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Abstract

Opportunistic networks are a special case of DTN that exploit systematically the mobility
of nodes. When nodes contacts occur, routing protocols can exploit them to forward messages.
In the absence of stable end-to-end paths, spatio-temporal paths are created spontaneously.
Opportunistic networks are suitable for communications in pervasive environments that are
saturated by other devices. The ability to self-organize using the local interactions among
nodes, added to mobility, leads to a shift from legacy packet-based communications towards
a message-based communication paradigm. Usually, routing is done by means of message
replication in order to increase the probability of message delivery. Instead, we study the use
of Temporal Random Walks (TRW) on opportunistic networks as a simple method to deliver
messages. TRW can adapt itself to the self-organizing evolution of opportunistic networks.
A TRW can be seen as the passing of a token among nodes on the spatio-temporal paths.
Since the token passing is an atomic operation, we can see it as forwarding one simple message
among nodes. We study the drop ratio for message forwarding considering finite buffers. We
then explore the idea of token-sharing as a routing mechanism. Instead of using contacts as
mere opportunities to transfer messages, we use them to forward the token over time. The
evolution of the token is ruled by the TRW process. Finally, we use the TRW to monitor
opportunistic networks. We present the limits and convergence of monitoring the interact time
between participating nodes.

1 Introduction
The Internet has entirely reshaped the way we communicate and interact with one another. Along
its evolution it has been marked by many milestones, remarkably: reliable connections (TCP/IP),
the world wide web (WWW), social and mobile networks. The rapid development of the wireless
infrastructure by network providers has been accompanied by an exponential growth in the number
of mobile users, and more and more devices are envisioned to be connected in the future: the
Internet of Things (IoT) is just emerging [1]. However, global Internet access and connectivity
still face several challenges: scarce or poor quality connectivity in developing countries or places
with limited accessibility, physical obstacles limiting the deployment of wireless networks, natural
or man-made disasters, high operational costs with the increasing number of users, etc.
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Delay tolerant networks (DTNs) were introduced [2, 3, 4] to deal with environments where
interruptions or disruptions of service were expected. Such networks usually lack of end-to-end
paths or any infrastructure to help communications. In its purest form, the definition of a DTNs
is based on the delay tolerance nature of communications; it covers a wide range of networks [5, 6]:
space communications, vehicular networks, sensor networks, opportunistic networks, etc. We can
associate a DTN to the general case of a network which may evolve with some unknown underlying
process. Usually, there is neither guarantee about the availability of the connections nor the topology
of the network.

This work is focused on the so called opportunistic networks. In these networks, mobile
nodes may interact using their contacts as a communication opportunity. The store-carry-forward
paradigm allows nodes to exploit spatio-temporal paths created by contact opportunities in order
to deliver messages over time. Such routing mechanism usually provides some kind of message
replication in order to increase the probability of message delivery. Instead we raise the question:
can we design a mobile and opportunistic infrastructure that could help to deliver messages? In the
quest to provide such infrastructure, we study the application of temporal random walks (TRW)
over the opportunistic networks. A TRW can be seen as the passing of a token among nodes on
the spatio-temporal paths. We explore the application and impact of TRW as a minimal and non
invasive infrastructure from two points of view: data forwarding and data recollection.

1.1 Challenges in Opportunistic Networks
In this section, we explore three use cases were opportunistic networks can be crucial to provide
solutions that scale to the future demands of mobile networking. We expose their challenges and
the research opportunities they open.

1.1.1 Network Offloading

Traditional and newer network operators have to meet the challenges created by the rapid rise in
the number of mobile users. For instance, in the 2014 demonstrations in Hong Kong, the Umbrella
Revolution [7], users had trouble getting Internet connectivity because of the great number of co-
located accesses at the same time. Using opportunistic communications, the FireChat application
helped the people in the demonstration to create community communications. But usually, decisions
to increase the infrastructure raise several questions. Firstly, in economical terms, the fast pace
of technology evolution makes it hard to privilege capital investment. However the obsolescence
of platforms could make customers leave. Deployment of new infrastructure increases cost, both
to support the investment and the operations. Secondly, network capacity saturation is becoming
a problem. Indeed, in large sports and cultural events or demonstrations (like the Hong Kong
demonstrations), it is difficult to get network connection since the infrastructure was not designed to
support such massive demand. The use of mixed architectures, where mobiles nodes help to offload
the main network as relays in a device-to-device manner could provide a solution to both problems of
operations and capacity mentioned above. However, a mobile infrastructure where cost is absorbed
by customer technology introduces new challenges in terms of security (intermediate nodes may
access sensible data) and cost models (users that accept to be relays may ask compensation for the
use of their terminal). The introduction of a new mobile infrastructure is needed to resolve these
problems. We can refer to some work that has already explored the network offloading using mobile
nodes, such as in [8, 9, 10]
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1.1.2 Natural Disasters

Natural disasters such as earthquakes, hurricanes and forest fires, can have a huge impact on the
way people communicate. The Chilean earthquake 2010 is a good example showing how the Internet
failed after the impact [11]. At first, networks experience disruptions due to the combination of
infrastructure destruction accompanied by burst of communications. But, in the long term, it is the
time to recover from the failures that creates the largest impacts. At the same time, communications
are essential for the census of casualties, the evaluation of damages, the deployment of help centers,
the distribution of goods etc.. Any gathered information is crucial for good decision-making under
the stress of the catastrophe. Communications play a vital role in the recovery. However, they may
be very limited under these circumstances.

The same scenario arises when Internet access is cut-off intentionally as a measure of censorship.
Opportunistic networks can play a huge role in order to help re-establish communications after a
disaster or cut-off. Delays to collect useful information are acceptable in comparison to have no
information at all. As a matter of fact, the deployment of a self-managed opportunistic networks
may help to improve communications in disaster or censorship scenarios.

1.1.3 Mobile Crowdsourcing

Because it is now so easy to develop smartphone applications, a number of mobile phone sensing
systems [12] have been implemented to gather a variety of useful measures. Practical use cases can be
encountered in earthquake monitoring [13], air/pollution monitoring [14], urban noise detection [15],
urban mapping [16], etc. Opportunistic sensing or mobile crowdsourcing systems (MCS) [12, 5, 17]
are usually employed for these scenarios.

Most previous work assumes that nodes can interact with a hotspot (sink) overlay network.
This provides the optimal case in terms of the accuracy of dissemination of measured information.
Indeed, as soon as a node exchanges its information with a sink, it will be shared instantaneously
with any other node interacting with any other sink. This increases the spatial span and decreases
the temporal span as we have more fresh measures.

Of course, such infrastructure can be costly in terms of deployment or it may not be always
available. For this reason, we seek a minimal infrastructure to gather and provide an approximated
global view of the available information to all nodes. Instead of deploying sinks that report data to
a central monitoring system, we can imagine a distributed crowdsourcing system. Inherently, a user
can disseminate information, while another will receive this data and act in consequence. Since we
cannot assume any broadcast support, the time to gather all the diffused data for any node in a
given time window will be the sum of all maximum delays for all pairs of nodes in the underlaying
routing. This can easily become unbounded. The simplest solution, that we will envisage, is adding
an overlay network composed of “special” mobile nodes that act as data sinks. Those sink nodes
may be interconnected between themselves. Temporal Random Walks (TRW) as an opportunistic
crowdsourcing architecture able to do both: gather data among peers and distribute a filtered and
global approximation for the measures.

1.2 Contribution of this Work
The major contribution of this work is the introduction of a mobile lightweight communication
infrastructure that emerges from the behavior of the opportunistic network itself. We propose the
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use of “Temporal random walks” (TRWs) to provide such self-infrastructure. The TRW architecture
is basically a random walk in a temporal network that is exploited as a communication method.

We base this idea on the following analogy: in a gathering of people without Internet connec-
tivity, a simple way to share a piece of content is to pass a USB key. Each participant can add new
information or a message when he or she receives the key. The same principle can be used as a pub-
lish/subscribe medium where everybody will get a copy of one specific message. Each person using
the key can pass it to another nearby random person. This is the basis of a random walk where
the network topology is changing according to the opportunistic contacts between participants.

Since the token passing in TRW is defined as an atomic operation, we can see it as the forwarding
of one simple message among nodes. Hence, to evaluate the performance of our approach, we
study the buffer occupancy of simple message forwarding. We focus on the drop ratio for message
forwarding considering finite buffers by modeling message drops with a continuous time Markov
chain (CTMC). We address the worst case scenario created by one-packet buffers for message
forwarding in homogeneous intercontact times (ICT).

We then explore the idea of token-sharing as a routing mechanism. Instead of using contacts as
mere opportunities to transfer messages, we use them to pass the token over time. The evolution
of the token is ruled by the TRW process. Sending a message is equivalent to copying it into the
token. Eventually the destination node will get the token and all its addressed messages. We study
the delivery effectiveness of such approach.

Finally, we study how to apply the TRW in order to monitor opportunistic networks. Compared
to wired networks, opportunistic networks are challenging to monitor due to their lack of infras-
tructure and the absence of predictable end-to-end paths. We present the feasibility, limits and
convergence of monitoring such networks. More specifically, we focus on the efficient monitoring of
the ICT between participating nodes.

The work is structured in two parts: first the characterization and then the application of TRWs
in opportunistic networks. The first part deals with the state of the art in opportunistic networks
and random walks and introduces the main notation for the following Sections. It also addresses
the connection between message forwarding and temporal random walks. The second part deals
with two applications of temporal random walks in the opportunistic networks scenario: routing of
messages in a publish/subscribe manner and the gathering of node’s information in order to provide
a monitoring system.

2 Related Work
The focus of this work is entangled in the middle of DTN routing, temporal networks modeling,
random walks and applications on opportunistic networks. In this section we review separately the
main related work on each area.

2.1 Routing on DTNs
Routing in DTNs is characterized by the store-carry-and-forward paradigm [4]. Nodes in a DTN will
keep copies of the messages in their internal buffers until a new encounter occurs with a possibility of
forwarding. At that moment, following the specific rules of the routing algorithm, the message will
be passed and carried by the new node until finally one node encounters the destination. Typically,
DTN routing mechanisms can be classified according to their routing decisions [18]. Usually they
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Figure 1: Opportunistic network and three different times. In blue we can see the effective oppor-
tunity connections between nodes.

are broken down among the protocols that have some kind of infrastructure support, or based on
the nature of its dissemination methods: replication versus forwarding.

The most basic routing algorithm in DTNs is the Direct Contact Algorithm: the source will
wait for a direct contact with the destination. When this future encounter occurs, the source will
forward the message to the destination. In the k-hop routing scheme, messages are transferred in
the DTN through paths consisting of k hops

The epidemic routing [19] is the most popular and simple replication mode in DTNs. Every time
two nodes are in contact they will exchange messages. It is easy to see that the global performance
of this method is optimal since any other replication method will use a subset of contacts, hence
any contact path will also be considered by the epidemic model. Hence, this method is optimal in
terms of delivery ratio when buffers and bandwidth are unbounded.

Spray-and-Wait [20] main idea is to reduce the number of message replicas by a simple decision:
the source node will only handle a limited number L of them. At each encounter, the node will
spray dL/ke copies, keeping for itself L− dL/ke. This process continues recursively until the node
has only one copy left. Then it enters into the wait phase, waiting for a direct contact with the
destination to forward the message. In [20], they show that the optimal value for k is 2, calling it
Binary Spray-and-Wait. The main problem of this algorithm is its hypothesis of an homogeneous
network reducing its adaptability to heterogeneous environments.

The PRoPHET routing [21] was one of the first algorithms to perform limited replication of
messages. Each node keeps the probabilities of encounter with other nodes. When nodes are in
contact they update and share the probabilities of encounters. These probabilities are transitive
and age with time. The replication of a message is done if one node has not already a copy of the
message and if the node has a higher probability of meeting the destination of the message.
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The work of [22] introduces the Resource Allocation Protocol for Intentional DTN (RAPID).
RAPID takes into account the utility of replicating a message as a resource allocation problem. A
message is replicated only if the utility of replicating the message is higher than the utility of no
replication. Three different metrics are proposed: minimization of the average delay, minimization
of missed deadlines and minimization of the maximum delay. To calculate the utilities, nodes
need to consider extra information that is distributed in the network (such as: past replications of
messages, available bandwidth or expected meeting time among nodes).

BUBBLE Rap is presented in [23] in order to cope with social-based DTNs. Indeed, this
routing algorithm exploits the inter-human social structures to perform the forwarding. For this,
the algorithm performs a community detection in order to select high ranking central nodes (hubs) in
the communities. Those nodes will be later used as relays for messages. In terms of the communities,
each node belongs to at least one community. It has a global ranking across the whole system, and a
local ranking within its local community. In the forwarding phase, a node first bubbles the message
up the hierarchical ranking tree using the global ranking. When this process reaches a node in the
same community as the destination node, the local ranking is used to bubble up through the local
ranking tree until the destination is reached or the message expires. The DiBuBB algorithm [24] is
used to detect communities in a distributed way; it has been shown to have a detection accuracy
of 85%.

The MaxProp [25] is a routing protocol adapted for vehicular networks. On these networks,
the storage capacity is not a problem, but contact times can be short. Hence, MaxProp prioritizes
messages based on the delivery likelihood to a destination and the total hop count. This likelihood
is based on previous encounters.

The Context-Aware Routing protocol (CAR) [26] uses context information to define the node
that will forward the message to the destination. The choice of the best carrier is done using
Kalman filter based prediction and utility theory.

The History Based Opportunistic Routing (HiBOp)[27] identifies the appropriate message repli-
cating nodes based on past and current context information. A message is forwarded if the en-
countered node’s probability of reaching the destination is higher than with the current node. The
source can inject several copies of the message in the network to improve the delivery ratio.

2.2 Temporal Networks
Temporal networks have gained interest in the research community over the last few years consid-
ering their great number of potential applications: person to person communications, one to many
information diffusion, physical proximity, cell biology, distributed computing, infrastructural net-
works, neural and brain networks, ecological networks, economic networks, citation networks, etc.
Many static representations have been proposed to characterize such temporal networks: reachabil-
ity graphs, line graphs, transmission graphs, etc. Also several models producing temporal graphs
have been proposed: temporal exponential random graphs, models for social groups, contact net-
work models, randomized edges, randomized times, randomized contacts, etc. The problem of
rumor-spreading on temporal networks has gained interest, specially to determine how the process
is affected by burstiness or temporal and infrastructural inhomogeneities. A complete review on
temporal networks, and all the topics discussed above can be found in [28].

A characterization of dynamic mobile networks is presented in [29]. This work presents a frame-
work to analyze two real-world datasets in depth, focusing in the study of dynamic communities.
The paper presents results for the temporal correlation of the most typical graph properties, such
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as: active links, number of connected vertices, average degree, number of connected components
and number of triangles.

A time-varying graph model is introduced in [30]. The model is represented by a tuple TV G =
(V,E, T, ρ, ψ), where ρ is the presence function, defined as above, and ψ is the latency function
which indicates the time it takes to cross a given edge if starting at a given time. From this model
a complete description of the properties of TVGs is presented, including: journeys, topological
distance, temporal distance, subgraphs, classes of TGV and others.

The small-world phenomenon is defined by networks with a high clustering coefficient and low
shortest path length. This is an intrinsic property of many real complex static networks [31]. The
work in [32] presents a model capable of capturing the small-world behavior for dynamic networks.
They state one sufficient condition to the emergence of a small-world structure in temporal net-
works. They also show how this structure significantly improves the communication capacity of
opportunistic networks.

Finally, [33] introduces a study on the evolution of graphs over time and their densification laws.
This work is more centered on the evolution of big graphs, such as patent networks, evolution of
autonomous systems and citation networks.

2.3 Random Walks Meet Temporal Networks
Multiple random walk on static graphs [34] introduces the idea of variability in the starting point in
order to avoid some known bias of random walks. The introduction of more walkers with different
starting points, and the mixing of the sampled data. The main idea behind this work is to sample
some characteristic on static graphs as the average degree.

Random walks on temporal networks were introduced in [35]. This work provides an empirical
analysis for different social gathering datasets. This work shows that known characteristics from
random walks on static graphs, as the mean first-passage time (MFPT) and the coverage of the ran-
dom walk, can be extended to the temporal case. To ensure the convergence of the approximations,
the traces are repeated following tree strategies: sequence replication, sequence randomization and
statistically extended sequence. They show that the convergence exists in the case of sequence ran-
domization. Indeed, the fact of removing the social ties among contacts allows to see the temporal
network as a static one.

Our work is inspired on a mix of ideas from the work of [34] and [35]. One important difference
is our independence of the underlying temporal network. Indeed, most of the analytical work
assumes the evolution of the networks to be an ergodic or Markovian process in order to obtain the
distributions. Instead, we do not take into account any underlying nature of the network evolution.
We provide a statistical analysis to support our results.

The work in [36] looks at the effects of non-Poisson inter-event statistics on the dynamics of edge.
The traditional aggregation of edges to create a static weighted network implicitly assumes that
the edges are governed by Poisson processes. This is not typically the case in empirical temporal
networks. They apply the concept of a generalized master equation to the study of continuous-time
random walks on networks. They discuss the implications for dynamical processes on temporal
networks and for the construction of network diagnostics that take into account their nontrivial
stochastic nature.

The work of [37] studies the use of random walks on temporal networks and the convergence of
the cover time when using just one walker. They show that this convergence is exponential in time.
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They also show that the lazy random walk1 converges in polynomial time on the size of the graph.
This reinforces the idea that the use of several walkers in the network can improve the obtained
results.

The work of [38] studies the behavior of a continuous time random walk on a stationary and
ergodic time varying dynamic graph. They show how to calculate the stationary distribution of
the walker. However, this is difficult to characterize on general since it depends on the walker
rate. They focus on three cases: (i) Time-scale separation: the walker rate is significantly larger
or smaller than the evolution rate of the network or (ii) Coupled dynamics: the walker rate is
proportional to the evolution rate of the network. (iii) Structural constraints: the degrees of each
node belonging to the same connected component are identical. On these cases they express the
analytical solution for the stationary distribution of the walker.

Finally, the work of [39] presents the use of random walks to perform searches in time-varying
networks. For this study, the rate of evolution of the network and the rate of the walkers are
supposed to be in the same time-scale. They propose a Markovian model of evolution for temporal
networks and study the stationary state of the random walk and the MFPT. They show that
the dynamics of the time-varying networks significantly alter the standard picture attained for
dynamical process in static networks. However, new strategies need to be developed in order to
deal with such scenarios.

2.4 Applications on Opportunistic Networks
From an application point of view, work on DTNs and opportunistic networks is mostly focused
on the routing problematic. Here, we focus in applications on infrastructure based routing and
monitoring over opportunistic networks.

Ad-hoc networks were the first mobile networks to explore the use of infrastructure to help
routing messages. Most of the research in mixing mobile nodes and infrastructure (hybrid ad-hoc
network) study the capacity increases [40, 41]. However, these studies do not present how to route
messages nor how to exploit the dynamics of the network.

The works of [42, 43] propose hybrid routing approaches to increase capacity. In the same
context [44] present a heuristic to determine where to randomly place base stations in order to
increase connectivity. The work of [45] explores several scenarios introducing base stations, wireless
mesh and pure mobile networks.

A relay infrastructure for vehicular mobile networks is presented in [46]. They show how the
delivery ratio increases thanks to the relay infrastructure. However their relay nodes are static in
crossroads.

In ZebraNet [47], base stations are installed in mobile vehicles that periodically move around
the park to gather statistics when they meet the zebras. This works as a mobile infrastructure. In
SWIM [48], base stations are installed in buoys (static) and also in seabirds (mobile). In DakNet [49],
mobile data carriers are implemented using buses, motorcycles and bicycles. However, in all these
examples, the infrastructure is defined by an external agent and it is expensive to deploy.

The work in [50] introduces the idea of “crowd computing”. They show how an opportunistic
network of mobile devices offers substantial aggregate bandwidth and processing power.

DTN monitoring in [51] provides an extension to well-known aggregation algorithms for con-
nected networks. Specifically, how the notion of pair-wise averaging and population protocols apply
to the DTN scenario. This work does not offer a mean to measure the estimation error. Instead, the

1Also called max-degree random walk
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estimation is just performed over a given amount of time or a number of desired contacts, assuming
that the more contacts, the better the estimation will be. Most of the work to characterize a DTN
is based on the global estimation of the intercontact time.

In [52] an analytical model is presented that derives the aggregated distribution law from the
pairwise intercontact time distributions. This study also shows that the pairwise connection is not
exactly mirrored by the aggregated distribution: if we assume that the pairwise distribution follows
an exponential law, then the aggregated distribution will follow a power law.

Finally [53] presents a vicinity study to characterize the behavior of a DTN. In this paper,
the concept of k-vicinity and k-intercontact are introduced. Trace analysis shows that k-vicinities
intercontact time follows power laws with exponential decay after a given time. Moreover, the
k-vicinity of size k={2,3} gives enough awareness of its surrounding to a node. This assumption is
supported by the existence of groups in the node movements.

3 Opportunistic Networks Modeling in a Nutshell
In order to set the basic vocabulary that will used in the work we introduce the following definitions:

Definition 1 (Node). A node is a mobile entity capable to interchange information bi-directionally
within a range r with one or more nodes. The set N denotes all the nodes in the network. Nodes
will be noted as natural numbers N = {1, 2, 3, . . . , n}.

For the rest of the work, we will assume that the data exchanged between nodes can be trans-
mitted in just one contact. To differentiate this case from the typical DTN bundle [54], we introduce
the message definition:

Definition 2 (Message). A message is a packet of data that can be exchanged between two nodes
in a connection. All the data for the content is contained in this packet. The content will be named,
or tagged in order to retrieve it by its name.

We define Opportunistic Network as follows:

Definition 3 (Opportunistic Network). It as a continuous time stochastic process where nodes
exploit systematically their mobility to forward messages between themselves. The mobility in-
troduces delay when a node cannot forward its message, keeping it in its own buffer. This allows
routing protocols to exploit opportunistic contacts, in absence of stable end to end path, as a means
to create a temporal path for delivery.

Figure 1 presents such a network in its most general case: nodes move around in the space and
whenever they are in contact (given a transmission range) with another they can profit from that
opportunity to forward a message. In order to decrease the temporal complexity, we can transform
the continuous time reality into a discrete one. For that we define:

Definition 4 (Time window). The time window is the granularity which we use to sample the
continuous time to a discrete one. In the following, we denote this time window as ∆ unit of time,
the maximum time as T and the discrete time set as Γ = {t1, t2, . . . , tT }.

Definition 5 (Contact trace). A contact trace is the result of the discretization of the continuous
time given a ∆ time window. It is a binary vector, where we denote with a 1 when nodes are in
contact and a 0 while they are not. Notice that if the total time T that we observe a process is
discretized by ∆, then the contact trace is a vector with T/∆ elements.
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We use temporal networks to model in a discrete way the opportunistic networks. Temporal
networks are in simple terms networks that change their topology over time. The main difference
with other computer networks is that the scale of changes is rather high. We can represent this as
a series of time changing graphs where the changes follow a stochastic process usually unknown.

Definition 6 (Temporal Network). We define a temporal network as a finite set of graph
snapshots G = {G1, G2, . . . , GT }, where Gi = (V (t), E(t)) represents the connection graph at time
t ∈ Γ.

For simplicity, in this work we keep the set of nodes V (t) invariable with time: nodes can
be connected or disconnected, but they can not appear or disappear (newborn or dead). This
restriction can be eliminated considering the final set V as V = ∪t∈ΓV (t) or with a model for the
birth and death processes. The nodes of the graph are defined as the elements in N (nodes in the
network) and the edges E(t) are defined as the set of connected nodes at time t. As in static graphs,
we can define the matrices A1, A2, . . . , AT as the corresponding adjacency matrices for each graph
in the temporal network. We can now formally define a temporal connections as:

Definition 7 (Temporal connection). We say there is a temporal connection between i and j
at time t if (i, j) ∈ E(t) (equivalently (At)i,j = 1). We denote this as i t−→ j.

In the following we will consider symmetrical connections. We will just refer to one direction of
the connection since if we have i t−→ j then we also have j t−→ i.

We can now define a spatio-temporal path in a temporal network as:

Definition 8 (spatio-temporal path). We say there is a spatio-temporal path P d
s (t′, t′′) between

a source s and a destination d between time t′ and t′′ if ∃l ≥ 2, v = (s, n′1, n
′
2, . . . , n

′
l−2, d) ∈ V l and

t′ ≤ t′1 < t′2 < · · · < t′l−1 = t′′ such as

P d
s (t′, t′′) = s

t′1−→ n′1
t′2−→ n′2

t′3−→ . . .
t′l−2−−−→ n′l−2

t′l−1−−−→ d (1)

Notice from the definition, the spatio-temporal path is not necessarily unique. Also, the same
node can appear more than once on the path in different times. A spatio-temporal has a length in
space and time.

An overlay network is a computer network that is built on top of another network. We can think
of nodes in the overlay networks as virtual nodes connected through logical links. These logical
links can translate in many links in the underlying network. The most typical examples of overlay
networks on Internet today are provided by the distributed hash table of peer-to-peer systems,
the XMPP protocol used for Jabber and the numerous implementations of sensor networks in the
Internet of Things (IoT). Let us now define an opportunistic overlay network.

Definition 9 (Opportunistic Overlay Network). An opportunistic overlay network is a logical
network built on top of the opportunistic network. Nodes and their overlay peers are associated
by means of nodes connections in the underlying network. We denote the nodes on the overlay
network as W = {w1, w2, . . . , wk}.

An opportunistic overlay network differs from a regular overlay network because it inherits from
the non-existence of end-to-end paths as well as of their time-dependence. We now formally define
the mapping relation between the two networks (as shown in Figure 2) as:
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Figure 2: Opportunistic overlay network

Definition 10 (Mapping). A mapping is a relation which associates nodes in the overlay network
with nodes in the opportunistic network. Formally we denote m : W → V .

For instance, Figure 2 depicts the mapping relation

m = {(1, w1), (6, w2), (7, w3)}

This mapping relation entails two layers of interactions: the opportunistic contacts plane and the
opportunistic overlay plane. In the nodes plane, we see all the existing spontaneous links between
nodes, for instance the node 1 is connected with node 2 and the node 3 is connected with node 4.
Since node 1 is associated with X by the mapping relation, the latter, in the overlay plane, can
capture information of the established connections by 1.

4 Temporal Random Walk over Opportunistic Networks
In this section, we introduce our architecture for the Temporal Random Walk (TRW), we provide
an implementation and we explore its connection with message forwarding.

4.1 Architecture of TRW
We can exploit the temporal dimension with the mapping relation. In fact, the mapping can be a
function of time in order to follow the evolution of the network dynamics. Hence, in a posterior
time, we might see a node in the overlay associated with another node in the opportunistic contacts
plane. This leads us to introduce the following distinction:

Definition 11 (Dynamical mapping). A dynamical mapping is a mapping relation that changes
with respect to time. We denote such mapping function between an overlay node at a given time
as m : W × Γ→ V .

Notice that our definition of the dynamical mapping is equivalent to say “who is associated with
w at time t”. We can also think in the reverse case: “who is associated with n at time t”2. Given
this, we can define our temporal random walk as:

Definition 12 (Temporal random walk). A temporal random walk (TRW) is a dynamical
mapping which progression is defined recursively as follows: given an overlay node w ∈ W , a

2For simplicity, we will assume that the inverse mapping exist, denoting m−1 as the inverse partial function.
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Figure 3: Dynamics of temporal random walks

random starting node i0 = trw(w, 0) and the speed of evolution γ for the TRW. Then, at time
t+ γ ∈ Γ the selected node of the TRW is defined as:

trw(w, t+ γ) =

{
j (i, j) ∈ E(t)

i ∼
(2)

where i = trw(w, t) and j is chosen from the neighbors of i at time t with uniform probability
p = 1/δi(t).

For simplicity, we will call a node w in the overlay network a “walker” when it is following a
TRW. Also the progression of the TRW will be referred as the step of the TRW.

A temporal random walk differs from a random walk on a static graph as follows: at time t1, a
starting node is randomly selected; after a given time γ one of the nodes’ current neighbors is
selected with uniform probability. The probability to pass the token is defined using the temporal
degree function δi(t). Hence, if the topology changes, the value of this function may also change
with the time. The process repeats at rate γ from the last selected node. Notice that the rate of
the walkers γ may be different from the rate of the network evolution ∆.

In the following we will consider that the pace of the walker is the same as the evolution of the
network, hence γ = ∆.

We now introduce the architectural part of our temporal random walk with the following defi-
nition.

Definition 13 (Token). A token is a virtual device attached to a walker in the opportunistic
overlay network, which is passed from node to node following the steps of the temporal random
walk.

For instance, in Figure 3 we see that at time t1 A is selected as the starting node. At this time,
A is connected with {B,C,D}. C is randomly selected with 1/3 probability. Then at time t2 the
connections have changed. We can see that C is connected with {B,D}. In this case B is selected
randomly with 1/2 probability. Finally, at time t3 E is selected as the only connected node. We see
that the token is passed among nodes in the following contact sequence: {A t1−→ C,C

t2−→ B,B
t3−→ E}

and hence the TRW mapping will be trw = {((w, t1), A), ((w, t2), C), ((w, t3), B)}. We notice two
things: (i) the degree of a node changes with time (δA(t1) = 3, δA(t2) = 0, δA(t3) = 1), hence the
selection probabilities change, and (ii) in the temporal random walk we can profit from temporal
paths that are created with the evolution of the communication: the path between A and E only
exists thanks to other nodes’ contacts (The temporal path PE

A (t1, t3)).
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Algorithm 1 Temporal Random Walk algorithm. Notice this function is called at each ∆ time
step of the process
1: procedure TRW(nodes)
2: added← list()
3: for n ∈ nodes do
4: if hasToken(n) then
5: t← getToken(n)
6: if degree(n) > 0 ∧ canRelease(t) then
7: neighbors← getNeighbors(n)
8: l← filter(neighbors, added)
9: if size(l) > 0 then
10: k ← uniformSelect(l)
11: put(k, added)
12: passToken(n, k, t)

Consequently, our definition of the temporal random walk is now equivalent to the following:
“which node is holding the token w at time t”. The reverse case will be “which token is the node n
holding at time t”.

4.2 Implementation of TRW
The implementation of TRW in a real opportunistic network is a distributed algorithm. At each
step of the process, a token holder will (i) exchange synchronization messages with its neighbors;
(ii) define the set of neighbors that can receive a token; (iii) pass the token. For simplicity and
without loss of generality, we present a centralized version of the algorithm. There are no structural
differences between both centralized and decentralized versions. The centralized one keeps a global
table at each step to avoid the overhead of probes searching for potential nodes to pass the token
to.

The Algorithm 1 presents the implementation details. The TRW procedure is called at each
step of the process, and it attempts to pass the token to the node’s neighbors. The TRW builds
a list of selected nodes that will hold the token (line 2). For each node in the network, the TRW
checks if that node holds a token (line 4). If so, we check if that node is connected to at least one
other node and also that it can release its token according to the TRW γ rate (line 6). When more
than one token is moving around, we remember that a node can only hold one token at a time. The
filter procedure checks which of the connected nodes are holding or will hold the token to remove
them from the possible candidates (line 8). Finally, a node is chosen uniformly from one of the
filtered neighbors (line 10) and the token is passed (line 12).

The only restriction we impose is that when two token holder nodes meet, they do not exchange
their tokens. This contact in the overlay network can be further exploited. In fact, we can merge
the tokens information as presented in Algorithm 2. We will call this merge case as TRW-M. It
is important to notice that TRW-M is not longer a forwarding method, but also a replication one.
Indeed, we can see that in the worst case, we will have as many copies of one message as tokens in
the network.
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Algorithm 2 Filter algorithm with tokens merging option (TRW-M)
1: procedure filter(neighbors, added)
2: l← list()
3: for n′ ∈ neighbors do
4: if ¬hasToken(n′) then
5: if ¬contains(n′, added) then
6: put(n′, l)

7: else if hasToken(n′) then
8: mergeTokens(n, n′)

9: return(l)

4.3 Characterization of TRW: Connection with Message Forwarding
As defined, a temporal random walk is a random walk on a temporal network where one or more
walkers carry some messages, perform an action when they meet or gather information. In simple
terms, we use the walkers as mobile network nodes and computational devices that move in the
network to provide a service. One could think that the token passing between nodes corresponds
exactly to the behavior of forwarding a special message in a temporal network. This special message
will be passed among nodes indefinitely to distinguish which are the nodes selected by the temporal
random walk at a given time. Figure 4 shows the similarities between both processes. When we
study the forwarding of a message in an opportunistic network, we can see either two cases: (i)
one node holds a message and forward its message to another node that does not have a message
(ii) two nodes hold a message and the interchange will produce a drop. We can take advantage of
the connection between temporal random walks and message forwarding to characterize the former
using the later. Indeed, the forward of the message is equivalent to passing the token. Likewise,
the drop of a message can be seen as a merge opportunity for the tokens. In the end, the token is
a set of messages that is jumping from one node to another.

An interesting point is to question the real possibility to pass the token at each encounter. This
can be characterized in terms of the number of messages in the token. In other words, if we are able
to characterize the message drop in the simple message forwarding, we may infer the communication
capacity of such temporal random walk.

4.3.1 The (d, c) Model

We consider a temporal network with N identical nodes with a buffer capacity of one message. We
consider S < N message sources and M initial copies of the same message. Notice that S = M
due to the buffer size restriction. The M messages are delivered to any of D < N −S destinations.
Unless stated differently, we consider D = 1. Intermediary nodes act as forwarders of those M
messages. Hence, no extra copies are created in the evolution of the process. Our goal is to
determine the distribution of dropped messages and the drop ratio over time.

Let 0 ≤ ti,j(1) ≤ ti,j(2) < ... be the successive encounter times among nodes i and j. We
consider that the transmission time of a message is negligible with respect to the time it takes
for two nodes to meet one another. It follows that the n-th intercontact time between i and j is
icti,j(n) = ti,j(n + 1) − ti,j(n). we assume that the processes {ti,j(k), k ≥ 1, ∀i 6= j ∈ N} are
mutually independent and homogeneous Poisson processes with rate λ > 0. Hence the random
variables {icti,j(k), k ≥ 1, ∀i 6= j ∈ N} are mutually independent and exponentially distributed
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with mean 1/λ as presented in [55].
Since each node can keep only one message, each time a contact occurs we try to forward it.

Hence, when node i and j meet either: (i) only one of the nodes has a message, it is instantaneously
transmitted, or (ii) both nodes have a message, then one is chosen at random and it instantaneously
transmit its message while the other drops its message.

To calculate the number of dropped messages, we introduce a continuous time Markov chain
(X(t), t > 0). The states of the chain are (d, c), where d represents the number of dropped messages
and c the number of message copies. Our initial state is when we have M messages to deliver and
no drops: (0,M). The transitions from a generic state (d, c) are:

1. Delivery transition: we transit from (d, c) to (d, c− 1) when a message is delivered. The rate
of encountering a destination will be Dλ. Since we have c nodes with a copy of the message,
the transition from (d, c) to (d, c− 1) will happen with rate cDλ.

2. Drop transition: we transit from (d, c) to (d + 1, c − 1) when a drop occurs. The transition
from (d, c) to (d+ 1, c− 1) occurs with rate c(c−1)

2 λ given the number of combinations where
two nodes with a message meet.

In Figure 5, we detail the possible transitions in the general case. The absorbing states of the
chain are in the form (d, 0) with 0 ≤ d ≤M − 1. Note that when reaching the absorbing states, we
must impose some border conditions. Since the last message will be delivered with probability 1,
we cannot transit from state (d, 1) to (d+ 1, 0).

We can easily calculate the probabilities of going from the state (d, c). Indeed, the embedded
Markov chain for X(t) allows to write the probabilities of jumping between states as shown in
Equations 3.

P ((d, c)→ (d, c− 1)) =
cDλ

cDλ+ c(c−1)
2 λ

=
2D

c+ 2D − 1

P ((d, c)→ (d+ 1, c− 1)) =
c(c−1)

2 λ

cDλ+ c(c−1)
2 λ

=
c− 1

c+ 2D − 1

(3)

The absorbing states probabilities are defined as:

PM (d) = P (X∞ = (d, 0)|X(0) = (0,M)), 0 ≤ d ≤M − 1 (4)

Since the process is a feed-forward process, these probabilities can be easily calculated with a
dynamic programming algorithm. The drop rate distribution is defined as the expected value of
reaching the absorbing states over the number of starting messages (Equation 5).

DropRatio(M) =
1

M

M−1∑
d=0

d PM (d) (5)

It is important to note that the probabilities are independent of the process arrival
rate λ. Therefore, for any {ti,j} defined as before, we expect the same drop ratio results.
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4.4 Model Evaluation
In this section, we present the comparison between a simulated opportunistic network and the
modeled CTMC results. We generate pairwise ICTs distributed as defined in Section 4.3.1. We
then run an event driven simulation to perform the forwarding of the messages in the network
and calculate the drop ratio for a given configuration. We compare the simulated and predicted
drop ratio for the (d, c) model. The model results have been obtained with MATLAB, while the
continuous time simulations are implemented with the R language. We run all the simulations with
N = 100 nodes and buffer size B = 1. We repeat each simulation 10 times and provide the average
results within a 95% confidence level. The network occupancy is defined as ρ = S/N . Sources are
increased to represent the following values of ρ:

ρ ∈ {1, 2, 5, 10, 15, . . . , 80, 95, 98}

We present the results of simulating with λ = 500. Figures 6a and 6b show how increasing the
number of sources (hence the network occupancy) increases the number of messages dropped and
the drop ratio as predicted by the (d, c) model. We see in Figure 6a how the model prediction for
the drop of messages matches the simulated results. Both grow linearly. Figure 6b presents the drop
ratio results. In this figure, we plot the drop ratio for each repetition (red points). We also plot the
average interpolation up to a 95% confidence interval envelope (gray area within the error bars).
Again, we see how close the simulated and model results are. Indeed, we compute the average case
for the 10 repetitions and graph the difference between the average and the model. We see that the
maximum difference between both is 0.04. Of course this is only true for the average case. We will
see a bigger difference if we include the variance (points dispersion), especially when the number of
sources is small: when we have less sources, the probability of dropping a message is lower, but not
zero (bigger variance); when we have more sources, the chances of eventually dropping a message
are almost 100% (smaller variance).

5 Applications of TRW on Opportunistic Networks
Temporal Random Walks where introduced in Section 4. In this section we study two applications
of them in scenarios inspired from the challenges discussed in Section 1.1.

5.1 TRW as a Communication Infrastructure
We present in this section the use of TRW as a lightweight infrastructure to communicate among
nodes in opportunistic networks. Given the TRW evolution, each time that a node holds the token
in the overlay (walker), the associated node in the opportunistic contact plane can read and write
information on it. It is important to note that our algorithm is a generalized version where more
than one token can be used in parallel.

5.1.1 Evaluation

We perform a series of simulations with synthetic and real traces using the ONE Simulator [56].
We try the TRW and TRW-M under different scenarios with increasing number of tokens in the
network, i.e. |W | = {1, 2, 4, 8, 16, 32}. The message creation process randomly selects a node and
adds a new message of 500 kb each 100 seconds. Since we want to study the long term behavior
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of the TRW process, we impose that the tokens can store an infinite number of messages and that
those messages have infinite time to live.

It is important to remember that TRW-M is a replication method: in the worst case, we will
have as many copies of one message as tokens in the network. This is why, we compare our results
with the well known Binary Spray-and-Wait [20] routing protocol (BSW), since BSW can define
the maximum number L of copies for each message. While the BSW is quite different from our
algorithm (restricted message copy at each contact versus token exchange at each contact), we use
it as a baseline for comparison in the case of a homogeneous network of nodes sharing the same
protocol. Specifically, we compare the average delivery ratio and the average delivery delay using
BSW (with increasing number of messages copies {1, 2, 4, 8, 16, 32}). Each BSW node is equipped
with a simple broadcast interface of 250 kbps and 10 meters range. A BSW node has a buffer of
5 Mb (10 messages). Note that the BSW with one message is equivalent to direct contact delivery
and does not perform as standard BSW.

We assume that the writing and reading time of a message in the token is negligible. Also,
merging two tokens is instantaneous (infinite bandwidth). In the following we will consider that
the step of the TRW is equal to the update interval of the simulator which is set to ∆ = 1 second.

5.1.2 Synthetic Traces

We use the RandomWayPoint model (RWP) to generate synthetic traces. We have 100 nodes
moving with a speed between 0.5 and 1.5 m/s. We simulate three densities of nodes: 103, 104 and
105 nodes/km2, to show the impact of increasing opportunistic contacts. Each simulation represents
24 hours. We repeat each scenario 10 times to account for variability. We present the mean value
in a 95% confidence interval.

Figure 7 shows that for the highest density scenario, all methods behave similarly. The increasing
number of copies in BSW increases the delivery ratio. As expected, adding more tokens increase
the delivery ratio as well. Nevertheless, with TRW we see a degradation of the performance in
all cases when more than 8 tokens are aggregated. The more tokens that are in the network, the
less the token can be passed (due to the restriction of not passing a token to a node that already
holds one). This is not the case for TRW-M which profits from tokens interactions to increase the
number of messages stored in them. We also see how the BSW is affected when decreasing the
density. The lower the density, the fewer contacts, therefore the lower delivery ratio. In the middle
density scenario increasing the number of copies has the negative effect of decreasing the delivery
ratio from 90% to 70%. This decrease is due to the controlled flooding process of the BSW and the
consequent dropping of messages. The dropping occurs when a node exceeds the maximum number
of messages on its buffer. In the three scenarios, the TRW-M delivery ratio is maximized with the
larger number of tokens. Nevertheless we see that the difference between 4, 8 or 16 tokens is less
than 10%.

Figure 8 shows the impact of the number of tokens on the average delay. For the three cases,
adding more tokens in TRW adds more delay for the same reason as before: nodes cannot pass the
token. In the TRW-M case adding tokens considerably decreases the delay. The delay of BSW is
always lower when increasing the number of copies. Even when the delivery ratio is low, the delay
is low because only the newest messages are kept in the buffer even though the time to live (TTL)
is infinite.
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5.1.3 Real Traces

We perform our evaluation using Haggle [57, 58, 59] and RollerNet [60] traces. All are Bluetooth
sighting traces by groups of users carrying small devices (iMotes) for a given period. Table 1
summarizes the different traces and their characteristics. Both Infocom experiments were conducted
during their respective conferences and workshops trying to capture an opportunistic network in
an academic event. The Cambridge experiment investigated the feasibility of a city-wide content
distribution architecture composed of short range wireless access points. RollerNet was collected
among a thousand participants of a rollerblading tour in Paris. RollerNet studies a class of DTNs
that follow a pipelined shape presenting the accordion phenomenon.

As we saw with synthetic traces, the BSW is highly affected by nodes’ buffer size. In this section,
we also test the BSW with a 100-message buffer (BSW-100). We repeat each experience 5 times
and we present a mean value in a 95% confidence interval.

Traces Nodes ∆ (secs) Connections Duration
Hours Days

Cambridge 36 600 10641 274.3 11.4
Infocom 2005 41 120 22459 76.4 3.2
Infocom 2006 98 120 170601 95.3 4
RollerNet 62 15 6015 2.8 <1

Table 1: Traces configuration

Figure 10 shows a large variance for the average delivery ratio with just one token for both
TRW and TRW-M. This variance decreases as more tokens are added. Also, we see the impact of
the buffer size on the BSW. In all Haggle traces we see a boost: Cambridge increases from 15%
to 40%, Infocom 2005 from 35% to almost 80% and Infocom 2006 from 40% to 75%. RollerNet is
a special case with a higher density of contacts, so here, both versions of BSW performs equally
well. We also confirm the degradation in TRW performance above a given number of tokens. In
this case we find that between 2 and 4 is the optimal number. It is important to notice that with
the Infocom and RollerNet traces with TRW and 4 tokens, we have more than 80% delivery ratio.
With Cambridge, the delivery ratio degrades to 63% due the longer duration of the experience.
Also as expected, we notice that TRW-M produces the best results in all Haggle traces and in the
case of RollerNet, the results are close to those of BSW (less than 10% off). Finally, we notice the
stability of TRW: just 4 tokens suffice to get a high delivery ratio.

As expected, the delay of both TRW and TRW-M is larger than that of the BSW (Figure 9).
This increase is due to the lack of boundaries of the random walk process with respect to message
delivery, i.e. the token moves wherever it can without restrictions. We also confirm that the boost
on BSW performance with a bigger buffer also increases the delay. In that case, the nodes are
able to store messages for a longer time before dropping them. We see the same increasing delay
impact in TRW when adding more tokens, confirming the results from synthetic traces. However,
the increase in delay is also associated with an increase in delivery ratio which could be beneficial.
When comparing equivalent delivery ratio between TRW-M and BSW, we observe equivalent delays.
For instance in RollerNet with 2, 4 or 8 tokens/messages, we confirm that BSW and TRW-M have
similar delivery ratio and delay. We see the maximum delay difference with 32 tokens/messages,
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Technology Bandwidth
Bluetooth 1.0 700 Kbps
Bluetooth 2.0 2 Mbps
Bluetooth 3.0/4.0 25 Mbps
WiFi (device-to-device) 11 Mbps
WiFi direct 250 Mbps
USB 2.0 10-280 Mbps (full/hi speed)
USB 3.0 3200 Mbps
Thunderbolt 6400 Mbps

Table 2: Typical transfer rates for communication technologies

with an increase of less than 5 minutes.

5.1.4 Cyber-physical considerations

We discuss the cyber-physical aspects associated to a real implementation of TRW. assumptions,
limits and benefits of our approach. The main concerns can be grouped in the time needed to
read/write in the token (we assume negligible time) and the cost of merging tokens (we assume
infinite bandwidth). Both can be explained in terms of technology: the USB key analogy is just
a simple example that allows us to devise such a token where the transfer rate is several orders of
magnitude greater than current wireless technologies. As we can see in Table 2, our assumption is
not far from the reality: Bluetooth 4.0 is 128 times slower than USB 3.0 and 256 times slower than
Thunderbolt. Merging messages could be done with the same high speed communication interface
among tokens (in the opportunistic overlay plane).

One could also argue that we should count the time of mounting/unmounting the token on the
computer, but this is equivalent to someone selecting a file to transfer in a standard manner. Again,
we can think of a technology where this process is not cumbersome, e.g. contactless smart cards.
Also in terms of storage capacity we know a simple USB key has much more memory than any
iMote device of the past.

5.2 Monitoring Opportunistic Networks with TRW: ICT Case
This section introduces the use of TRW to monitor the global Intercontact Time (ICT). We focus on
the ICT characterization, since it is a temporal measure that it is highly affected by the quality of the
sampled data. We define our notation and explain how to create an approximate characterization
of the ICT. We also specify what we understand by ICT approximation.

As defined in section 4.3, the n-th intercontact time between i and j is icti,j(n) = ti,j(n +
1) − ti,j(n). From these random variables, we obtain the pairwise intercontact time distribution
icti,j(t). The global intercontact time ict(t) is defined as ∪i,jicti,j(t). We assume that the pair-wise
distributions for (i, j) and (j, i) are the same. We see that to characterize the global ict(t) we
need to know all the pairwise icti,j(t) distributions. Due to the difficulty of gathering all those
pairwise distributions, we propose to select a subset of nodes that can approximate the global ict(t)
distribution3.

3We will abuse of the notation for the ict dataset and its associated ict(t) function. We will treat them both as
indistinguishable.
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Since the ict is defined as a probability distribution, the monitoring problem is reduced to con-
struct an estimation of this distribution. We define 〈ict〉 as the sampling recollected by the moni-
toring process. In the following, we propose to investigate methods of providing representative 〈ict〉
sampling of the whole network. Notice that we can generalize this method to 〈ict〉 = ∪w∈W 〈ict〉w.

5.2.1 Temporal Random Walks to Sample ICT

We propose four sampling strategies for 〈ict〉: Static, Last, All, Any. We use a static map for
the first strategy and the TRW temporal mapping for the others. Each node in the opportunistic
network can store their previous encounters and its frequency. While a node holds the token, it will
record the sampled data in the token according to the selected strategy. Then the token will be
passed by the temporal random walk and hence the 〈ict〉 will be collected. Here 〈ict〉 is constructed
as the union of the intercontact values sampled by the token at each connection (i, j). If we have
i = (w, t), then:

• Static: we select a random sample S of size k from the set of nodes N . We then define the
static map m : wi → i ∀i ∈ S. Note that this relationship is not time-dependent, hence we
can say the monitor nodes are static. It is used as a reference value. All the contacts stored
in i will be stored in wi.

• Last: we just consider the last pairwise intercontact between i and all its neighbors. This
implies that each node must keep a memory of only the last contact with other node.

• All: we consider the complete pairwise intercontact distribution between i and all its neigh-
bors. In this case, the needed memory is extended to all non-recorded contacts in the token.
In the worst case this can be all the period of observation.

• Any: we consider the complete history of past intercontact distribution between i and any
other node. In this case, we keep the same memory as for the All method.

Now that we are able to define two datasets, the original and the sampled, representing the in-
tercontact time distribution of two different groups, we wonder how both distributions are different.

5.2.2 ICT Approximation: How to Compare?

We use the two-sample Kolmogorov-Smirnov (KS) statistical test to compare the sampled 〈ict〉
with the original ict. The KS test defines a distance D (Equation 6) between these distributions.
The Null hypothesis of the two-sample KS Test is if they are drawn from a similar underlying
distribution.

D = sup
t>0
|ict(t)− 〈ict〉 (t)| (6)

We use the p-value to reject the null hypothesis with significance level α = 5%. Rejecting the
null hypothesis means that both samples definitely do not come from the same distribution. Failing
to reject means that both distributions are the same within an error associated to the significance
level.

But, this does not say anything about the distribution they come from. This must be analyzed
case by case. Note that this test just says within a given confidence level if the two samples come
or not from the same distribution. To go further we need to know specifically which statistical test
to perform given the underlaying probability distribution.
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5.2.3 Evaluation

In this section, we perform a series of simulations with “The ONE Simulator” [56] to test the
intercontact time monitoring strategies previously presented.

Synthetic Traces: For each simulation, we set a group of 100 nodes moving according to the
random waypoint movement (RWP) in a square of 100× 100m2. We gather the approximated
intercontact time distribution according to the four methods. For the simulations, we test N = 100
nodes and ∆ = 5 minutes for T = 500 time windows. Since we want to study the limit of the
monitoring methods, for each one, we increase the number of monitors/tokens from 1 to 100. We
repeat each simulation 10 times to reduce the randomness effects.

Our initial results indicate that the 〈ict〉 distribution is similar for both static and dynamic
scenarios. We observe that in the RWP simulation each monitor has an indistinguishable view of
its surroundings: the monitor sees that all nodes move uniformly into the space. In Figure 11a, the
average distance (Equation 6) is graphed as a function of the number of monitors. As expected,
we observe that the more monitors we add, the smaller the distance we obtain (hence the better
the approximation). This is independent of the method used. Since the homogeneous view in the
RWP model, we can say that increasing the number of monitors increases the contacts and hence
the quality of the ICT approximation.

Also, we can see that in the one monitor case, it is better to use the dynamic than the static
mode. This is due to the fact that we gather more contacts when we move. With the same
argument, we can see that the distance between the different strategies in the dynamic mode is
correlated with respect to the amount of information we add in the sample: DAny < DAll < DLast.
When calculating the KS test, we always verify the null hypothesis for any number of monitors.
This is independently of the selected method (static or dynamic) and sampling strategy selected
(Last, All, Any). In the case of RWP, we know that the ICT [55] follows an exponential law, hence
we can fit an exponential model to 〈ict〉 and obtain the desired result. An overall conclusion can
be as such: in the random waypoint scenario, we can monitor a group of nodes using a subset of
monitors. The key parameter to take into account is the number of contacts, that can be regulated
either by increasing the time sampling or by increasing the number of nodes in the space.

Real Traces: We use the INFOCOM traces [57] to study the 98 distributed nodes in the con-
ference. We aggregate the traces into snapshots with ∆ = 5 minutes. We also impose symmetry
in the connections. We perform the same analysis than with the synthetic traces. As expected, in
Figure 11b, we see that we always decrease the distance between the approximation and the real
value of the ICT by adding monitors. However, we see that the Last and All sampling strategies are
lower bounded by the Static method. This is equivalent to say that randomly selecting a number of
monitors and staying statically attached to them provides a better approximation than dynamically
changing nodes when just the pairwise information is considered (as in Last and All strategies).
We get a bigger distance due the fact that passing the token at each time can bias the data to
smaller values of intercontact time (we will have a higher probability of short intercontact times
than the real ict). In the static case we have a partial local view of the network, but consistent with
all the periods of observation. This will add longer intercontact times to the sampling, reducing
the bias (we will add more information to the tail of the distribution reducing the probability of
shorter intercontact times). In other words, adding diversity is not enough to improve the sampling
because it adds bias.
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However, we can see that the Any sampling strategy always draws the smaller approximation
distance. This is due to the fact that this method is a mix between static and dynamic monitoring.
Indeed, the holder of the token at the last snapshot will add all its intercontact time information.
This information is equivalent to the information that we would have added as a static monitor.
However, we have to remember that the cost of this strategy requires that all the nodes in the plane
node store theirs contacts. Here the token becomes just a method of data recollection. An obvious
improvement is to leverage the monitors connections. When they receive the token they may add
their information as well as their past connections information.

Static Any
Statistically representative > 78% > 15%

Approximately representative > 17% > 3%

Table 3: Monitors coverage (in percentage of nodes in the network) needed to be sure that 〈ict〉 is
a good estimator for ict (i.e. stop rejecting the null hypothesis)

Both simulation and trace analysis confirm the possibility of selecting a group of nodes and
attaching monitors to them in order to capture the global behavior of the ICT. These experiments
lead us to conclude that it is not possible to fully define the most representative set of monitors:
any non-random selection will introduce some bias to the sampling. Nevertheless, we have not yet
explored all the possibilities of our monitoring mechanism. In Table 3, we show the percentage of
nodes needed to stop rejecting the null hypothesis (pval > α). To stop rejecting the null hypothesis
implies that the 〈ict〉 is a good estimator for the real ict. We see that in the static case we need
to control at least 75% of the network. This implies a huge cost for monitoring. However, in the
dynamic case we need only to cover 15% when we use the any sampling strategy. This number
hides the fact that all nodes in the nodes plane must be storing past connections in memory. We
thus obtain the trade-off sought: either we add more memoryless monitors or we have less monitors
to recollect nodes data with higher memory capacity. If we accept a non-statistically accurate
view these numbers drop to 17% and 3% respectively. It is important to notice that the fact that
the static mapping requires such a big number of monitor nodes is due the unknown dynamics
of the opportunistic network. Indeed, since we do not assume any prior knowledge about the
nodes, we do not explore nor exploit any specific characteristic that my result in a better selection.
In simple words, a random selection will not produce good results. Using this reasoning for the
INFOCOM conference, and assuming that the devices delivery was random, we conclude that to
get a statistically representative estimation of the ICT , the experience should have covered at least
75% of the people in the conference. We see that the best case is the dynamic mode with the any
sampling strategy. This provides the limit of the monitoring: when the monitors plane and the
nodes plane become just one, all nodes are constantly monitoring and storing their neighborhood
and we use the random walk process just to recollect data.

6 Conclusions
In the following we present the main conclusions to each part of our work.
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6.1 TRW Architecture for Opportunistic Networks
Random walks on temporal networks were studied in previous work as a sampling method. In this
work we used them to provide a computer communication architecture. In Section 4, we defined and
discussed the main elements necessary to use temporal random walks over opportunistic networks,
defining our own Temporal Random Walk (TRW) architecture. Indeed, we formalized the concept
of dynamic overlay for opportunistic networks. We defined a dynamical mapping function that
links nodes in the opportunistic network with nodes in the overlay and we defined the token as a
virtual device symbolizing who is the walker at a given time. The dynamic mapping is defined at
each instant as the nodes in the opportunistic network that are holding a token in the overlay. The
progression of the tokens follows a random walk in the temporal network. We then discussed the
link between TRW and message forwarding.

6.2 Drop Model for Message Forwarding
DTNs characterization has focused on metrics such as average delay, delivery ratio, etc. assum-
ing that the problem of buffer occupancy is of lower importance. In Section 4.3, we studied the
drop ratio for the progression of messages from a set of sources to a set of destinations. To our
knowledge, we provide the first work specifically focused on the formal analysis of message drop-
ping in Opportunistic networks. Each source generates one message that can be absorbed by any
destination. Messages in our study are simply forwarded among nodes to avoid the inclusion of
extra copies (replication), which will only increase the probability of drops. We worked with nodes
with 1-message buffers to represent the worst case scenario to obtain an upper bound for the drop
ratio: all nodes in the network have their buffers almost full and we want to know how many new
messages can be injected.

Our main contribution is the introduction of a continuous time Markov chain model to character-
ize the drop of messages under these hypotheses. We introduced the (d, c) model for homogeneous
contact between nodes. We show the link between the encounter rate among nodes with the drop
ratio of forwarded messages in the homogeneous case: we showed that the upper bound for the drop
ratio is independent of the encounter rate. We performed simulations to calculate the drop ratio
for several scenarios to validate the model. We showed that the outputs of the CTMC model fit
very well to the simulation outputs. For future work, we plan to better characterize the behavior
of the two-class model by varying encounter frequencies. We will further investigate the cases of
larger buffers and full heterogeneity.

6.3 TRW as a Lightweight Infrastructure for Opportunistic Networks
As we have discussed in this work, one of the main challenges on opportunistic networks is the lack
of persistent end-to-end paths. However, we can exploit temporal paths formed by contacts between
nodes. Using the store-carry-and- forward paradigm, nodes can save messages until they find the
destination. However, in order to increase the delivery probability, most of the algorithms perform
message replication. This naturally introduces overhead as well as complexity for the deployment
on opportunistic networks. Many alternatives have been explored in order to reduce the number of
copies. For instance, the Binary Spray-and-Wait algorithm introduces a maximum of L copies for
each messages. In Section 5.1, we explored the use of temporal random walks over opportunistic
networks as a communication infrastructure. We proposed to use contacts as a medium to pass a
specific device gathering messages (the token), rather than to route a message. The simple analogy
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is to copy messages in a USB key and pass it among nearby contacts to eventually deliver the
messages. We studied how this method can successfully deliver messages, introducing two variants:
TRW and TRW-M. The former works as described before, but the later exploits the contacts of
tokens in the overlay network for merging the tokens contents. We showed that this merge strategy
increases the delivery probability, keeping at most as many copies of a message as the number
of tokens available. As expected, the simplicity of this approach leads to increased delays, which
can be acceptable in DTNs. We verified our approach with both synthetic and real traces. We
further noted how the connectivity of the network has a significant impact on the delivery: the
more disconnected the nodes are in the network, the more resources a typical routing algorithm
will need. Indeed, messages will need to stay in nodes’ buffers for a longer time until a new contact
arrives. Our approach offers a high delivery ratio independently of the density of contacts. We
showed with the changes in node density, that such lightweight infrastructure in opportunistic
networks can be useful in disaster scenarios where the density of nodes is low, and the need to have
an acceptable communication medium is crucial. Also it can be useful to offload mobile cellphone
networks when antennas cannot cope with the device density. With the use of our infrastructure
we can provide access to the network to nodes that cannot connect otherwise.

6.4 TRW as a Monitoring Application
Finally we proposed the use of TRW as an application to monitor mobile crowdsourcing scenarios.
We presented how to use temporal random walks to monitor the ICT and an evaluation of their
capabilities using both simulated and real trace-based opportunistic networks. Our results show
that it is possible to approximate the ICT characteristic of an opportunistic network with only
collecting a subset of global information. However, this has a cost in terms of number of monitor or
states of past activity to track. This tradeoff in monitor numbers and memory capabilities have an
impact on the quality of the estimated ICTs. We further discussed this tradeoff and proposed some
potential approach to overcome the shortcomings of the approach (e.g. favoring monitor number
or memory capacity)

In the future we plan to develop a reflective monitoring system for DTNs. We seek to study
under which conditions certain networks can converge to a uniform state where all the nodes share
a good approximation of the global network state. This can be exploited to improve algorithms
over opportunistic networks from local information.
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Figure 5: Chain transitions from a given state (d, c). We observe that either we find one destination
(d, c−1) or we have a drop (d+ 1, c−1). The rate at which we encounter a destination is increased
by D when multiple destinations are available. The state (d + 1, c − 2) is included to show the
progression of states.
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close the (d, c) model-predicted values and the simulated values are
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Figure 11: KS Distance with increasing number of monitors (RWP simulation and INFOCOM
traces). Notice that in both cases, the lower bound is obtained using dynamic monitoring with the
any strategy (full memory and interchanges)
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