on the trajectories, especially the glides

7 / 17

Low-cost sensors solution

Wind estimation is done with a non-linear Unscented Kalman Filter (UKF) by fusing at least:

- GPS velocities
- accelerometers, gyrometers and magnetometers
- airspeed norm from Pitot tube

Low-cost sensors solution

Wind estimation is done with a non-linear Unscented Kalman Filter (UKF) by fusing at least:

- GPS velocities
- accelerometers, gyrometers and magnetometers
- airspeed norm from Pitot tube

Improvements

Add an extra angle-of-attack probe in order to improve the estimation of the vertical component

$$(S) \begin{cases} \dot{v} = v \times \omega_m + q_m^{-1} * A * q_m + a_m \quad \text{(evolution)} \\ \dot{\nu}_b = 0 \end{cases} \begin{pmatrix} y_V \\ y_V \\ y_B \\ y_\alpha \end{pmatrix} = \begin{pmatrix} | < v, e_1 > | \\ q_m * v * q_m^{-1} + \nu_b \\ q_m^{-1} * B * q_m \\ \tan^{-1} \left(\frac{< v, e_3 >}{< v, e_1 >} \right) \end{pmatrix} \quad \text{(measurement)}$$

Wind Estimation Results

Estimation of an updraft during a gliding phase

Aircraft Instrumentation

- Aircraft integration
 - commercially available airframe (Mako)
 - GPS, IMU and barometer for position and attitude estimation
 - integration of a Pitot tube and an angle of attack probe
 - on-board data logging on SD card
 - controlled using Paparazzi UAV system http://paparazziuav.org

ISARRA2016, Toulouse 10 / 17

Angle of Attack Sensor

- Homemade with an absolute angular sensor (US Digital, 12 bits resolution, hall effect) and 3D-printed flag
- Calibration in wind tunnel is required to compensate interaction with the fuselage

Angle of Attack Sensor

- Homemade with an absolute angular sensor (US Digital, 12 bits resolution, hall effect) and 3D-printed flag
- Calibration in wind tunnel is required to compensate interaction with the fuselage

Introduction

2 Wind Field Estimation

3 Improvements with Aircraft Model

Conclusion and Future Work

Improving the Wind Estimation

Estimation can be improved by knowing:

- the aircraft aerodynamic model
- the propulsion set model

Improving the Wind Estimation

Estimation can be improved by knowing:

- the aircraft aerodynamic model
- the propulsion set model

- Angle-of-attack sensor is also used for aircraft identification
- Extracted points comes from gliding phases (in red) and from level cruise flights (in green)

Hattenberger et al. (ENAC)

ISARRA2016, Toulouse 13 / 17

Motor Test Bench

- Build an accurate model of the propulsion system
- Automated measurement procedure in wind tunnel

Motor Analyses

In the useful range of airspeed, linear relation between the electrical power input and the resulting propulsive power

Hattenberger et al. (ENAC)

Wind Estimation

ISARRA2016, Toulouse

15 / 17

Introduction

- 2 Wind Field Estimation
- 3 Improvements with Aircraft Model
- 4 Conclusion and Future Work

Conclusion

- Development of a wind field estimation algorithm
- Evaluation on real flight data
- Integration of extra low-cost sensors
- Aircraft and motor identification

Future Work

- Use the aircraft and propulsion data in the wind estimation filter
- Integrate the filter on an on-board computer for real-time processing

17 / 17