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Distributed scaling control of rigid formations

Hector Garcia de Marina, Bayu Jayawardhana and Ming Cao

Abstract— Recently it has been reported that biased range-
measurements among neighboring agents in the gradient
distance-based formation control can lead to predictable collec-
tive motion. In this paper we take advantage of this effect and
by introducing distributed parameters to the prescribed inter-
distances we are able to manipulate the steady-state motion of
the formation. This manipulation is in the form of inducing
simultaneously the combination of constant translational and
angular velocities and a controlled scaling of the rigid forma-
tion. While the computation of the distributed parameters for
the translational and angular velocities is based on the well-
known graph rigidity theory, the parameters responsible for the
scaling are based on some recent findings in bearing rigidity
theory. We carry out the stability analysis of the modified
gradient system and simulations in order to validate the main
result.

I. INTRODUCTION

The use of teams of autonomous agents has attracted a lot
of interest in recent years. This is due to the fact that in many
tasks, such as the transportation of objects or area exploration
& surveillance, robotic teams can effectively accomplish
tasks with robustness against uncertain environment and offer
new functionalities, e.g. enhanced sensing instrumentation
[1]. One of the key tasks in coordinating a team of agents
is the formation and motion control, where the former refers
to keeping a prescribed shape while the later refers to the
steering of it. In particular, a very active topic regarding
formation control is the distance-based control for rigid
shapes, where the combination of potential-gradient control
and rigidity graph theory allows us to achieve (locally) a pre-
scribed shape by only controlling the inter-distances between
neighboring agents [2], [3]. It is a very appealing approach
since the agents can work with only local information, such
as their own frame of coordinates and the relative positions of
their neighbors. In addition, the equilibrium at the prescribed
shape is exponentially stable and it can be made robust
against sensor’s biases [4], [5], [6].

In this paper we propose a novel distributed control algo-
rithm for achieving the following three tasks simultaneously:

i) Formation scale-free shape keeping.

ii) Steering the scale-free formation as a whole with the
combination of a constant translation velocity and a
constant angular velocity applied at its centroid.
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iii) Precise scaling of the formation, i.e. controlling pre-
cisely the rate of growing or shrinking between two
desired scaled shapes. The proposed control law even
allows the changing between two different shapes.

The findings of our work employ the recent results in
[7] on bearing rigidity theory. Roughly speaking, bearing
rigidity theory is employed for controlling a shape instead of
focusing on maintaining constant distances or positions be-
tween neighbors, so one is interested in maintaining constant
inner angles of the shape which can be obtained from the
unit vectors between neighbors of a scale-free rigid shape.
In fact these findings have been recently employed to control
the translational motion of a rigid formation with a precise
scaling rate in [8]. The approach presented in this paper has
several advantages over [8]. Firstly, it does not require a
common frame of coordinates for the agents. Secondly it is
estimator free and it does not require global information such
as the position of the centroid and its desired velocity. Lastly,
the distance-based approach also allows rotational motion, a
feature lost in the position-based control since the steady-
state orientation is globally fixed by design.

The strategy employed in this paper is based on assigning
motion parameters to the prescribed distances of a desired
rigid formation. It has been reported in [9] that when
two neighboring agents differ in the prescribed distance to
maintain, collective motion of the formation occurs. More
precisely, the formation converges to a distorted version of
the desired rigid shape and at the same time it undergoes a
constant translation together with a rotation about its centroid
as has been described in detail in [10]. It has been shown in
[11] that if these mismatches in the prescribed distance are
taken as distributed motion parameters, one can maintain a
desired rigid shape and at the same time control precisely
a combination of a constant translation of the formation
with a constant rotation about its centroid. By unifying
the aforementioned results on motion control employing
distributed motion parameters and bearing rigidity theory,
one can control simultaneously the motion of the prescribed
rigid shape and its scale in a precise way, i.e. not distorting
a scale-free shape for a desired rate of growing/shrinking.

The rest of the paper is organized as follows. In Section II
we introduce the notation and background for bearing rigid
formations. Section III explains the design of the motion
controller with precise scaling/morphing of the formation by
introducing changing-motion parameters in a distance-based
controller. In Section IV we demonstrate the exponential con-
vergence of our proposed algorithm. Numerical simulations
validate the main results in this paper in Section V.



II. PRELIMINARIES

We start by introducing some notation employed through-
out the paper. For a given matrix A € IR"*?, define A 2 A®
I, € R"™*P™ where the symbol ® denotes the Kronecker
product, with m = 2 for the 2D formation case or m = 3 for
the 3D case, and I, is the m-dimensional identity matrix.
For a stacked vector/matrix = 2 [af oI xg] " with

e R™' i € {1,...,k}, we define the block diagonal
matrix D, 2 diag{z;}icq1,... 1y € RF™*_ We denote by
|X'| the cardinality of the set X, by ||z|| the Euclidean norm
of a vector x and by & = ﬁ the unit vector of a non-zero

x. We define the orthogonal projector operator as P;- 2
(Im f:i:ki{) or more generally Py over an orthogonal
subspace of X'. Finally we use 1,x,, and 0, ,, to denote
the all-one and all-zero matrix in IR"*™ respectively and
will drop the subscript if the dimensions are clear from the
context.

A. Graphs and rigidity theory

We consider a formation of n > 2 agents whose positions
are denoted by p; € IR™ for ¢ € {1,...,n}. The agents
can measure their range and directions with respect to their
neighbors. The representation of this sensing topology is
given by an undirected graph G = (V, &) with the vertex
set V = {1,...,n} and the ordered edge set £ C V x V.

The set N; of the neighbors of agent i is defined by N; 2

{jeV:@t,j)e& ;,» We define the elements of the incidence
matrix B € RV*El for G by
+1 if =g
bin 24 —1 if = ghewd

0 otherwise,

where £l and £ denote the tail and head nodes, respec-
tively, of the edge &, i.e. & = (€1, £read) Since the graph
G is undirected, it is irrelevant how the directions of the
edges are defined in B.

A framework is defined by the pair (G,p), where p =
i ... pZ]T is the stacked vector of the agents’ posi-
tions. The available relative positions of the agents in the
framework are given by the following stacked vector

=B p,

where each vector z;, = p; — p; in z corresponds to the
relative position associated with the edge & = (4, 7).

Let us now briefly recall the notions of distance infinitesi-
mally rigid framework and minimally rigid framework from
[3]. Define the edge function fg by fg(p) = col (IIz&1?)

where the operator col defines the stacked column vector and
we denote its Jacobian, also known as the rigidity matrix,
by R(z) = DZET. A framework (G,p) is infinitesimally
rigid if rank R(z) = 2n — 3 when it is embedded in R? or if
rank R(z) = 3n—6 when it is embedded in R®. Additionally,
if |€| = 2n — 3 in the 2D case or |€| = 3n — 6 in the 3D
case then the framework is called minimally rigid. Roughly

speaking, the only motions that one can perform over the
agents in a minimally rigid framework, while they are already
in the desired shape, are the ones defining translations and
rotations of the whole shape.

The stacked vector of relative positions z* =
[217 237 .. 27¢," |7 defines a desired infinitesimally and min-
imally rigid shape with ||z}|| = dj, for all k € {1,...,|E|}
where dj, is the desired inter-distance. The resulting set Z
of the possible formations with the same shape is defined by

Z2{(Ig®R) 2"}, (1)

where R is the set of all rotational matrices in 2D or 3D.
Roughly speaking, Z consists of all formation positions that
are obtained by rotating z*.

Consider a scale-free shape based on an infinitesimally
and minimally rigid shape, for example the collection of all
regular squares with an internal diagonal. It is obvious that
this collection can be distinguished from other (infinitesi-
mally and minimally rigid) scale-free shapes by looking at
its inner angles or equivalently by looking at all the scalar
products Z! 2, where [ and n are two edges sharing a node.
This fact has been explained in more detail in [12]. Bearing-
based rigid frameworks are related to the distance-based ones
where the bearing-based shape can be defined by the inner
angles, instead of the distances. Let us review some basic
concepts in bearing rigidity.

Definition 2.1: [7] Frameworks (G,p) and (G,p’) are
bearing equivalent if P}~z =0 for all k € {1,...,|€]}.

Definition 2.2: [7] Frameworks (g p) and (G,p’) are
bearing congruent if P (pz p;) =0 forall i,j € V.

Deﬁmtwn 2.3: [7] The éearmg ﬁmctwn is defined by
fBe(p) 2z € R™El, where! 2 is the stacked vector of
2 forall k € {1,...,[&|}.

Similar to the rigidity matrix one can define the bearing
rigidity matrix by computing the Jacobian matrix of the
bearing function

fB:s(P) _ =T yr HT
RB(Z) = Tp = Dg D;;_B B
where P} € R™EX™ s the stacked matrix of operators

PZJ- and z € IRl is the stacked vector of TeeTl kl for all k €
{1,...,]€|}. The non-trivial kernel of Rp(z) includes the
scahngs and translations of the framework [7], leading to
the following definition

Definition 2.4: [7] A framework is infinitesimally bearing
rigid if the kernel of its bearing rigidity matrix only includes
scalings and translations.

In order words, if a scale-free shape can be determined
uniquely by its inner angles, then it belongs to the infinites-
imally bearing rigid framework.

Consider a given shape defined by Z, we define the scale-
free Zs by taking Z rescaled by all the possible scale factors
s € R such that ||z;|| = sdj, for all k € {1,...,|E|}. This
leads to the following definition

'In order not to overload the notation, here by 2 we mean exclusively
the vector-element wise normalization of z.



Definition 2.5: The shapes defined by Z within the set
Zs are infinitesimally and minimally congruent rigid.

The name comes from the fact that all the scales of
an infinitesimally and minimally rigid shape are bearing
congruent.

B. Frames of coordinates

In order to describe and design motions for the desired
scale-free formation defined by Zg, it will be useful to
attach a frame of coordinates to the centroid of the shape.
We denote by O, the global frame of coordinates fixed at
the origin of IR™ with some arbitrary fixed orientation. In
a similar way, we denote by O, the body frame fixed at
the centroid p. of the desired scale-free rigid formation.
Furthermore, if we rotate the scale-free rigid formation with
respect to O, then Oy is also rotated in the same manner.
Note that p,. is invariant with respect to Zs. Let ’p; denote
the position of agent ¢ with respect to O. In order to simplify
notation, whenever we represent an agent’s variable with

o . A
respect to Oy, the superscript is omitted, e.g. p; = Ip;.

III. MOTION AND SCALING OF RIGID FORMATIONS

We consider the n agents in the framework (G,p) to be
governed by single integrator dynamics

Pi = U, 2

where u; € IR™ is the control action for all ¢ € {1,...,|V|}.
For each edge & in the framework one can associate a
potential function Vj(z;) whose minimum corresponds to
the desired configuration of the associated edge, for example,
in order to (locally) stabilize Z we can employ the classical
elastic potential function from physics for controlling the
length of the edges

2 1 €]
Vip) = Vi(zk) = = 2i|| = di)?. 3
(p) ; k(2k) 2;(” Kl — di) 3)
It has been reported in [9] that in undirected gradient-
based controlled formations if at least two neighboring agents
differ about the prescribed distance to maintain, i.e. they
have a mismatch, then a steady-state collective motion with
a distorted shape occurs. The collective motion, illustrated
in Figure 1, is described by the combination of two constant
velocity vectors:
o A linear velocity bv;C of the centroid with respect to
the steady-state distorted shape.
o An angular velocity “w* that rotates the steady-state
distorted shape.

It has been shown in [11] that if we replace mismatches
by distributed motion parameters, then we can control both,
a non-distorted desired shape and a desired motion of the
formation with respect to Oy. Throughout this section we will
show that such an approach can also be employed to scale
the formation shape precisely over time while simultaneously
to guide the formation to travel with a desired bv;C and
bw*. This approach is easier and more effective in several
aspects than the one presented in [8], since we do not need

o, S

Fig. 1: The resultant motion of the tetrahedron is the com-
position of the two constant velocities "v} and ‘w*. The
described trajectory has been split in two red curves.

estimators for traveling at a constant speed and we can also
rotate the desired formation with respect to O, by controlling
only one agent. Moreover, using our proposed approach, the
agents can use only local coordinates since we are using the
distance-based control strategy.

We introduce the motion and changing parameters to the
gradient-based control and show the steady-state motion,
including the scaling of the shape Z, is related to its unit
vectors. The control inputs derived from the gradient of the
distance-based potential (3) for the agents ¢ and j on the
edge & = (4, ) are as follows

uf =—5k(|zk|—dk)}
b = 5 (||l — di), @)

where the superscript k denotes the contribution of the edge
k to the total control input u; and wuj;. Introduce a pair
of parameters py and fix to the prescribed distance dj as
follows

uf = =2 Iz — di - pr) = —Zk(llzkl| — di) + Zklik
ub =2, (|[zell = die + ix) = 2k (ll26l] — di) + Zafin.
5

The structure in (5) allows us to write the complete control
law u in the following compact form

u = —cBDzse + A(pu, ji)2, 6)

where u € IR™ V! is the stacked vector of control actions Us,
c € R" is a constant gain, e € IRl is the stacked vector
of all the distance errors e, = ||zx|| — sdy where all the
sdy’s have been taken from Zj, the parameters u € R/¢!
and 1 € Rl are the stacked vectors of i and [ for

all k € {1,...,|€|} and the elements of A are defined as
follows ‘
pe if i= &R

ai 2 { i if 0= ghead (7)

0 otherwise.

Note that the elements of A are related to the incidence
matrix B because of (5), and hence we still have a distributed
control law.

We can identify two terms at the right hand side of (6).
The first one is clearly related to the gradient distance-based
controller and its purpose is to form and keep the prescribed
shape given by Z,. The second term corresponds to the
steady-state collective motion and changing induced by the
parameters py and ji;, and the actual shape of the formation



given by the unit vectors in 2. We will see that in order to
guarantee the stability of the system we will make use of the
exponential convergence of the self-contained error system
in the original gradient-based controller. By choosing c in
(6) sufficiently large, we can make the gradient-based term
dominate the second term. Therefore the team of agents will
converge to the desired shape Z;, where s can be time-
varying i.e. we will scale the shape within Zg, and the
steady-state motion will be given by the parameters and the
unit vectors in z € Zg.

A. Design of the distributed motion and changing parame-
ters

Suppose that the formation is at the prescribed shape, i.e.
e = 0. In this case if A(u,f1)2 defines translations and
rotations of the infinitesimally and minimally congruent rigid
family Zg, then the desired scaled shape Z will be invariant
under such an additional control term. Note that from (6)
when e = 0 the control law for the agent ¢ becomes

€]

b bg*
wi =Y a2y, ®)
k=1

where 2* € Zgs. We recall that the elements a;, of A
are related to p and i as in (7). In an infinitesimally and
minimally congruent rigid formation, the minimum number
of neighbors for agent ¢ is two (resp. three) in 2D (resp.
3D) shapes with its corresponding zj;’s not being in non-
generic degenerated configurations, e.g. all of them collinear
(resp. coplanar), then ®u; can span the whole IR? (resp . IR®).
In other words, we can design a pair of arbitrary constant
velocities bv;;c and ®w* for the desired scale-free formation
Zs by choosing appropriately p and ji. For choosing such
w and fi, let us decompose them into p = p,, + pi + s and
[t = [ty + [, + [s, Wwhere each term in this decomposition
can be used to define the translation, rotation and scaling
of the group motion. Here, the subscript ‘v’ refers to the
motion parameters responsible for bv;C, ‘w’ refers to Pw*
and finally ‘s’ refers to the changing parameters which are
responsible for dilating/contracting the shape within Zs. As
shown in [11] the motion parameters of i, fiy, ttw and fi,
can be determined by imposing restrictions on the dynamics
of z and e in order to keep invariant e at e = 0, i.e.

B A(u, )z =0 9)
D:B" A(u, )2 = 0, (10)

where (9) stands for translations and (10) stands for rotations
and translations. Let us write the following identity

A(u, i)z = [S1D: S2Ds] m =T(3) m . (1)

where S is constructed by setting all the 1 elements in the
incidence matrix B to zero and S5 2 S1 — B. In order to
compute the distributed motion parameters pi,, i, for the
translational velocity ”vzc we eliminate the components of p
and i responsible of non-motion, i.e. A(u, f1)Z = 0 in (6), by

Fig. 2: The velocity of the agents at the desired shape is the
linear combination of the unit vectors from their associated
relative positions (black dashed lines) given by (8). The
common velocity bv;F of the centroid is marked in blue and
it is given by p, and fi,. The rotational velocity about the
centroid defining ®w* is marked in red and is given i, and
Iiw. The velocity responsible for scaling the formation has
been marked in green and it is given by ps and fis. Note
that these velocities are constant with respect to Oy.

projecting the kernel of ETT(Z’,%*) (derived from (9)) over
the orthogonal space of the kernel of (11)

[’f“} €U2 Plyirpsy {Ker{B TC2)} ) (12)
fly
where we have employed ®2* in order to define the transla-
tional velocity of the desired formation with respect to Oy, as
in Figure 1. In a similar way, by removing the components
responsible of non-motion and translational velocity, the
computation of the distributed motion parameters p,,, i, for
the rotational motion of the desired shape is obtained from
(10) and (12) as

[‘f“} e {Ker{Dﬂ*FTT(bé*)}} . (13)

w
In order to compute the distributed changing parameters
lis, fis we need to look at the bearing rigidity matrix Rz (z).
It has been shown in [7] that the meaning of the kernel of the
bearing rigidity matrix stands for translations and scalings of
the desired shape. Therefore in a similar way as before the
following condition

Lﬁj] €S2 Pt {Ker{DITDé*BTT(bé*)}} . (1)
will give us the space of changing parameters responsible
for the scaling of the formation. We would like to remark
that the presented motion and changing parameters have
been designed for a family of infinitesimally and minimally
congruent shapes Zg, i.e. for a scale-free version of a desired
infinitesimally and minimally rigid shape. Note that the three
spaces U, VW and S have been computed in a centralized way
while the parameters p and i are applied in a distributed
fashion. This computation can be done off-line during the
design stage, e.g. at the same time that one designs the
corresponding dy, for the desired shape Z. An example of the
three spaces U, VW and S for an infinitesimally and minimally
congruent regular squares is given in Figure 2.



B. Design of the controller for precise motion and changing
of the formation

Here by precise scaling we mean the control of agents
such that the inter-distances follow a time varying d(t) but
with the shape in Zs. More precisely, we set ep(t) =
||z (t)||—di(t) for k € {1,...,|E|} with Z € Zg in a family
of infinitesimally and minimally congruent rigid shapes. For
simplicity we set the following relation in the edge &

dy.(t) = s(t)dj, + dj,

where s(t) € IR is a time varying scaling signal which is
assumed to be at least C! and dj is defined for a particular Z.
We remark here that the form used in (15) is for convenience
of design. One can of course choose dj(t) = s(t)d}. Without
loss of generality, we assume that s(0) = 0. Obviously, for
well-posedness we also impose that s(t) is defined properly
such that di(t) > 0 for all ¢ and k € {1,...,|E|}.

It is clear that the desired linear speed ||°v% || and the
desired angular speed ||’w*|| are related to the norms of
Ly 1y and p,, [, respectively. It can also be easily checked
that the speed <-dj(t) is related to the norms of y and fi.

We derive the dynamics of z and e from (6) but consider
the time varying desired distances

(15)

i=—cB BD:e+ B A(u,ji)?
¢ = —cDTB' BD:e+ DB’ A(u, ji)% — d,

(16)
a7)

where we have rewritten e as the stacked vector of ey (t) =
[|zk(t)|| — di(t) for k € {1,...,]€]|}, and d is the stacked
vector of dj(t) also for k € {1,...,|E|}.

In a similar way as in (9) and (10), in order to compensate
d in (17) we impose the following condition for keeping
invariant e for e = 0, i.e. the formation shape is always in

d= DQ@T [SiDsse  SoDs.] m , (18)

so that the last two terms of the right hand side of (17) is
zero when e = 0. Note that the solution to (18) for u and
i includes the spaces U and W. Therefore the distributed
changing parameters that we are looking for scaling the
desired shape with a desired scaling speed are [;°] € S
such that (18) holds.

For the constant growing case, i.e. s(t) = st, where
s € RT is a common constant scaling speed among all
the agents, we have that d = %d* = sd* and therefore the
solution of (18) gives constant ;15 and fi;. Considering the
periodic scaling case we have that s(t) = ssin(wt), which
obviously satisfies d = 92 d* = swcos(wt)d*. Therefore the
changing parameters ps and jis for the periodic case are the
same as we have seen previously calculated for the constant
growing case but multiplied by the periodic signal w cos(wt),
which is obviously independent of the actual shape.

IV. STABILITY ANALYSIS

Before presenting the main result, we need to show first
that the error system in (17) is an autonomous system.
Indeed, the second term at the right hand side of (17) depends

on the dot products of the form 2] 2; for i, j € {1,...,|&|}.
It has been shown in [9] that all the scalar products le z; for
i, € {1,...,|&€|} can be written as smooth functions of the
inter-distances ||z;|| for k € {1, ..., |€|}. Since the errors e,
for k € {1,...,|€|} are functions of only the inter-distances

[|z|| and 24 for k € {1,...,|€|}, we have that

i,j €{1,...,[€]},

where g;; is a local smooth function around the shape z €
Z. Note that when z € Z, the second and third terms on
the right hand side of (17) vanish because of (18), therefore
we can write the following local function

19)

225 = gij(e),

fle) = DTB A(u, i)z —d, f(0)=0 < z€ Z,.
(20)
Employing the same argument, the matrix in the first term
of the right hand side of (17) can be rewritten as

Q(e) = DIB' BD:, @1

where it has been shown in [11] that Q(0) with z € Z; is
positive definite.

Theorem 4.1: Consider the distributed parameters [ ],
[52] and [%°] belonging to the spaces (12), (13) and (14)
respectively. Then, there exist constants p,c* > 0 such that
the origin of the system (17), corresponding to z € Z, with
time-varying s(t) as in (15), is locally exponentially stable
for all ¢ > ¢* in the compact set Q = {e:|le||* < p}. In
particular, the formation will converge exponentially fast to
the time-varying shape defined by Z, with the speed dfi(tt)
satisfying (18) and the agents’ velocities

Ppi(t) — i, t — 00, € {1,...,|V|}, (22)
ds(t)

where the °p}’s are given by the desired °p7, w and <2,
that are determined by [;°], [5] and [75°].

Proof: Consider the following candidate Lyapunov
function

1
V= §||e||2, (23)
whose time derivative satisfies
d
d—‘; =ele=—ceTQ(e)e + e fle), (24)

with f(e) and Q(e) as in (20) and (21) respectively. We have
that (0) is positive definite and that in a neighborhood of
Z4 the formation is still infinitesimally and minimally rigid,
therefore ()(e) is positive definite in the compact set Q for
some small positive p. Furthermore, f(e) is locally Lipschitz
in the compact set Q and f(0) = 0 with z € Zj, therefore
there exists a constant ¢ € IR* such that

dv

dt
where Apin is the minimum eigenvalue of Q(e) in Q. Thus
if one chooses ¢ > c¢* > ﬁ, then the exponential stability
of the origin of (17) follows from Theorem 4.10 from [13]
for non-autonomous systems. Therefore we have that the
formation shape converges exponentially to Z;.

< (—CAmin + 9)|Je]?, (25)



Now we substitute e(t) — 0 and 2(t) — Z; as t goes to
infinity into (6) and (2), which gives us
B(t) — A, 1)5(t) — 0,
In other words, the velocity of the formation converges expo-
nentially fast to the desired velocity given as a superposition
of bv% and *w* with the scaling speed 4) satistying (18).
|
Remark 4.2: The magnitude of the positive constant p
only depends on the desired shape, i.e. if one chooses a shape
where all the agents are far away from each other and far
away from a collinear (2D) or coplanar (3D) configuration,
then one should expect a bigger p for such desired shape than
for the one that does not meet such requirements. In some
sense p is measuring (in a conservative way) how the desired
formation can be distorted without falling into a degenerated
configuration. Examples about how to compute c¢* and ¢ can
be found in the PhD thesis [14].

t — 0. (26)

V. SIMULATION RESULTS

In this section > we validate the correctness of Theorem
4.1. We have four agents with a scale-free regular square as
the prescribed shape. The objective of this simulation is to
design the distributed motion-changing parameters p and [
in the control law (6) such that the square spins around its
centroid and at the same time we vary periodically the scale
of the squalre.OWelch)ﬁne1 the sensing topology of the agents

by B =

11
we will per?od?caﬁy scale with side-length dj = 15 pixels. In
order to induce the spinning motion we design the following
1, and fi,, satisfying (13)

-11 0 0 O

0 -1 1 -1 o | and define the regular square that

Mo = [—w —w 0w —w]T, ILNLUJ = [—w —w 0w —w}T 27

)

with w = 1. We want to vary periodically the size of the
square following the desired time-varying distances

d;(t) = df + 2hd} sin(wst), i = {1,...,5}, (28)

where one can deduce that s(t) = 2hsin(wst) and we set
h = 2 and ws = 1.5 rads/sec. The desired ps and jis
satisfying (14) and (18) are

s ()T fs()T] = hws cos(wst)[11011 -1 -10-1-1].
(29)
Finally we choose ¢ = 5 for (6), which in numerical checking
is much smaller than the conservative gain in Theorem 4.1.
The numerical results are shown in Figure 3.

VI. CONCLUSIONS

In this paper we have modified the popular distance-
based controller by adding distributed parameters at their
prescribed inter-distances in order to control the steady-state
motion while at the same time controlling precisely the
scaling rate of the formation. This approach is compatible
with higher order agent dynamics [15] and is applicable to

2Video footage from actual mobile robots can be found at
www.youtube.com/c/HectorGarciadeMarina with their explanations in [14].
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Fig. 3: The left plot shows the trajectories of the agents with
the ‘x’ denoting the initial points. The dashed lines show
two different scales of the prescribes square. The right plot
shows the evolution of the inter-distances.

the target enclosing and tracking problem. For the periodic
scaling, future work includes the addition of estimators based
on the internal model principle in order not to require all the
scaling signals s(¢) to have the same phase at the starting
time.
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