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Mixed-Integer Nonlinear Programming for
Aircraft Conflict Avoidance by Sequentially

Applying Velocity and Heading Angle Changes

Sonia Cafieri and Riadh Omheni

ENAC, University of Toulouse, F-31055 Toulouse, France

Abstract

We consider the problem of aircraft conflict avoidance in Air Traffic
Management systems. Given an initial configuration of a number of
aircraft sharing the same airspace, the main goal of conflict avoidance
is to guarantee that a minimum safety distance between each pair of
aircraft is always respected during their flights. We consider aircraft
separation achieved by heading angle deviations, and propose a mixed
0-1 nonlinear optimization model, that is then combined with another
one which is based on aircraft speed regulation. A two-step solution
approach is proposed, where the two models are sequentially solved
using a state-of-the-art mixed-integer nonlinear programming solver.
Numerical results validate the proposed approach and clearly show
the benefit of combining the two considered separation maneuvers.

Keywords Air traffic management, Conflict avoidance, Mixed-integer
nonlinear programming, Deterministic global optimization, Modeling, MINLP

1 Introduction

We address a real-life problem arising in the context of Air Traffic Manage-
ment (ATM), and more specifically in Air Traffic Control, that is the problem
of aircraft conflict avoidance during en-route flights. Two aircraft are said
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to be in conflict if during their flights there is a loss of a standard separation
between their trajectories, that has to be always respected instead to guar-
antee air traffic safety. The main aim of Air Traffic Management is that of
ensuring that aircraft are always safely guided in the sky and on the ground,
and aircraft conflict avoidance constitutes one the major challenges to be
faced. This is specially due to safety issues in a context of growing air traffic
on the world scale. Air traffic in Europe, for example, is expected to double
within the next two decades [1]. This implies an increasing workload for air
traffic controllers, with a consequent growing difficulty in ensuring air traf-
fic safety. Thus, ATM needs more automation in tackling crucial processes
like aircraft conflicts resolution, as pointed out in the context of major ATM
projects Sesar[2] and NextGen[3].

Developing mathematical models and efficient and reliable algorithms for
aircraft conflict avoidance has been the focus of a great deal of research
attention in last years. Aircraft conflict avoidance could indeed be probably
considered as an emerging application of Operations Research.

Problem statement

Let us consider a set of aircraft sharing the same airspace. Conflict avoidance
is performed monitoring a selected portion of the airspace over a given time
horizon, and issuing suitable separation maneuvers when a loss of pairwise
separation between aircraft is detected. We consider the case of aircraft
in the en-route airspace, where the standard separation norms are 5 NM
horizontally and 1000 ft vertically (1NM (nautical mile)= 1852 m; 1ft (feet)=
0.3048 m). Furthermore, we consider aircraft that are all allocated to the
same flight level, and thus our focus is on horizontal separation maneuvers.
Flight level changes to resolve conflicts are in fact rarely employed because of
fuel consumption and of passengers discomfort. The problem we address is
at a tactical level, i.e., aircraft in their en-route cruise flights are monitored in
a short time window (20-30 minutes) and conflicts are resolved a short time
before the loss of separation potentially occurs (so, a fast solving, preferably
in the order of seconds, is generally expected). We are given aircraft with
their initial positions in the observed airspace, and with their velocity vectors,
that is their speed and their heading angles defining their trajectories. The
aim is that of providing, starting from such initial configuration, a new one
that is conflict-free for all aircraft.

To solve an aircraft conflict, various maneuvers can be employed, mainly
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including altitude changes (AC), heading angle changes (HAC) and velocity
changes (VC). Mathematical models are then based on this kind of maneu-
vers. Optimization problems naturally arise in this context, as in general one
aims at separate aircraft while deviating them as less as possible from their
original trajectory.

Based on the comprehensive survey conducted by Kuchar and Yang [4], it
appears that the majority of detection and resolution methods up to the year
2000 focus on AC and HAC. In particular, the great attention towards head-
ing angle changes is related to the fact that these maneuvers are currently
the most used by air traffic controllers. In the last 15 years, some sublimi-
nal speed control-based models have been proposed. The subliminal speed
control, that was firstly introduced in the context of the European project
ERASMUS [5], consists of modifying the aircraft speeds within a very small
range around their original speeds, without informing air traffic controllers.
This kind of control is highly promising to introduce some automation in
ATM, thus reducing the workload of air traffic controllers.

In the following, we review some approaches based on mixed-integer pro-
gramming, that constitutes the framework of the approaches developed in
this paper.

Mixed-integer programming literature

Mixed-integer programming approaches have been used in aircraft conflict
detection and resolution since the 2000’s. An overview of MINLP modeling
is presented in [6]. In 2002, Pallottino, Feron and Bicchi [7] proposed two
different formulations of the multi-aircraft conflict avoidance problem as a
mixed-integer linear program (MILP) by allowing all aircraft to perform ei-
ther VC or HAC, but not both. These models are then solved by standard
MILP software. Christodoulou and Costoulakis [8] proposed a combinatorial
approach that combines aircraft velocities and heading angles. The obtained
problem is a mixed-integer nonlinear program (MINLP), that is solved for
small-scale instances. Vela et al. [9] proposed a mathematical model that is
formulated as a MILP and is based on concepts of speed control and flight-
level assignment. In a second work, Vela et al. [10] presented a MILP model
to identify the required heading angle and speed changes for each aircraft
to avoid conflicts. As an objective function, they chose to minimize the
fuel costs incurred due to the considered changes. MILP models based on
speed control were also proposed in [11, 12] where the total conflict duration
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is minimized. Since 2011, Alonso-Ayuso, Escudero and Mart́ın-Campo have
proposed three mathematical models which all extend the work of Pallottino,
Feron and Bicchi [7]. In [13], the authors presented a mixed 0-1 linear opti-
mization model based on VC and AC. The second model, presented in [14],
is a mixed 0-1 nonlinear optimization one where velocity change is used as
a maneuver to resolve conflicts. In 2014, a non-convex MINLP model based
on turn changes has been developed [15]. Once all conflicts are solved, the
aircraft are forced to return to the original flight configuration by solving
an unconstrained quadratic program. This feature will be used in our work
presented in this paper. Note finally that there is no computational com-
parison of the performances of above three models. Cafieri and Durand [16]
proposed MINLP formulations for deconfliction based on speed regulation,
where each aircraft is allowed to fly with a modified speed in a time window.
More recently, a MINLP model for maximizing the number of conflicts that
can be solved when only velocity regulation is performed has been introduced
by Cafieri [17]. In addition to mixed-integer programming, local continuous
optimization to air traffic conflict resolution has been proposed. Peyronne
et al. [18] presented a B-spline trajectory model involving only one contin-
uous variable per aircraft, and a semi-infinite programming formulation for
the separation constraints and showed some numerical results on problems
involving up to six conflicting aircraft.

Contribution statement and paper structure

In this paper, we consider aircraft separation achieved by heading angle
changes and by speed regulation. First, a mixed-integer nonlinear program
(HAC) is proposed, where aircraft conflicts are solved by aircraft heading
angle deviations. Then, this model is combined with another mixed 0-1 non-
linear program, that maximizes the number of aircraft conflicts that can be
solved by subliminal speed regulation.

These two MINLPs are solved using a state-of-the-art global exact solver.
A two-step methodology is then proposed, where the solution of the second
MINLP is used as a pre-processing step for the first one. This is shown
to be able to significantly speed-up the resolution process. Numerical re-
sults clearly show, indeed, the benefit of the proposed combination of the
two considered aircraft separation maneuvers, thus validating the proposed
approach. Such an approach appears to be, on the other hand, appropri-
ate for the considered real-time application, where subliminal speed control
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is expected acting as a first filter for the traffic. Then, the traffic is made
fully conflict-free thanks to heading changes, that correspond to maneuvers
currently mainly employed by air traffic controllers.

The paper is organized as follows. In Section 2, we provide a general
description of the addressed problem and present two MINLP models for
aircraft conflict avoidance. A mixed-integer nonlinear program based on
HAC is first proposed. Then, a mixed-integer program aiming to maximize
the number of solved conflicts using VC is presented. We give thereafter, in
Section 3, a detailed description of the proposed algorithm, combining the
solution of the above MINLPs. In Section 4, numerical results are presented
and some numerical issues are discussed. Conclusions and perspectives for
future work are drawn in Section 5.

2 Modeling aircraft conflict avoidance

Let A denote a set of aircraft sharing the same airspace and flying during
their cruise phase, all at the same flight level. Each aircraft i ∈ A is identified
by the triplet (xi, yi, φi) giving its abscissa, ordinate and direction of motion
in ] − π, π], with (x0i , y

0
i , φi) the initial triplet, at time t = 0. The minimum

separation distance condition between two aircraft i and j ∈ A can be
expressed as follows:

(xi(t)− xj(t))2 + (yi(t)− yj(t))2 ≥ d2 ∀t, (1)

where d is the minimum required horizontal separation distance and xi(t) and
yi(t) are the coordinates of the aircraft i at time t. When condition (1) is not
satisfied for some t ≥ 0, aircraft i and j are said to be in conflict. In such a
case, (at least) one maneuver to separate the aircraft has to be performed. In
the following subsection, we focus on separation achieved by aircraft heading
angle changes and propose a MINLP model for solving aircraft conflicts.

2.1 MINLP for HAC

Let us consider n aircraft with known initial spatial coordinates and trajec-
tory directions (heading), flying through an air sector during a time window
observed by air traffic controllers. Our goal is to determine for each of the n
aircraft, i ∈ A, its minimum heading angle change that allows to satisfy the
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separation condition (1), thus obtaining a conflict-free aircraft configuration.
An example is displayed on Figures 1 and 2.

•

•

•

•

conflict zone

φi

φj
φk

φ`

Figure 1: Initial configuration for
4 conflicting aircraft flying towards
the center of a circle of a given ra-
dius.

•

•

•

•

φi

φj
φk

φ`

θi

θj
θk

θ`

Figure 2: After conflict resolu-
tion, the new trajectory of each
aircraft is given by a solid line.

The proposed approach, presented in the following, is based on the work
of Cafieri and Durand [16]. In that work, aircraft headings were kept fixed,
while velocity vectors were modified by changing aircraft speeds to achieve
separation. Here, we consider the opposite situation: aircraft speeds are
fixed, while we allow aircraft change their headings.

Assume that uniform motion laws apply for aircraft. The abscissa and
ordinate of an aircraft i at time t are given by

xi(t) = x0i + cos(φi + θi)vit and yi(t) = y0i + sin(φi + θi)vit,

where θi is the angle variation for aircraft i for solving the conflict situations
and vi is its initial speed. Note that vi is fixed for all i, while θi, for all
i represent the decision variables of the optimization problem that we are
going to define. Substituting the expressions of xi(t) and yi(t) into (1), we
obtain

t2‖V r
ij‖2 + 2tXr0

ij · V r
ij + ‖Xr0

ij ‖2 − d2 ≥ 0, (2)

where the relative initial distance Xr0
ij between aircraft i and j and the rela-
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tive speed V r
ij are vectors in R2 given respectively by

Xr0
ij :=

(
x0i − x0j
y0i − y0j

)
(3)

and

V r
ij :=

(
cos(φi + θi)vi − cos(φj + θj)vj
sin(φi + θi)vi − sin(φj + θj)vj

)
(4)

and Xr0
ij · V r

ij denotes the inner product of Xr0
ij and V r

ij. Equation (2) is a
quadratic equation in one unknown t. By differentiating its left-hand side
member, the time for which the condition (2) is minimal, and so aircraft i
and j have minimal relative position, is

tmij = −
Xr0
ij · V r

ij

‖V r
ij‖2

.

By substituting this into (2), we obtain the following expression:

‖V r
ij‖2

(
‖Xr0

ij ‖2 − d2
)
− (Xr0

ij · V r
ij)

2 ≥ 0, (5)

which no longer depends on t. The separation condition (5) is to be imposed
only when tmij ≥ 0. To this end, we introduce a new, binary, variable yij for
each pair of aircraft i and j such that

yij =

{
1 if tmij ≥ 0,

0 otherwise.

This yields the following separation condition for aircraft i and j

yij
(
‖V r

ij‖2
(
‖Xr0

ij ‖2 − d2
)
− (Xr0

ij · V r
ij)

2
)
≥ 0.

For each pair of aircraft, such a condition constitutes the main constraint of
the optimization problem for aircraft deconfliction.
As for the objective function, we choose to minimize for all aircraft their
heading angle variations, that is

min
∑
i∈A

θ2i .

The main motivation for this choice is to ensure that flight plans of the
considered aircraft do not change significantly with respect to the original
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ones. Notice that other objective functions can be considered, such as the
minimization of the fuel cost or the total difference in flight time between
the original expected time and that needed to perform the HAC maneuvers
to avoid all potential conflicts.

The proposed optimization problem is summarized below. For the sake
of simplification, we use the notation B := {(i, j) ∈ A × A : i < j}. The
decision variables are: θi, for all i ∈ A, tmij for all (i, j) ∈ B, and yij for all
(i, j) ∈ B.

min
∑
i∈A

θ2i (6a)

s.t.

θmini ≤ θi ≤ θmaxi , ∀ i ∈ A, (6b)

yij
(
‖V r

ij‖2
(
‖Xr0

ij ‖2 − d2
)
− (Xr0

ij · V r
ij)

2
)
≥ 0,

∀ (i, j) ∈ B, (6c)

tmij = −
Xr0
ij · V r

ij

‖V r
ij‖2

, ∀ (i, j) ∈ B, (6d)

tmij (2yij − 1) ≥ 0, ∀ (i, j) ∈ B, (6e)

yij ∈ {0, 1}, ∀ (i, j) ∈ B (6f)

where Xr0
ij and V r

ij are given by (3) and (4) respectively. Constraints (6b)
are imposed to ensure that the heading angle variation for each aircraft sat-
isfies some bounds, due to operational reasons. In our implementation, these
bounds are set to θmini = −π/6 and θmaxi = π/6, for all i ∈ A. Con-
straints (6c) are the separation constraints for each pair of aircraft. Con-
straints (6d) define tmij , (6e) are added to check the sign of tmij (the separation
condition (6c) is only imposed when tmij ≥ 0), and (6f) are integrality con-
straints on yij.

Note that trigonometric functions appear in the definition of V r
ij. Fur-

ther nonlinearities appear in constraints (6c), (6d) and (6e). Some of these
nonlinearities can actually be reformulated using standard techniques [19].
Constraints (6e), which contain the product of a binary variable and a contin-
uous variable, can be reformulated for all (i, j) ∈ B to two linear inequalities,
once bounds on variables tmij are computed (starting from bounds deduced
on V r

ij). Then, a big-M reformulation can be applied on constraints (6c).
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From some numerical experiments, however, it appears that these reformu-
lations do not have a relevant impact on the computational efficiency of the
resolution process. This is probably due to the fact that one of the main
difficulties in the numerical solution of problem (6) is specially related to
nonlinearities coming from trigonometric functions. The above reformula-
tions will be therefore not considered in the following.

•

•

•

•

φi + θ∗i

•

(xi(T
∗
i ), yi(T

∗
i ))

φj + θ∗j
φk + θ∗k

φ` + θ∗`

Figure 3: Forcing aircraft to return to their initial trajectories (dotted lines)
after conflict resolution. Superscripts * indicate optimal values. At the point
(xi(T

∗
i ), yi(T

∗
i )), aircraft i can return to its initial trajectory being separated

from all other aircraft.

After having solved problem (6), and so determined the optimal heading
angle change θ∗i for each aircraft i ∈ A that ensures avoiding all potential
conflicts, new changes in the heading angles have to be made in order to
return aircraft to their initial trajectories (see Figure 3). The idea proposed
by Alonso-Ayuso, Escudero and Mart́ın-Campo [15, Section 4] can be easily
applied in our context. It consists of determining the optimal time for which
each aircraft can return to its trajectory in a final conflict-free configuration,
by solving an unconstrained quadratic programming (QP) problem for each
pair of aircraft (i, j) ∈ B. The objective function of this problem is the rela-
tive Euclidean distance between aircraft, that for each pair (i, j) is computed
using the new aircraft spatial coordinates obtained by using heading angles
from (6), and is minimized with respect to time. More precisely, knowing
θ∗i for each aircraft i ∈ A from the solution of (6), the new coordinates of
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aircraft i are given by

xi(t) = x0i + cos(φi + θ∗i )vit and yi(t) = y0i + sin(φi + θ∗i )vit. (7)

Using these formulas, the quadratic program to be solved for each pair of
aircraft (i, j) ∈ B is

min
tij

∥∥∥∥(xi(tij)− xj(tij)yi(tij)− yj(tij)

)∥∥∥∥2 (8)

that allows us to compute for each (i, j) ∈ B the minimum time such that
i and j are separated using their new heading. Problem (8) is a convex
continuous unconstrained QP problem, that can be easily solved by standard
QP solvers. In practice, it is always solved, for each (i, j) ∈ B, after the
solution of the HAC problem (6), i.e., after computation of optimal θ∗i for
each aircraft i ∈ A. Once the optimal solution t∗ij for problem (8) is found,
we compute

T ∗i := max
j 6=i
j∈A

t∗ij

as the optimal time for which aircraft i can return to its initial trajectory in
a conflict-free configuration. Using (7), this time corresponds to the point
(xi(T

∗
i ), yi(T

∗
i )) as shown in Figure 3. destination Knowing this point and

the exit point from the air sector, it is easy to determine the new trajectory
of each aircraft to come back to its initial trajectory. This is given by the
straight line that connects both points. In [15], Alonso-Ayuso, Escudero and
Mart́ın-Campo gave an explicit formula of the corresponding new angle of
motion.

4, standard terms of the the functions. good The solution, by global
MINLP solvers, of the HAC (6) followed by the QP (8) may be quite time
consuming (as discussed in Section 4). HAC (6) is a nonconvex problem
which may have many local minima. Additionally, the presence of mixed 0-1
variables and of the nonlinearity of cosine and sine functions may impact the
performance of a global solver. In order to speed up the solution process, the
proposed mathematical programming model can be properly combined with
another one. This is presented in the next subsection.
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2.2 Maximizing the number of solved conflicts using
VC

Recently, Cafieri [17] presented a model for the maximization of the number
of aircraft conflicts that can be solved by only performing velocity regulation.
We briefly recall hereafter this model. The headings of aircraft are kept fixed
(so, no trigonometric functions appear) and the main decision variables are:
v̄i for all i, a continuous decision variable representing the aircraft speed,
which is eventually modified with respect to the original one to solve conflicts,
and zij for all (i, j) ∈ B, a binary decision variable defined as

zij =

{
1 if aircraft i and j are separated (no conflict),

0 otherwise.

Further variables are yij for all (i, j) ∈ B, used into another condition for
aircraft separation, and a linearizing variable wij for all (i, j) ∈ B, both
described below. The model reads as follows.

max
∑

(i,j)∈B

wij (9a)

s.t.

v̄mini ≤ v̄i ≤ v̄maxi , ∀ i ∈ A, (9b)(
(Xr0

ij · v̄rij)2 − ‖v̄rij‖2(‖X
r0
ij ‖2 − d2)

)
(2zij − 1) ≤ 0,

∀ (i, j) ∈ B, (9c)

(Xr0
ij · v̄rij)(2yij − 1) ≥ 0, ∀ (i, j) ∈ B, (9d)

wij ≥ yij, ∀ (i, j) ∈ B, (9e)

wij ≥ zij, ∀ (i, j) ∈ B, (9f)

wij ≤ yij + zij, ∀ (i, j) ∈ B, (9g)

wij ∈ [0, 1], ∀ (i, j) ∈ B, (9h)

yij, zij ∈ {0, 1}, ∀ (i, j) ∈ B. (9i)

The bounds on v̄i, given by constraints (9b), are imposed to ensure that
speed variations are small enough so that a subliminal control of velocities is
performed, as suggested in the context of the ERASMUS project [20]. More
precisely, the bounds v̄mini and v̄maxi for each aircraft i are respectively given
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by 0.94vi and 1.03vi, to ensure that speeds vary between −6 % and +3 % of
the original speed. Constraint (9c) expresses that i and j are separated when
the corresponding zij is equal to 1. A further constraint, (9d), accounts for
pairs of aircraft that are separated when, if separated at their initial positions,
they have intersecting trajectories (here considered as straight lines) that are
diverging (Xr0

ij · v̄rij ≥ 0). To do so, additional binary variables yij,∀(i, j)
are introduced, equal to 1 when the condition Xr0

ij · v̄rij ≥ 0 is satisfied.
Variables wij,∀(i, j) are then used to model the “or” condition relating the
two separation constraints, (6c) (satisfied when zij = 1) and Xr0

ij · v̄rij ≥ 0
(satisfied when yij = 1). The objective function is a linear function simply
counting the pairs of separated aircraft.

Note that one of the main differences of this model with respect to the
above presented HAC is that here the aircraft heading angles are kept fixed,
while only the speeds are changed. Furthermore, here we do not aim at solv-
ing all conflicts optimizing a given criterion, but at maximizing the number
of conflicts that the (subliminal) speed control can solve. In this sense, model
(9) can be used as a first “filter” of air traffic in a given air sector, leaving
eventually other conflicts to be solved by means of another separation ma-
neuver, such as heading deviation. Such an approach can be easily seen in
the context of an automation of aircraft speed variations expected in a next
future, thus reducing the controllers’ workload. These considerations lead us
to propose the algorithm given in the next section.

3 Algorithm Max VC+HAC

Models (6) and (9) are MINLPs. In both cases, some nonlinearities come
from the product of continuous and binary variables. In addition to that, the
use of trigonometric functions in the HAC model adds strong nonlinearities
that make the problem hard to solve. (6) resulting in On the other side,
model (9) gives no guarantee to solve all conflicts, in particular head-to-
head conflicts whose solutions need the use of maneuvers other than speed
changes. Note also that the presence of constraints (9b) can be a source
of infeasibility for some instances, meaning that it may happen that some
conflicts cannot be solved by carrying out small adjustments in the speeds
of aircraft. Remark that providing the HAC problem with input data such
that a number of aircraft pairs are already separated (and hence separation
constraints are straightforwardly satisfied) can speed up the solution process.
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Based on these remarks and in order to take full advantage of the features
of both models (6) and (9) and to provide a trade-off between efficiency and
reliability, we propose a new algorithm for aircraft conflict avoidance, whose
steps are summarized in Algorithm 1.

Algorithm 1 Aircraft deconfliction: Max VC + HAC

Step 1 Detect all head-to-head conflicts.

Step 2 Solve Max VC (9) without considering head-to-head conflicts.

Step 3 If all conflicts are solved then
Stop.

Else
Solve HAC (6) with aircraft having new velocities given by the
solution of Max VC (9) and then go to Step 4.

End if

Step 4 Solve the QP (8) for each pair of aircraft (i, j) ∈ B.

Given an initial configuration of n aircraft sharing the same airspace dur-
ing an observed time window, Algorithm 1 begins the resolution process by
detecting all head-to-head conflicts. Then, the Max VC model (9), applied
on the remaining pairs of aircraft, is solved at Step 2 to determine the pos-
sible changes to the speed of aircraft so as to separate as many aircraft pairs
as possible. Our choice of not considering head-to-head conflicts when solv-
ing (9) is argued by the fact that this type of conflicts cannot be solved by
only performing velocity regulation. Step 2 of Algorithm 1 will be henceforth
referred as a pre-processing step. It acts as a first filter on the considered air
traffic, before completing the deconfliction process by heading deviations. If
all conflicts are solved after applying the pre-processing step, then the res-
olution process stops. Otherwise, model (6) is solved to determine a new
aircraft configuration such that all conflicts are avoided. Note that for this
model, the new speeds computed at Step 2 are used. The benefit of this
choice is confirmed by the numerical results presented in Section 4. Once the
optimal heading angle changes are found, we force the aircraft to return to
their destination points by solving model (8) at Step 4.

Note that Algorithm 1 always outputs an optimal solution corresponding
to an aircraft configuration where all conflicts are solved. When Algorithm 1
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stops just after the solution of Max VC, because this is enough to solve all
conflicts, the obtained solution is optimal with respect to criterion (9a), while
when HAC is applied, optimal values are computed to deviate as less as pos-
sible from the original flight plans. However, note that from the operational
viewpoint, even in the case of a solution obtained using Max VC only, where
there is not a minimization of the deviation from original flight plans, such
a deviation is never relevant thanks to the subliminal control framework.

4 Numerical experiments

Models (6), (8) and (9) are implemented using the Ampl modeling Lan-
guage [21]. We made a comparative test of Algorithm 1 with/without Step
1 and Step 2 on two collections of test problems. The first collection is built
by randomly placing on a circle of a given radius a number of aircraft that
are initially all headed to the center. This leads to a highly symmetric con-
figuration, where symmetry is also reinforced by considering the same speed
for all aircraft. It is well known that this kind of test problem, while being
unrealistic, is very hard to solve by exact global solvers. These problems,
named pb n* in Table 4, are known in the literature as circle problems. For
the second collection, aircraft are arranged around a circle and have trajecto-
ries randomly chosen with a heading angle ∈ [−π/6, π/6] with respect to the
diameter of the circle. The end point of each trajectory belongs to the circle
as well. Note that these problems are more realistic than circle problems
without deviation. In Table 5, they are referred to as rpb n*. For both
collections, the aircraft move at the same speed, namely 400 NM/h. After
executing Step 2 of Algorithm 1, new values may be assigned to speeds of
all (or some) aircraft. Given constraints (9b), these new values range from
376 NM/h to 412 NM/h. Note that this kind of instances have been also
considered by [8, 15, 16, 18]. The standard separation distance, d, to be re-
spected between aircraft trajectories is equal to 5 NM. To get a perspective
on the size of problems being solved, Table 1 summarizes the sizes of the
MINLP problem (HAC model) varying the number of aircraft. Recall that
the objective function and the equality and inequality constraints (except
the bound constraints) are nonlinear.

In this paper, we are interested in the global solution of the problem at
hand by deterministic MINLP solvers (this kind of solvers need an algebraic
representation of the objective and constraint functions for the computa-
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Table 1: Dimensions of Problem (4) depending on the number of aircraft.

n
# variables # auxiliary variables # constraints

continuous integer continuous integer equality inequality
2 5 1 21 1 3 6
3 12 3 49 3 9 12
4 22 6 89 6 18 20
5 35 10 141 10 30 30
6 51 15 205 15 45 42
7 70 21 281 21 63 56
8 92 28 369 28 84 72

tion of convex envelopes and under-estimators [22]). MINLP solvers falling
in the category of interest are the following: Antigone [23], Baron [24],
Couenne [25], LindoApi [26] and Scip [27]. Our choice of the solver for the
numerical experiments has been established on the basis of the capability of
the solvers to handle trigonometric functions and of their availability as free
solvers. Table 2 summarizes the characteristics of the above MINLP solvers.
To the best of our knowledge, trigonometric functions are handled by two
solvers only, Couenne and LindoApi, and only Couenne is a free open-
source solver. This motivated our selection of Couenne as MINLP solver
for our numerical experiments. For the resolution of the convex QP (8), we
used the open source software package for large-scale non-linear optimization
Ipopt [28], that implements an Interior-Point method. Both solvers were run
with their default settings.

Table 2: An overview on deterministic global solvers for nonconvex MINLP.

Solver Free AMPL Deterministic Trigonometric functions
Antigone – – × –
Baron – – × –
Couenne × × × ×
LindoApi – – × ×
Scip × × × –

Tests were performed on a 2.66 GHz Intel Xeon (octo core) processor
with 32GB of RAM and Linux Operating System. Tables 4 and 5 show
the comparison of the results obtained using HAC with Max VC as a pre-
processing step (Algorithm 1) and using HAC only on the original problem.
The headings are as follows: n, number of aircraft; nc, number of all potential
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conflicts; nhthc, number of head-to-head conflicts; time, computing time in
seconds, and obj, optimal value of the objective function of model (6).

As previously mentioned, the goal of the second step of Algorithm 1 is
not to solve all conflicts, but to maximize the number of conflicts that can
be solved using the subliminal speed control maneuver. We are specially
interested in a first step of the algorithm that could be fast, while solving
as many conflicts as possible. In order to avoid a time-consuming resolution
of Max VC (9), a CPU time limit of 30 seconds was imposed. As it can
be seen from Tables 4 and 5, the use of Max VC (9) as a pre-processing
step for HAC (6) significantly improves the solution in terms of CPU time
and quality of solution. The most significant time improvement occurs for
problem rpb n8 3, for which the computing time is reduced from 11967.96
seconds to less than 10 seconds, exhibiting a speed-up by a factor of 1316.
Note that for this problem, 9 out of 10 conflicts were solved using the pre-
processing step.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

⌧

⇢
s
(⌧

)

Total CPU time

With pre-processing
Without pre-processing

Figure 4: Performance profile comparing the total CPU time for Algorithm 1
with and without pre-processing on a set of 52 randomly generated problems.

To compare the numerical results presented in Tables 4 and 5 more clearly,
we make use of the performance profiles of Dolan and Moré [29]. Figure 4
summarizes, using a performance profile, these results. For τ ≥ 0, ρs(τ) is the
fraction of problems for which the performance of a given algorithm is within
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Table 3: Solutions of problem pb n5 1 using HAC with and without pre-
processing

Optimal HACs With pre-processing Without pre-processing
θ∗1 -0.033039 0.043072
θ∗2 0.073481 0.074654
θ∗3 0.030125 0.039003
θ∗4 -0.020949 0.040227
θ∗5 0.020258 0.032408

a factor 2τ of the best one. Figure 4 clearly highlights the benefit of using
the proposed pre-processing step before solving the HAC model. In fact, the
efficiency of this version of Algorithm 1, which is readable on the left vertical
axis of the performance profile, is 80% whereas that of Algorithm 1 without
applying a pre-processing step does not exceed 30%. This efficiency gain can
be explained by the fact that the pre-processing step provides model (6) with
input data where in most cases the majority of conflicts are solved and there
only remain some difficult conflicts (e.g. head-to-head conflicts) for which
heading angle deviations have to be performed. This greatly simplify the
branch-and-bound procedure for the solution of (6). In term of robustness,
both versions of Algorithm 1 have the same rate of robustness since they
solve all considered instances. However, better solutions were obtained when
using a pre-processing for all tested problems, as presented in Tables 4 and 5.
One reason behind such improvement is that the use of a pre-processing step
breaks up the symmetry introduced in the initial problem by changing the
velocity of some (or all) aircraft, thus making the feasible region of prob-
lem (6) larger than that without pre-processing. In fact, one observes that
the solution of problem (6) without pre-processing consists of a symmetric
configuration with all (or some) aircraft deviated either to the left (posi-
tive turn) or to the right (negative change). On the contrary, the optimal
heading angle changes obtained by solving the HAC model after applying a
pre-processing step can be a mixture of positive and negative values. The
example in Table 3 illustrates this situation.

Increasing the number of aircraft, the number of constraints and variables
(continuous and binary) increases. As expected in a Branch and Bound
method, like the one implemented in the exact global solver Couenne, this
leads to a significant increase in the computing time required to explore all
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the branches of the search tree to ensure that the obtained solution is a global
optimum. The same conclusion was reached in [16, 30]. For problems pb n*,
that are highly symmetric, instances up to n = 5 are efficiently solved, while
from n ≥ 6 they are highly computational demanding. Problems rpb n*

appear to be easier to solve than the circle problems, and we are able to
efficiently solve instances up to n = 8.

Remark 1. In some cases, the optimal solution returned by Couenne is
slightly infeasible. This can be explained by the difficulty of the treatment of
trigonometric functions (cosine and sine used in our HAC model) by MINLP
solvers. Note that such behavior for Couenne has been already observed
on some instances of the MINLPLIB collection [31]. To overcome this prob-
lem, we run Ipopt for the HAC model with integer variables fixed and the
optimal solution returned by Couenne as a starting point. In all cases,
it appears that a small modification of the variables is enough to obtain a
“more feasible” solution. For example, by running Algorithm 1 on the prob-
lem pb n5 1 we obtain the optimal objective value f ∗ = 0.008227. When
testing the feasibility of the solution, it appears that one conflict remains not
solved. When applying the procedure described above, Ipopt returns the fol-
lowing slightly modified solution f ∗ = 0.008248, for which all conflicts are
solved considering the associated heading angle changes. Note finally that the
time needed to accomplish this task is negligible comparing to that needed for
solving problem (6). In all our tests, it does not exceed 0.02 seconds.

5 Conclusions

We proposed a MINLP formulation (HAC) of the aircraft conflict avoidance
problem, where potential conflicts are solved by aircraft heading angle devi-
ations. This formulation has a quadratic objective and nonlinear nonconvex
constraints. To speed-up the solution process, we also proposed the combi-
nation of the above MINLP with another one, MaxVC, where the number of
conflicts that can be solved by regulating the aircraft speeds is maximized.
The idea is to provide the first MINLP with a pre-processing step, that from
the operational viewpoint can be interpreted as a preliminary filter of the con-
sidered air traffic. Numerical results are encouraging and show the interest of
the proposed two-step approach. As expected, the use of exact global solvers
allows us to solve medium-scale problems. Alternative solution approaches
will be investigated in future work to raise the size of solved problems, as
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well as further mathematical programming formulations and their possible
reformulations.
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Table 4: Conflicts resolution for circle problem without deviation using HAC
with and without pre-processing

Max VC HAC HAC

Name n nc nhth

Pre-processing (with pre-processing) (without pre-processing)
nrc time (s) nrc time (s) obj nrc time (s) obj

pb n2 2 1 1 1 0.00 0 0.14 0.001250 0 0.13 0.001250
pb n3 1 3 3 0 3 1.99 0 0.82 0.002327 0 0.90 0.002501
pb n3 2 3 3 0 1 1.22 0 1.29 0.001667 0 1.97 0.006665
pb n3 3 3 3 1 1 0.05 0 0.43 0.000314 0 1.08 0.000950
pb n4 1 4 6 0 3 6.18 0 5.07 0.003172 0 9.90 0.007240
pb n4 2 4 6 0 2 5.60 0 7.26 0.007399 0 31.64 0.017065
pb n4 3 4 6 2 2 0.09 0 0.21 0.000630 0 0.56 0.001318
pb n5 1 5 10 1 5 16.14 0 24.49 0.008248 0 58.21 0.011629
pb n5 2 5 10 1 5 23.85 0 30.69 0.017774 0 68.60 0.018468
pb n5 3 5 10 1 6 19.24 0 25.79 0.006740 0 89.79 0.017100
pb n5 4 5 10 2 5 25.81 0 32.71 0.012480 0 80.17 0.014750
pb n5 5 5 10 0 5 21.65 0 26.73 0.005652 0 63.05 0.012149
pb n5 6 5 10 0 6 31.21 0 16.45 0.004208 0 47.18 0.011225
pb n5 7 5 10 1 5 23.62 0 33.46 0.006951 0 66.13 0.012262
pb n5 8 5 10 2 5 19.92 0 66.16 0.019788 0 122.44 0.017556
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Max VC HAC HAC

Name n nc nhth

Pre-processing (with pre-processing) (without pre-processing)
nrc time (s) nrc time (s) obj nrc time (s) obj

pb n5 9 5 10 0 6 30.98 0 100.68 0.008972 0 142.52 0.019119
pb n5 10 5 10 1 6 26.38 0 47.87 0.008536 0 160.61 0.025960
pb n5 11 5 10 0 6 30.00 0 25.09 0.006958 0 69.90 0.011190
pb n5 12 5 10 0 5 30.00 0 29.18 0.009471 0 68.06 0.012111
pb n5 13 5 10 0 4 30.00 0 134.26 0.026393 0 331.32 0.023265
pb n5 14 5 10 1 4 24.58 0 46.44 0.013300 0 51.21 0.013790
pb n5 15 5 10 0 6 30.00 0 86.28 0.006918 0 220.09 0.014551
pb n5 16 5 10 1 6 30.00 0 35.04 0.007874 0 56.80 0.010367
pb n5 17 5 10 0 6 30.00 0 59.73 0.008833 0 77.51 0.011940
pb n5 18 5 10 1 6 30.00 0 62.28 0.010092 0 41.34 0.011153
pb n5 19 5 10 0 6 30.00 0 25.03 0.006623 0 39.53 0.009920
pb n5 20 5 10 1 5 30.00 0 117.74 0.020694 0 167.77 0.019739
pb n5 21 5 10 0 6 30.00 0 32.90 0.007354 0 62.62 0.009051
pb n5 22 5 10 2 6 8.89 0 45.49 0.007651 0 352.03 0.030577
pb n5 23 5 10 2 2 0.08 0 7.59 0.000278 0 55.95 0.001543
pb n6 1 6 15 3 3 1.83 0 2819.51 0.000408 0 6773.31 0.001649
pb n6 2 6 15 3 3 0.54 0 1915.25 0.000417 0 8722.30 0.001661

Table 5: Conflicts resolution for circle problem with deviation using HAC
with and without pre-processing

Max VC HAC HAC

Name n nc nhth

Pre-processing (with pre-processing) (without pre-processing)
nrc time (s) nrc time (s) obj nrc time (s) obj

rpb n2 1 2 1 1 1 0.00 0 0.04 0.000141 0 0.04 0.000141
rpb n2 2 2 1 1 1 0.00 0 0.05 0.000795 0 0.05 0.000795
rpb n3 1 3 2 0 0 0.04 0 0.00 0.000000 0 0.19 0.000078
rpb n3 2 3 2 0 0 0.04 0 0.00 0.000000 0 0.83 0.000513
rpb n3 3 3 1 0 0 0.29 0 0.00 0.000000 0 0.38 0.000113
rpb n4 1 4 1 0 0 0.03 0 0.00 0.000000 0 2.07 0.000156
rpb n4 2 4 3 1 1 0.04 0 0.66 0.000218 0 4.22 0.001175
rpb n4 3 4 2 0 1 3.09 0 0.65 0.000104 0 2.41 0.000202
rpb n5 1 5 6 0 0 0.04 0 0.00 0.000000 0 16.90 0.000408
rpb n5 2 5 3 0 0 0.05 0 0.00 0.000000 0 32.39 0.000450
rpb n5 3 5 8 0 0 5.22 0 0.00 0.000000 0 26.61 0.000613
rpb n6 1 6 5 1 1 0.06 0 2.77 0.000052 0 340.59 0.000955
rpb n6 2 6 9 2 2 0.05 0 23.04 0.000083 0 310.64 0.000855
rpb n6 3 6 4 0 1 30.96 0 16.52 0.000067 0 333.30 0.000693
rpb n7 1 7 2 0 1 30.53 0 9.58 0.000011 0 52.58 0.000210
rpb n7 2 7 7 0 2 30.53 0 82.78 0.000173 0 13919.22 0.001162
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Max VC HAC HAC

Name n nc nhth

Pre-processing (with pre-processing) (without pre-processing)
nrc time (s) nrc time (s) obj nrc time (s) obj

rpb n7 3 7 9 0 4 30.50 0 122.88 0.000094 0 126.95 0.002637
rpb n8 1 8 12 2 2 12.19 0 2561.98 0.000095 0 26795.60 0.001189
rpb n8 2 8 5 0 0 0.09 0 0.00 0.000000 0 5370.44 0.000373
rpb n8 3 8 10 1 1 0.08 0 9.01 0.000026 0 11967.96 0.001019
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