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23.1 General Introduction

23.1.1 Nonlinear Invariant State Estimation: A Brief Review

Many recent progresses in the field of sensors miniaturization have led to
the design of small and cheap integrated navigation system hardwares (com-
plete IMU, GPS module, etc.), which have, for their part, contributed to
boost significantly the market of mini-UAVs over the last decades, making
them more accessible to everyone. Nevertheless, this accessibility is frequently
inconsistent with good measurement performances. For instance, the GPS
modules used commonly in the Paparazzi autopilot (cf. Paparazzi project at:
https://wiki.paparazziuav.org/) deliver a position with an average accu-
racy of 5 meters, up to 10m under certain flight conditions. Therefore, a need
for multisensor data fusion arises, especially when the objective consists in
developing robust advanced control strategies for mini-UAVs. To this aim,
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2 Optimal Invariant Observers Theory for Nonlinear State Estimation

nonlinear estimation o↵ers several well-proven algorithmic techniques which
permit to recover an acceptable level of accuracy on some key flight param-
eters (anemometric angles, orientation/attitude, linear and angular speeds,
position, etc.) for mini-UAVs closed-loop handling qualities. An overview
of nonlinear estimation methods can be found in the litterature from many
surveys or books (see [1–3] for example). Fig. (23.1) attempts to propose a
classification of these latter and positions chapter 23 topic in it (white terms
in grey boxes). As they merge di↵erent nonlinear estimation principles, opti-
mal invariant observers can be qualified as hybrid filters. Although dynamical

NONLINEAR ESTIMATION

Model-Based Methods Data-Based Methods

State
Estimation

Parameter

Estimation

Mixed

‹

Estimation

Kalman approaches: EKF, MEKF, additive EKF, QUEST. . .

Unscented filters: UKF, sigma points and particles filters. . .

Nonlinear observers: high-gains, normal form, backstepping,

moving horizon, sliding mode, pseudospectral, invariant. . .

Adaptive techniques: noise/nonlinear adaptive estimators. . .

‹
”Mixed” means joint state/parameter estimation.

FIGURE 23.1
Classification of existing nonlinear state estimation techniques and chapter 23
topic positioning.

systems possessing symmetries have been studied in control theory, few results
taking benefit of system invariances for observers design exist today. Invariant
nonlinear estimation theory appears so as a young research area in which the
first main contributions can be dated from the beginning of 2000s (see [4–20]
and the references therein). Initially, research was going on in the development
of constructive methods to derive invariant observers for nonlinear estimation
purposes which preserve systems’ symmetries. If this kind of non-systematic
approaches keeps physical readiness, it requires however to tune an important
number of setting parameters potentially when computing estimation gains,
which can be cumbersome for complex system modelings. That is why, re-
searchers have then tried to develop more systematic techniques which are able
to facilitate estimators’ gains computation. The Invariant Extended Kalman
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Filter (IEKF - cf. bibliographical references [7,10]) permits to determine gain
matrices for minimum variance estimation. This optimality must be considered
here w.r.t. an invariant state estimation error which will be defined precisely
further. An important drawback in this method is that it requires to linearize
a system of di↵erential equations which govern the invariant state estimation
error dynamics. Such an operation appears suitable for simple system mod-
elings only s.t. UAVs whose dynamics can be represented easily based on
kinematics relationships. Indeed, this kind of nonlinear state space represen-
tation can be di↵erentiated analytically towards its state vector. For more
complex system modelings, this linearization may be di�cult to carry out.
Nevertheless, the IEKF, and more generally invariant observers, are charac-
terized by a larger convergence domain, due to the exploitation of systems’
symmetries within the estimation algorithm (i.e., within filter equations and
gains computation), and present very good performances in practice. In order
to derive more tractable algorithms for nonlinear invariant state estimation,
an hybridation of the Unscented KF (UKF) principles (cf. [21–24]) with in-
variant observers theory has been recently proposed in [12, 13, 20]. Among
other things, it has been proved in these bibliographical references that an
Invariant UKF-like estimator (named IUKF) could be simply designed by
introducing both notions of invariant state estimation and invariant output
errors within any UKF algorithm formulation (standard version or square-
root/UD factorized ones - see [25, 26]). Besides, it has been shown that, for
some well-known navigation problems devoted to UAVs, equations of any
IUKF-based observer in discrete-time could be expressed quite simply. In-
deed, state vector estimate can be determined recursively and approximated
by a weighted linear combination of n P N‹ invariant estimates. This chapter
relies strongly on these recent research works and more details about them
will be explained in the sequel. Similarly, an extension of nonlinear invariant
observers has been made for Rao-Blackwellized Particle Filters (PF) that can
be used for nonlinear state estimation (cf. [14]). Invariant PFs (IPF) rely on
the notion of conditional invariance which corresponds to classical system in-
variance properties, but once some state variables are assumed to be known.
It is those known states that will be sampled throughout the estimation pro-
cess. The observer structure is actually double. Indeed, the rest of the state
variables are marginalized out using IEKFs. It is noteworthy that, for the ob-
tained IPF, the Kalman gains computed are identical for all particles which
drastically reduces the computational e↵ort usually needed to implement any
PF.

All the previous estimation methodologies have allowed the invariant ob-
servers theory to be applied in many various application fields since the begin-
ning of the 2000s. Rather than enumerating all of them, which would be out of
the scope of this chapter, we prefer focusing here on the use, become popular in
the domain of robotics, of the invariant observers for solving nonlinear attitude
estimation problems from both inertial/vision multisensors data fusion. Many
bibliographical references, such as for instance [18, 27, 28], tackle this specific
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issue exploiting nonlinear invariant observers. Both properties and capabilities
of this peculiar class of method make any invariant observer-based estimation
scheme dedicated to dynamical system navigation appealing, especially when
there exists, in addition, hardware redundancy. In that case, automated ve-
hicles can reach an acceptable level of robustness w.r.t. degraded operating
conditions such as, for example, in indoor or GPS-denied environments, and
in case of single or multiple sensor faults. Using an invariant observer-based
algorithm to merge an extended (and potentially redundant) set of measure-
ments can still provide good performances and convergence properties in such
situtations.

Another interesting application of invariant observers theory can be found
in [29]. It reformulates the standard Linear Quadratic Gaussian (LQG) con-
troller synthesis into an Invariant LQG (ILQG) design by making use of an
IEKF for the observer part. This leads to marginally modify the standard
equations of the LQG synthesis in order to account for, and to exploit, sys-
tem’s symmetries and invariances. The resulting controller appears to be more
robust and less sensitive to both estimated trajectory and misestimates. Such
an ILQG-based observer-controller design o↵ers new interesting solutions and
opens new perspectives for motion planning applied to robotics.

23.1.2 Chapter Outline

This chapter aims at introducing the basics of optimal nonlinear invariant
state estimation to engineers, research scientists and applied mathematicians.
Although it gathers some new theoretical results, this chapter tries to expand
upon the past treatments of both invariant observers theory and UK filtering,
to provide a more comprehensive view on recent developments and updates
in the domain. Chapter redaction should be accessible to both senior under-
graduate and 1st graduate students, and should prove to be well-suited for
practicing professionals. Chapter contributors expect that this text will mini-
mize newcomers’ pain in assimilating and applying all the theoretical concepts
presented. By underlying the links between di↵erential geometry and dynam-
ical systems modeling, it is hoped that the content will be also of perennial
interest for students, scholars and engineers working in various disciplines.
This work has been also motivated by the practical problems encountered by
the authors with the subject for UAVs flight control and guidance, civil A/C
modeling and identification and dynamic system fault detection, isolation and
recovery.

The present chapter is organized as follows. Section 23.2 starts with the
presentation of fundamental theoretical prerequisities dealing with both dif-
ferential geometry and group theory. A permanent connection of the di↵erent
mathematical concepts introduced so far with a generic system representation
is made. Then, the notion of invariant for dynamical systems possessing sym-
metries is introduced in §23.2.2. An academic example, illustrating the whole
theoretical background, ends this introductive part in a third step.
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The 1st part of section 23.3 is devoted to invariant observers theory. The
general form of the invariant observer is then specialized, and the IUKF is
naturally introduced in paragraph 23.3.2.

Section 23.4 illustrates the performances reached by the developed IUKF
algorithm, by solving the non-aided AHRS navigation problem, in the case
of an automated free-falling parafoil vehicle.

23.1.3 Mathematical Notations

p⌃pdq, fpdq{hpdqq Continuous (discrete) system symbol, process/output Eqs.
N‹{Rn Natural numbers set´t0u/n-dimensional Euclidean space
rr 1 ;n ss Natural numbers • 1 and § n
pu

t

,x
t

,y
t

, z
t

q Input, state, output and measurement vectors at time t
pM, pG, ‚qq (di↵erentiable) Manifold, (Lie) Group
pg, eq Standard group and neutral elements
S1 Circle group
�
gPG Composite transformation

p 
g

,'
g

, ⇢
g

q Input, state and output local actions
˛ Group multiplication operator
� Moving frame
dim( ){Im( ) Vector space dimension/function image subset
pI,E{⌘q Fundamental invariants, invariant output/state errors
Bp¨q{Bx

i

or v
i

Euclidean basis vectors
Er¨s{�

ij

Mathematical expectation/Kronecker symbol

X piq ith sigma point
qrr¨s QR factorization
cholupdatep¨, ¨, ¨q Rank-1 update of Cholesky decomposition
Sx1x2
k

Square-root covariance matrix at time instant k
Px1x2

k

Cross estimation error covariance matrix between px
1

,x
2

q
pq, ˚q Quaternion s.t. q “ pq

1

q
2

q
3

q
4

qT , Hamilton product
!

b

Gyroscopic bias vector
pa

s

, b
s

q Accelerometric and magnetic scaling factors

23.2 Dynamical Systems Possessing Symmetries

23.2.1 Theoretical Background

Defining symmetries and invariances for controllable dynamic systems repre-
sented by nonlinear state-space representations requires first to reinterpret ge-
ometrically all modeling variables. To do so, let us consider ⌃ be a continuous-
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time nonlinear modeling given by:

⌃ :

"
9x
t

“ fpx
t

,u
t

q
y
t

“ hpx
t

,u
t

q (23.1)

In Eq. (23.1), the known input, state and output trajectory vectors, denoted
by u

t

, x
t

and y
t

, evolve actually through time within 3 Euclidean open sets
U Ä Rm, X Ä Rn and Y Ä Rp (pm,n, pq P pN‹q3) respectively. Applying
invariant theory to system ⌃ relies then on many mathematical notions which
have, for most of them, their origins in both di↵erential geometry and group
theory. Therefore, some fundamental prerequisities are first of all introduced
in this section before exploiting them to establish the main results related
to dynamical systems possessing symmetries. For more complete definitions
see [30–32].

Definition 1 (Topological manifold) A topological manifold of dimen-
sion r P N‹ is a topological space which is locally homeomorphic to the Eu-
clidean space Rr. ˝
Definition 1 means that if M is a topological manifold, then @x P M, there
exists a bijective continuous function (whose inverse is also continuous) which
maps every neighbourhood of x to Rr. It is clear by construction that the
space M “ U ˆ X ˆ Y is a topological manifold (Cartesian product of Eu-
clidean open sets). Through such homeomorphisms, called also charts, one
can defined local coordinates of any point x in M . Intuitively, searching for
the symmetries or invariances of ⌃ can be viewed as a problem of determining
whether two di↵erent local coordinate systems (e.g., x

t

, u
t

and y
t

transformed
by rotation, translation or homothetie) define an identical dynamics pf, hq on
a given manifold.

Definition 2 (Transition map) Let '
↵

, '
�

be two charts of a topological
manifold M . The application '

↵�

“ '
�

˝ '´1

↵

is called a transition map. ˝
Definition 2 will be used to introduce the notion of di↵erentiable manifold.

Definition 3 (Di↵erentiable manifold) A r-dimensional topological man-
ifold M will be said di↵erentiable i↵ its transition maps are all di↵erentiable.
Besides, it will be said of class Ck pk P N‹q i↵ its transition maps are all k-
times continuously di↵erentiable. ˝
Definition 3 implies that a tangent space can be attached to every point of
a r-dimensional di↵erentiable manifold. Formally, it will correspond to a r-
dimensional Euclidean space which gathers all the tangent directions (i.e.,
vectors) at which one can tangentially pass through the point.

Definition 4 (Tangent vector and space) Let M Ä Rr be a real val-
ued C8 manifold of dimension r P N‹. Let x be a point of M . A vector
v P Rr will be a tangent vector of M at x if there exists a C8 curve
# : R Ñ M s.t. #p0q “ x and D#p0q “ v. The set T

x

M “ tD#p0q{#
:RÑM

P
C8 and #p0q “ xu corresponds to the tangent space of M at x. ˝
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Definition 4 is of primary importance for introducing and defining the notion of
derivative for a map between two di↵erentiable manifolds. It will be especially
true in the sequel when the group action will be introduced and applied to
the dynamic system modeling of Eq. (23.1).

Among the most common manifolds, Lie groups have a central place in the
application of invariant theory for dynamical systems possessing symmetries.
Indeed, as it will be shown in the following, most of the applicative bench-
marks used to illustrate both systems symmetries and invariant observers will
highlight very well-known Lie groups.

Definition 5 (Group) Let G be a given set. Let ‚ be a composition law s.t.
‚ : G ˆ G Ñ G. The couple pG, ‚q is a group i↵ the following axioms hold:
  @pg

1

,g
2

q P G2, g
1

‚ g
2

P G;
À @pg

1

,g
2

,g
3

q P G3, pg
1

‚ g
2

q ‚ g
3

“ g
1

‚ pg
2

‚ g
3

q;
Ã De P G, @g P G, e ‚ g “ g ‚ e “ g;
Õ @g P G, Dg´1 P G, g ‚ g´1 “ g´1 ‚ g “ e. ˝
Definition 6 (Lie groups) A Lie group is a di↵erentiable manifold that
carries also the algebraic structure of a group s.t. group law (or multiplication)
and its inverse correspond to C8 operations. ˝
The simplest example of Lie group is the real axis R with the addition oper-
ation. In that case, 0 is the identity element and the inverse of x P R is ´x
which is an element of R. Higher-dimensional examples can be found with the
Euclidean space or both specials linear SLpnq and orthogonal SOpnq groups.
Thus, a Lie group structure can be associated with rotations and dilatations
(i.e., translations ` homotheties) for instance, and these kinds of geometrical
transformations will play an important role in the sequel, especially in §23.4
when ⌃ will correspond to a pure kinematics modeling based on quaternions.
It is noteworthy that a Lie group of dimension r is often referred to as a
r-parameter group.

At this point, introducing the notions of symmetry and invariance for
dynamic systems requires the definition of group action. This group action
relates each element of a given group G to a specific transformation. Therefore,
it defines a set of parameterized maps which act on a given manifold M .

Definition 7 (Group action) Let pG, ‚q be a Lie group with identity ele-
ment e and M be a r-dimensional manifold (r P N‹). A group action '

gPG
on M is a regular map pg,xq P G ˆ M fiÑ '

g

pxq P M s.t.:
  @x P M, '

e

pxq “ x;
À @pg

1

,g
2

q P G2, @x P M, '
g1p'

g2pxqq “ '
g1‚g2pxq. ˝

It can be noticed in definition 7 that '
g

is by construction a di↵eomorphism
on M for all g P G. The most important class of group action which plays
a crucial role in the invariant theory applied to dynamical systems, such as
presented below, is provided by the transformations parameterized on a given
Lie group G and acting on G itself („ to automorphisms) by left or right
multiplication.
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Example 1 (A�ne group) Consider the 2-parameter Lie group Ap1,Rq of
a�ne transformations x P R fiÑ ax ` b P R whose parametrization consist
in pa, bq P G “ R‹ ˆ R. The Lie group law is defined by pa, bq ‚ pc, dq “
pac, ad ` bq P G and the neutral element by e “ p1, 0q. Considering the group
action of the a�ne transformations of x, ppa, bq, xq P GˆR fiÑ ax ` b P R, for
any pc, dq P G, axiom À of definition 7 reads: 'pa,bq‚pc,dqpxq “ acx ` ad ` b.
We can also deduce that: pa, bq´1 “ p1{a,´b{aq (inversion map). ˝
Remark 1 (Full-rank group action) In the sequel, only full-rank group
actions, i.e., s.t. @g P G, dimpImp'

g

qq “ dimpGq, will be considered. ˝
Remark 2 (Identification) Moreover, in the following, only full-rank group
actions from G acting on X Ä Rn (cf. Eq. (23.1)) s.t. dimpGq “ dimpX q “
n P N‹ will be considered. It implies that G and X can be identified. ˝
From remarks 1 and 2, it follows first that the group actions will consist in
Euclidean transformations parameterized by Rn-state vectors x

t

. Besides, over
the open set X Ä Rn, such transformations can be assimilated to left or right
multiplications (denoted by ˛) i.e., s.t.: '

g

: pg,xq P GˆX fiÑ '
g

pxq “ g˛x P
X (left multiplication) or '

g

: pg,xq P G ˆ X fiÑ '
g

pxq “ x ˛ g´1 P X (right
multiplication).

Definition 8 (Group orbit) Let G be a group acting on X Ä Rn by a left
multiplication. Let x be a point of X . The set Opxq “ ty “ g ˛ x{g P Gu
defines the group orbit of x. ˝
Definition 8 means that the orbit of any given point x P X is a X -points set
to which x can be moved by the elements of G.

23.2.2 Notion of Invariant

This paragraph makes use of the dynamic system ⌃ of Eq. (23.1). Let G Ä
Rn be a Lie group (as a n-dimensional Euclidean open set). We define the
composite group transformation �

g

acting on M “ U ˆ X ˆ Y s.t.:

�
g

: pg,u
t

,x
t

,y
t

q P G ˆ M fiÑ p 
g

pu
t

q,'
g

px
t

q, ⇢
g

py
t

qq “ pU
t

,X
t

,Y
t

q P M

where  
g

,'
g

and ⇢
g

are 3 group actions which share an identical parametriza-
tion group (G) and act locally on the Euclidean open sets U , X and Y respec-
tively. Based on previous remarks (see §23.2.1), '

g

is equivalent here to a left
multiplication ˛.
Definition 9 (Invariant/equivariant dynamic system) System ⌃ of Eq.
(23.1) will be said G-invariant if Dp 

g

,'
g

q
gPG, @pg,u

t

,x
t

q P G ˆ U ˆ X :
fpX

t

,U
t

q “ D'
g

px
t

q ¨fpx
t

,u
t

q and G-equivariant if Dp⇢
g

q
gPG : GˆY Ñ Y,

@pg,u
t

,x
t

q P G ˆ U ˆ X : hpX
t

,U
t

q “ ⇢
g

phpx
t

,u
t

qq. ˝
In other words, the coordinates transformations of definition 9 must be de-
termined s.t. their respective action on input, state and output vector vari-
ables keep the whole system dynamics unchanged i.e., 9X

t

“ fpX
t

,U
t

q and
Y

t

“ hpX
t

,U
t

q. Previous definition means that all process and output equa-
tions must remain explicitly identical when applying �

g

.
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Proposition 1 (Moving frame) Let x
t

P X be a point of the state open set
and c P Imp'

g

q be an element of the image of the local di↵eomorphism '
g

.
Then, D!g P G, g ˛ x

t

“ c with g “ �px
t

q. The map � : X Ñ G is called the
moving frame. ˝
Based on the Cartan moving frame method (see [30–32]), the existence of the
moving frame of proposition 1 is guaranteed. Equality g ˛ x

t

“ c is better
known under the name of normalization equations. Solving these equations
rely on the application of the implicit functions theorem which ensures the
existence of a local solution �. From a geometrical point of view, element
c “ pc

1

c
2

. . . c
n

qT P Rn defines a cross section C at point c of the group
orbit Opxq (see Fig. 23.2). Selecting c “ e in the normalization equations

Cpcq

Opxq

x
t

c

�

�

´1

FIGURE 23.2
Moving frame illustration.

permits to deduce that �px
t

q “ x´1

t

. The definition procedure of � which
consists in solving g ˛ x

t

´ e “ 0 is a very useful direct method to deter-
mine the analytical expression of �px

t

q, @t and so, the expression of system’s
fundamental invariants.

Corollary 1 (Uniqueness of the moving frame) The uniqueness of the
moving frame � ô @g P G, @x

t

P X , �p'
g

px
t

qq ‚ g “ �px
t

q. ˝
The result provided by corollary 1 will be widely exploited in section 23.3 for
the definition of the di↵erent invariant state estimators.

It follows from all these theoretical results that dynamical system ⌃’s
invariants are finally defined by substituting for g, �px

t

q “ x´1

t

in the com-
posite group transformation triplet p�

g

q
gPG. Doing so will define a set of

m ⇢̀n`p ⇢́n “ m`p fundamental invariants for ⌃ since dimpGq “ dimpX q “ n.

Definition 10 (Fundamental invariants) The set of the m ` p funda-
mental invariants of system ⌃ of Eq. (23.1) is defined by: Ipu

t

,x
t

q “
p 

x

´1
t

pu
t

q, ⇢
x

´1
t

py
t

qq “ pIxt
ut
, hpe, Ixt

ut
qq where Ixt

ut
reads  

x

´1
t

pu
t

q. ˝

23.2.3 Academic Example

We consider in this subsection the case of a nonholonomic car (cf. Fig 23.3).
This system is parameterized s.t.: - � is the angle between front wheels and
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car axis; - ✓ is the angle formed by the pOxq axis and car axis; - px, yq are the
coordinates of the middle of the rear axle in the reference frame. Moreover,
u is the car speed modulus and v “ tanp�q{L. Making explicit the speeds
composition rule, the car dynamics reads:

⌃ :

$
’’&

’’%

9x
t

“
¨

˝
9x
9y
9✓

˛

‚“
¨

˝
u cosp✓q
u sinp✓q

uv

˛

‚“ fpx
t

,u
t

“ pu vqT q

y
t

“ px yqT “ hpx
t

,u
t

q
(23.2)

One can easily check that car’s dynamics is independent of both frame origin
and orientation. This implies that ⌃ is invariant by both translation and ro-
tation transformations i.e., invariant under the action of the planar Special
Euclidean group SEp2q describing roto-translations in 2D-Euclidean space.
The state space X “ R2 ˆ S1 (where S1 designates the circle) coincides

x

y

�

v

X

Y

�

v

-⇥0

(x0, y0)

L

L

✓

⇥

FIGURE 23.3
Academic example of the nonholonomic car.
(left: standard parametrization - right: group action e↵ect).

topologically with SEp2q as illustrated by Fig. 23.4. The trajectory T ptq cor-
responds to the real path followed by the car but projected in SEp2q. If we
identify the reference Lie group G, used to parameterize the group actions,
to R2 ˆ S1, it follows that the process dynamics of Eq. (23.2) will be invari-
ant when applying the input and state transformations  

g0pu
t

q and '
g0px

t

q
defined by (g

0

“ px
0

y
0

✓
0

qT ):

 
g0pu

t

q “
ˆ
u
v

˙
“

ˆ
U
V

˙
, '

g0px
t

q “
¨

˝
x cos ✓

0

´ y sin ✓
0

` x
0

x sin ✓
0

` y cos ✓
0

` y
0

✓ ` ✓
0

˛

‚“
¨

˝
X
Y
⇥

˛

‚

System ⌃ is indeed invariant by these 2 transformations since for instance:

9X “
.hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

px cos ✓
0

´ y sin ✓
0

` x
0

q “ 9x cos ✓
0

´ 9y sin ✓
0

“ upcos ✓ cos ✓
0

´ sin ✓ sin ✓
0

q
“ u cosp✓ ` ✓

0

q “ U cos⇥ ˝
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Moreover, system’s output equation appears also G-compatible if we consider
the local transformation ⇢

g0py
t

q defined by:

⇢
g0py

t

q “
ˆ
x cos ✓

0

´ y sin ✓
0

` x
0

x sin ✓
0

` y cos ✓
0

` y
0

˙
“ hp'

g0px
t

q, 
g0pu

t

qq “ hpX,Y q

The composite group transformation �
g0 “ p 

g0 ,'g0 , ⇢g0q defined above is s.t.
dimpGq “ dimpX q “ n “ 3 as mentioned by remark 2. Since dimpImp'

g0qq “
dim(G) “ 3 (cf. remark 1), the identification of G to X allows to deduce easily
the inverse element of any g

0

P G, especially the group element which moves
any x

t

P X to the neutral element e “ 0. Therefore, the moving frame is given

by: x´1

t

=´ppx cos ✓`y sin ✓q p´x sin ✓`y cos ✓q ✓
˘
T

. Indeed, the normalization
equations read:

'
g0px

t

q “
¨

˝
x cos ✓

0

´ y sin ✓
0

` x
0

x sin ✓
0

` y cos ✓
0

` y
0

✓ ` ✓
0

˛

‚“ e “
¨

˝
0
0
0

˛

‚ñ

$
&

%

x
0

“ ´x cos ✓ ´ y sin ✓
y
0

“ x sin ✓ ´ y cos ✓
✓
0

“ ´✓

T ptq

x

y

R2 : px, yq

S1 : p✓q

✓

✓

✓ “ 0

px, yq

FIGURE 23.4
SEp2q-topological equivalence of the state space X “ R2 ˆ S1.

23.3 Optimal Invariant Nonlinear State Estimation

23.3.1 Invariant Observer

Considering a continuous nonlinear G-invariant/equivariant dynamical system
modeling ⌃ such as in Eq. (23.1), the general form of a nonlinear continuous-
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time symmetry-preserving state observer will be defined s.t.:

9̂x
t

“fpx̂
t

,u
t

q `
nÿ

i“1

K
i

rIpu
t

, x̂
t

q, z
t

s.w
i

px̂
t

q (23.3)

In (23.3), x̂ refers to the estimated state vector. z is the measurements vector.
All the measurements are assumed to be corrupted by noises and some of them
are subject to bias-type errors. Both assumptions on noises and additive state
variables will permit to account for these disturbances for invariant nonlinear
state estimation. Eq. (23.3) follows the standard expression of many nonlinear
state estimators (such as Luenberger observers or Kalman filters) in which a
model-based prediction, calculated here from G-invariant process equations, is
corrected to produce estimation time derivative. For invariant nonlinear state
estimation however, correction must be constructed s.t. Eq. (23.3) will be also
G-invariant. In other words, observer’s dynamics must verify similar invariance
properties w.r.t. the original system. Thus, in formulation (23.3), predicted
state derivative correction appears expressed as the linear combination of the
n invariant basis vectors w

i

px̂
t

q with associated scalar weighting coe�cients
K

i

rIpu
t

, x̂
t

q, z
t

s. Each K
i

factor expression shows that the observer gain de-
pends nonlinearly on system fundamental invariants I which read, based on
previous underlying assumptions:

Ipu
t

, x̂
t

q “ p 
ˆx

´1
t

pu
t

q,'
ˆx

´1
t

px̂
t

q, ⇢
ˆx

´1
t

pŷ
t

qq
“ pIˆxt

ut
, e, ⇢

ˆx

´1
t

phpx̂
t

,u
t

qqq
ô pIˆxt

ut
, hp'

ˆx

´1
t

px̂
t

q, 
ˆx

´1
t

pu
t

qqq
“ pIˆxt

ut
, hpe, Iˆxt

ut
qq P U ˆ Y Ä Rm`p

(23.4)

In (23.4), e corresponds to the neutral element associated with the local state
transformation '

gPG and can be viewed as a constant quantity. Eq. (23.4)
defines a set ofm`p invariants which are functionally independent. In practice,
the correction term will depend on these latter through the introduction of
an invariant innovation vector, also called invariant output error, denoted by
E and expressed s.t.:

E “ ⇢
ˆx

´1
t

pŷ
t

q ´ ⇢
ˆx

´1
t

pz
t

q “ hpe, Iˆxt
ut

q ´ ⇢
ˆx

´1
t

pz
t

q “ Epx̂
t

, Iˆxt
ut
, z

t

q (23.5)

This invariant output error connects the measurements to their estimated
values through the local transformation ⇢, or equivalently, connects the image
by ⇢ of z

t

to the one by h of both system neutral element and input invariants.
Therefore, Eq. (23.3) can be rewritten s.t.:

9̂x
t

“fpx̂
t

,u
t

q `
nÿ

i“1

K
i

rEpx̂
t

, Iˆxt
ut
, z

t

qs.w
i

px̂
t

q (23.6)

pw
i

px̂
t

qq
iPrr 1 ;n ss forms a G-invariant frame which projects each correction term

on the G-invariant tangent state space T
ˆxtX defined by fpx̂

t

,u
t

q. They are
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defined s.t.:

@i P rr 1 ;n ss, w
i

px̂
t

q “
”
D'

ˆx

´1
t

px̂
t

q
ı´1

¨ Bp¨q{Bx
i

(23.7)

In (23.7), Bp¨q{Bx
i

refers to the ith canonical basis vector of Rn. The invari-
ant frame computation requires the inversion of the Jacobian matrix D'

ˆx

´1
t

which can be carried out analytically and easily in many practical applications.
This calculation is however non-systematic since the composite transformation
�
gPG is proper to each system modeling. The observer dynamics in Eq. (23.6)

is clearly G-invariant. Indeed, by posing 9̂x
t

“ F px̂
t

,u
t

, z
t

q, we have @g P G:

F p'
g

px̂
t

q, 
g

pu
t

q, ⇢
g

pz
t

qq “ D'
g

px̂
t

q ¨ F px̂
t

,u
t

, z
t

q (23.8)

since (see [18–20] for more calculation details):

‡ f (G-invariant) verifies fp'
g

px̂
t

q, 
g

pu
t

qq “ D'
g

px̂
t

q ¨ fpx̂
t

,u
t

q;
‡ E is invariant by construction i.e., Ep'

g

px̂
t

q, I'gpˆxtq
 gputq, ⇢gpz

t

qq “ Epx̂
t

, Iˆxt
ut
, z

t

q;
‡ and @i P rr 1 ;n ss, w

i

p'
g

px̂
t

qq “ D'
g

px̂
t

q ¨w
i

px̂
t

q (due to the unicity of �).

Similarly to E, the convergence analysis (i.e., x̂
t

fiÑ x
t

) of F in Eq. (23.6)
appears facilitated when an invariant state estimation error, denoted by
⌘px

t

, x̂
t

q, is considered instead of a linear system error x
t

´ x̂
t

. This error
reads:

⌘px
t

, x̂
t

q “ '
ˆx

´1
t

px
t

q ´ '
ˆx

´1
t

px̂
t

q “ x̂´1

t

˛ x
t

´ e (23.9)

By definition, ⌘ verifies @g P G, ⌘p'
g

px
t

q,'
g

px̂
t

qq “ ⌘px
t

, x̂
t

q and its dy-
namics through time is driven by an autonomous di↵erential equation s.t.:

9⌘px
t

, x̂
t

q “ ⌥p⌘px
t

, x̂
t

q, Iˆxt
ut

q pwith ⌥ smooth functionq (23.10)

This result shows that the invariant state estimation error depends on system’s
trajectory t fiÑ px

t

,u
t

q through its fundamental invariants. It is noteworthy
that when @t, Iˆxt

ut
” Ipu

t

q (with I continuous function of u
t

), 9⌘ is independent
of the followed state trajectory x

t

, which increases de facto the convergence
domain of F .

Followingly, when no error impairs system’s observation equations (i.e.,
ŷ
t

“ hpx̂
t

,u
t

q “ zptq), it follows that E :“ 0 by definition. In that peculiar
case, each K

i

weight must satisfy:

@i P rr 1 ;n ss, K
i

rEpx̂
t

, Iˆxt
ut
, ŷ

t

q “ 0s “ 0 (23.11)

in order to confer to the invariant observer a consistent behaviour. Hence, a
linearized version w.r.t. E of the continuous-time symmetry-preserving invari-
ant state observer (23.6) can be derived s.t.:

9̂x
t

–fpx̂
t

,u
t

q `
nÿ

i“1

!
sK

i

rEs ˆEpx̂
t

, Iˆxt
ut
, z

t

q
)
.w

i

px̂
t

q (23.12)
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by expanding in Taylor’s series function K
i

rEpx̂
t

, Iˆxt
ut
, z

t

qs at first order.

In (23.12), @i P rr 1 ;n ss, sK
i

rEs “ sK
i

rEpx̂
t

, Iˆxt
ut
, z

t

qs P M
1ˆp

pRq. At this point,
the design of the invariant observer described in Eq. (23.12) relies on the
determination of the n gain vector(s) sK

i

rEs. For numerous applications, the
invariant observer gain(s) calculation can be addressed ad hoc by first, inves-
tigating the observer detailed nonlinear equations, and then, by choosing gain
value(s) which will meet some predefined requirements in terms of: - conver-
gence (guarantee and domain); - decoupling purposes; - subsystems settling
time/damping ratio; - etc. This calculation can also be carried out with more
genericity by adapting well-proven optimal filtering techniques. This has led to
the development of the so-called Invariant Unscented Kalman Filter (IUKF)
from Eq. (23.12). The IUKF gain vector(s) computation resumes the main
steps of the standard UKF algorithm (in its square root computational ver-
sion), except that sK

i

rEs will not be adapted from both linear state and output
errors but from their invariant counterparts (⌘ and E). § 23.3.2 details this
new approach to derive optimal invariant filters for nonlinear state estimation.

23.3.2 Invariant UKF: Principles and Design

The IUKF relies on the basic theoretical principles developed by Julier and
Uhlmann at the beginning of 2000s (see [23]) which have been since widely
applied to various nonlinear state estimation problems (cf. [21,22]). The stan-
dard UKF algorithm exploits a deterministic sampling technique, known as
the unscented transform (see [24]), in order to pick a minimal set of sample
points, also called sigma points, around the mean state vector. These latter
are then propagated through the nonlinear state f and output h equations,
from which both estimated mean and covariance are then recovered. The re-
sulting filter captures the true mean and covariance with more accuracy than
any other Kalman filtering techniques. In addition, this method removes the
requirement to explicitly calculate the Jacobian matrices Bf{Bx and Bh{Bx
w.r.t. standard Extended Kalman Filter (EKF), which can be a di�cult task
in itself for complex systems. Besides, to improve its computational e�ciency
the standard UKF algorithm can be derived in several factorized versions
(cf. [25, 26]). In the sequel, the square-root formulation will be considered.

The developed IUKF algorithm permits to design a nonlinear discrete-
time invariant state observer from the discretized modeling ⌃

d

described by:

@k P N, ⌃
d

:

"
x
k`1

“ f
d

px
k

,u
k

q ` v
k

y
k

“ h
d

px
k

,u
k

q ` w
k

with: @pi, jq P N2

$
’’&

’’%

Erv
i

s“Erw
j

s“0
Erv

i

wT

j

s“0
Erv

i

vT

j

s“�
ij

V
i

Erw
i

wT

j

s“�
ij

W
i

Integer k corresponds to the time index. v
k

(resp. w
k

) refers to the discrete
Gaussian process (resp. observation) noise. �

ij

is the Kronecker symbol. The
estimation process starts with the computation of the 2n ` 1 sigma points,
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denoted by X , s.t. X p0q
k|k “ x̂

k|k. This calculation is based on the scaled un-

scented transformation (see [24]) which scatters the points according to the
estimated state error covariance matrix Pxx

k|k “ Sxx

k|k ¨ pSxx

k|kqT at time k, and

provides also two series of 2n ` 1 scalar weighting factors, denoted by tW piq
m

u
and tW piq

c

u (i P rr 0 ; 2n ss), for mean and covariance approximations. During
prediction step, all sigma points are then propagated through both G-invariant
f
d

and G-equivariant h
d

in order to deduce vectors x̂
k`1|k and ŷ

k`1|k, but also
covariance matrices Sxx

k`1|k, S
yy

k`1|k and Pxy

k`1|k associated with both state and
output invariant errors s.t.:

  @i P rr 0 ; 2n ss, X piq
k`1|k “ f

d

pX piq
k|k,uk

q ñ x̂
k`1|k “

2nÿ

i“0

W piq
m

X piq
k`1|k

À Sxx

k`1|k “

$
’&

’%

¿ qr

„a
W p1q

c

´
⌘px̂

k`1|k,X p1q
k`1|kq . . . ⌘px̂

k`1|k,X p2nq
k`1|kq

¯
V1{2

k

⇢

¡ cholupdate

´
Sxx

k`1|k,⌘px̂
k`1|k,X p0q

k`1|kq,W p0q
c

¯

Ã @i P rr 0 ; 2n ss, ŷpiq
k`1|k “ h

d

pX piq
k|k,uk

q ñ ŷ
k`1|k “

2nÿ

i“0

W piq
m

ŷpiq
k`1|k

Õ Syy

k`1|k “

$
’’’’’’&

’’’’’’%

¿ qr

„a
W p1q

c

ˆ
EpX p1q

k`1|k, I
X p1q

k`1|k
uk , ŷ

k`1|kq . . .

EpX p2nq
k`1|k, I

X p2nq
k`1|k

uk , ŷ
k`1|kq

˙
W1{2

k

⇢

¡ cholupdate

ˆ
Syy

k`1|k,EpX p0q
k`1|k, I

X p0q
k`1|k

uk , ŷ
k`1|kq,W p0q

c

˙

Œ Pxy

k`1|k “
2nÿ

i“0

W piq
c

⌘pX piq
k`1|k, x̂k`1|kqET pX piq

k`1|k, I
X piq

k`1|k
uk , ŷ

k`1|kq

Previous matricial computations rely on both QR decomposition and rank
1 update to Cholesky factorization (cholupdate). Local transformations
p 

g

,'
g

, ⇢
g

q are here defined as for system ⌃
d

. In this formulation, state,
output and crossed error covariances are now defined from system model-
ing invariants. It is clear by transitivity that these matricial quantities are left
unchanged by the composite transformation �

gPG “ p 
g

,'
g

, ⇢
g

q. It follows
that correction step reads:

œ @i P rr 1 ;n ss, sK
i

rEs “ ith row of K “ pPxy

k`1|k{pSyy

k`1|kqT q{Syy

k`1|k

– F : x̂
k`1|k`1

“ x̂
k`1|k`

nÿ

i“1

sK
i

rEs ˆEpx̂
k`1|k, I

ˆxk`1|k
uk , z

k`1

q.w
i

px̂
k`1|kq

— Sxx

k`1|k`1

“ cholupdate

´
Sxx

k`1|k,KSyy

k`1|k,´1
¯

Starting from initial values x̂
0

“ Erx
0

s, Pxx

0

“ Er⌘px
0

, x̂
0

q⌘T px
0

, x̂
0

qs and
iterating on k previous two-steps procedure (prediction/correction) permit to
design an invariant nonlinear state observer in discrete time. When any given
permanent trajectory t fiÑ px

p

ptq,u
p

ptqq is followed (i.e., s.t. @t, Ixp
up

ptq “ Ī),
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1st order approximation of Eq. (23.10) shows that if K is also determined s.t.
matrix B⌥p0, Īq{B⌘ is stable, then observer F will converge locally around
px

p

ptq,u
p

ptqq. Reuse of system modeling invariances within invariant ob-
server design also guarantees that it will converge for any group action image
p 

g

pu
p

ptqq,'
g

px
p

ptqqq
gPG. This property is remarkable especially for dynami-

cal systems described by kinematics relationships whose dynamics is invariant
by translation and rotation movements. This latter point will be illustrated
in section 23.4, and more especially in §23.4.2 with the AHRS example.

23.4 Benchmark and Application

23.4.1 Dynamic System Modeling

This subsection details the generic modeling used to tackle and solve the issue
of estimating some key flight variables (attitude-orientation, angle rates, etc.)
of mini-UAVs fitted out with an Attitude and Heading Reference System
(AHRS). UAVs dynamics representation corresponds here to a pure quater-
nionial kinematics modeling (whose related quaternion will be denoted by
q), supplemented by additive state variables which represent low frequency
sensors’ imperfections (such as slowly varying biases). Thereby, we consider:

⌃ :

$
’’&

’’%
9x
t

“

¨

˚̊
˝

9q “ q ˚ p!
m

´ !
b

q{2
9!
b

“ 0
9a
s

“ 0
9b
s

“ 0

˛

‹‹‚, y
t

“
ˆ
y
A

“ a
s

q´1 ˚ A ˚ q
y
B

“ b
s

q´1 ˚ B ˚ q

˙
(23.13)

where !
m

is seen as an imperfect and noisy, but known, measured input, like
B. Constant A “ p0 0 gqT refers to the local Earth’s gravity vector. Nonlinear
state space representation of Eq. (23.13) can be described in a compact form
s.t. 9x

t

“ fpx
t

,u
t

q and y
t

“ hpx
t

,u
t

q where u
t

“ !
m

, x
t

“ pqT !T

b

a
s

b
s

qT
and y

t

“ pyT

A

yT

B

qT are the input, state and output vectors respectively. The
nonlinear state estimation problem makes use of 3 triaxial sensors which de-
liver a total of 9 scalar measurement signals: ‡ 3 magnetometers permit to
obtain a local measurement of Earth’s magnetic field, which is known con-
stant and expressed in the body-fixed frame s.t. vector y

B

“ q´1 ˚ B ˚ q
(where B “ pB

x

B
y

B
z

qT ) can be considered as an output of the observation
equations; ‡ 3 gyroscopes produce the measurements associated with the in-
stantaneous angular rates gathered in !

m

P R3 s.t. !
m

“ p!
mx

!
my

!
mz

qT ; ‡
and 3 accelerometers provide the measured output signals coresponding to the
specific acceleration, denoted by a

m

P R3 with a
m

“ pa
mx

a
my

a
mz

qT . As no
velocity and position information is available (noGPS, nor Pitot data fusion),
this AHRS is often qualified as non-aided. Thus, to keep the whole nonlin-
ear state representation observable given these available measurements, the
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assumption that the linear acceleration 9V remains negligible is also made i.e.,
9V “ 0. Consequently, the specific acceleration vector, expressed in the body-
fixed frame, can be approximated by ´a

s

q´1˚A˚q “ ´y
A

and compared with
its corresponding imperfect and noisy measurement a

m

. Taking into account
the maximum number of sensors’ imperfections (such as low frequency dis-
turbances) within the estimation process requires the introduction of several
additive state variables. A 1st-order observability analysis (see [20] for more
calculation details) shows that until 6 additional unknown constants can be
estimated without introducing inobservability. Thus, the choice of considering
an additive constant bias vector !

b

on the angular rates vector measurement
!

m

has been made. Then, only 2 (of possible 3) additional parameters have
been introduced. Doing so allows to rely not too much on the possibly per-
turbated magnetic field within the estimation process of y

A

. These 2 additive
variables correspond to positive constant scaling factors, denoted by a

s

and
b
s

, which adjust and correct the predicted outputs y
A

and y
B

respectively.
All these sensor imperfections are modeled as pseudo-Gaussian random walks
which can be physically interpreted as slowly varying parameters.

23.4.2 IUKF Estimator Design

Considering the expressions of system modeling given in Eq. (23.13) and the
Lie-group G defined s.t. G “ H

1

ˆ R5 (where H
1

designates the di↵erentiable
manifold composed of quaternions with unit norm which is homeomorphic to
R3), the following input, state and output transformations prove that system
modeling ⌃ is both G-invariant and G-equivariant (see definition 9). These
latter read @g

0

“ pqT

0

!T

0

a
0

b
0

qT P G and @pu
t

,x
t

,y
t

q P U ˆ X ˆ Y:

$
&

%

 
g0pu

t

q “ q´1

0

˚ !
m

˚ q
0

` !
0

'
g0px

t

q “ ppq ˚ q
0

qT pq´1

0

˚ !
b

˚ q
0

` !
0

qT a
s

.a
0

b
s

.b
0

qT
⇢
g0py

t

q “ ppa
0

.q´1

0

˚ y
A

˚ q
0

qT pb
0

.q´1

0

˚ y
B

˚ q
0

qT qT
(23.14)

From Eq. (23.14), one can deduce easily that the composite transformation
�
g

“ p 
g

,'
g

, ⇢
g

q is equivalent to time-constant rotations and translations in
both Earth- and body-fixed frames. By posing Q “ q ˚ q

0

, ⌦
b

“ q´1

0

˚ !
b

˚
q
0

` !
0

and ⌦
m

“ q´1

0

˚ !
m

˚ q
0

` !
0

, it can be demonstrated that, for
instance, the 1st equation of 9x

t

“ fpx
t

,u
t

q is indeed G-invariant.

2 9Q “ 2

.hkkkikkkj
pq ˚ q

0

q“ q ˚ p!
m

´ !
b

q ˚ q
0

“ q ˚ pq
0

˚ q´1

0

˚ !
m

´ q
0

˚ q´1

0

˚ !
b

q ˚ q
0

“ pq ˚ q
0

q ˚
“
pq´1

0

˚ !
m

˚ q
0

` !
0

q ´ pq´1

0

˚ !
b

˚ q
0

` !
0

q
‰

“ Q ˚ p⌦
m

´ ⌦
b

q

Followingly, the neutral element e of G associated with '
g0 is given by

p1T 0T 1 1qT (where 1 “ p1 0 0 0qT and 0 “ p0 0 0qT ). Therefore,
the moving frame �px

t

q which conveys any state vector to e is given by
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x´1

t

“ pq´T p´q ˚ !
b

˚ q´1qT 1{a
s

1{b
s

qT . Consequently, the analytical ex-
pression of the invariant output error E reads in this applicative case:

Epx̂
t

, Iˆxt
ut
, z

t

q “ hpe, Iˆxt
ut

q´⇢
ˆx

´1
t

pz
t

q “
ˆ
E
A

“ A ´ â´1

s

.q̂ ˚ a
m

˚ q̂´1

E
B

“ B ´ b̂´1

s

.q̂ ˚ b
m

˚ q̂´1

˙
(23.15)

In Eq. (23.15), b
m

is the magnetic field measurement. Besides, the
invariant basis vectors can be also clarified. By posing Wpx̂

t

q “ 
pwˆq

i

q
iPrr 1 ; 3 ss pwˆ!b

i

q
iPrr 1 ; 3 ss wâs w

ˆ

bs
(

the invariant vectors basis and con-
sidering B “ pv

i

q
iPrr 1 ; 3 ss the canonical basis of R3, we have:

Wpx̂
t

q“

$
’’’&

’’’%

¨

˚̊
˝

v
i

˚ q̂
0
0
0

˛

‹‹‚

iPrr1;3ss

¨

˚̊
˝

0
q̂´1 ˚ v

i

˚ q̂
0
0

˛

‹‹‚

iPrr1;3ss

¨

˚̊
˝

0
0
a
s

0

˛

‹‹‚

¨

˚̊
˝

0
0
0
b
s

˛

‹‹‚

,
///.

///-

Mixing all these results allows to derive the equations of a continuous-time
IUKF estimator s.t.:

$
’’’’’’’’&

’’’’’’’’%

9̂q “ 1

2
q̂ ˚ p!

m

´ !̂
b

q`
3ÿ

i“1

` sK1:3

i

rEs.E
A

` sK4:6

i

rEs.E
B

˘
v
i

˚ q̂ ` C
ˆq

9̂!
b

“ q̂´1 ˚
ˆ

6ÿ

i“4

` sK1:3

i

rEs.E
A

` sK4:6

i

rEs.E
B

˘˙
˚ q̂

9̂a
s

“ â
s

.
` sK1:3

7

rEs.E
A

` sK4:6

7

rEs.E
B

˘

9̂
b
s

“ b̂
s

.
` sK1:3

8

rEs.E
A

` sK4:6

8

rEs.E
B

˘

(23.16)

In the previous equation, the notation sKj:k

i

rEs (with i P rr 1 ;n ss and pj, kq P
pN‹q2) designates the gain submatrix obtained by concatenating the columns
of sK

i

rEs between the jth and the kth positions. The gain computation fol-
lows the steps presented in §23.3.2. The additive (and invariant) vector
C

ˆq

, which reads p1 ´ }q̂}2qq̂, permits to keep }q̂} “ 1 through time along
the estimation process. In the AHRS case, it is noteworthy that the es-
timator equations in discrete time can be expressed as a global weighted
sum of indiviual predictions and correction terms (see [20] for more details)
thanks to both: - the form of the observation equations (cf. Eq. (23.13))
which are linear w.r.t. to A and B; - and the resort to an unscented-based
(i.e., sampling) technique for gains computation. Followingly, by denoting
⌘px

t

, x̂
t

q “ p↵ � µ ⌫qT “ ppq̂ ˚ q ´ 1qT pq̂ ˚ p!̂
b

´ !
b

q ˚ q̂´1qT a
s

{â
s

b
s

{b̂
s

qT ,
the invariant state estimation error dynamics is given by:

$
’’’’’’’’&

’’’’’’’’%

9↵ “ ´1

2
↵ ˚ � `

ˆ
3ÿ

i“1

sK1:3

i

rEs.E
A

` sK4:6

i

rEs.E
B

˙
˚ ↵

9� “ p↵´1˚ Ix̂t
ut

˚ ↵qˆ� ` ↵´1˚
ˆ

6ÿ

i“4

` sK1:3

i

rEs.E
A

` sK4:6

i

rEs.E
B

˘˙
˚ ↵

9↵ “ ´↵.
` sK1:3

7

rEs.E
A

` sK4:6

7

rEs.E
B

˘

9� “ ´�.
` sK1:3

8

rEs.E
A

` sK4:6

8

rEs.E
B

˘
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As it was beforementioned, the reader can notice that the invariant state es-
timation error dynamics depends on system’s trajectory t fiÑ px

t

,u
t

q through
the invariant quantity Iˆxt

ut
which is a major di↵erence with most of nonlinear

estimators. Unlike the Invariant Extended Kalman Filter (IEKF - see refer-
ences [18,19]), the proposed IUKF does not require a linearization of 9⌘px

t

, x̂
t

q
w.r.t. ⌘ for its gain matrix computation step. This linearization can appear as
a di�cult operation in itself and especially for any practical implementation.

23.4.3 Results

The IUKF performances have been widely evaluated. A concise comparison
of them with the ones provided by a standard UKF approach is presented in
this section. The reference input/output data used in this paragraph have been
obtained from the simulation of an automated free falling parafoil modeling.
Standard additive pseudo-Gaussian noises have been added to the simulated
measurements. The continuous-time IUKF-based estimator of Eq. (23.16)
has been implemented numerically using a 4th-order Runge-Kutta integration
technique, sampled at 50Hz. The time horizon length is approximately equal
to 100 seconds. During this simulation, system’s dynamics is characterized by
strong variations of some state variables, for instance the parafoil attitude an-
gles and its free falling speed. This can be observed in particular until t “ 40
seconds. Obviously, processing such data will impact and test the whole es-
timation process since this latter relies on the assumption that 9V “ 0. At
the top of Fig. (23.5), the estimations of the 3rd component of the state sub-
vector q “ pq

1

q
2

q
3

q
4

qT restored by the 2 methods are displayed through
time. It shows that both algorithms are very close to the true q

3

value. Be-
sides, the initial state error, introduced on purpose, appears quickly corrected
(† 1 second). However, at the bottom of Fig. (23.5), the analysis of the state
estimation errors magnitude on the parafoil attitude angles reveals that the
IUKF method is more accurate and converges faster than the UKF. Another
noticeable di↵erence can be observed on the theoretical standard deviation
computed by both algorithms. Due to its invariance properties, the IUKF
produces more reliable estimates w.r.t. to the standard UKF algorithm. This
invariant behaviour can also be assessed on Fig. (23.6) which provides, among
other things, the time variations of the correction gains calculated by the
standard estimation technique and the IUKF. Indeed, it is noteworthy that,
by exploiting the invariances of system dynamics within the nonlinear state
estimation approach (i.e., the IUKF), the correction gains (associated here
with q̂

3

) appear constants along the followed trajectory, whereas they vary in
a chaotic way for the UKF. The bottom of Fig. (23.6) illustrates for its part
the good convergence property of the developed IUKF. Indeed, the subplots
show the evolution (over the 20 first seconds) of the norm of both linear (UKF
case) and invariant (IUKF case) estimation error vectors, associated with the
!

b

state, for 3 di↵erent initial conditions. Di↵erent trajectories are followed



20 Optimal Invariant Observers Theory for Nonlinear State Estimation

by the standard UKF whereas an unique path characterized the convergence
of the IUKF.

FIGURE 23.5
Resulting q

3

estimates (dash-dot lines := estimated standard deviation) and
errors magnitude on parafoil attitude angles [UKF (left) - IUKF (right)].

FIGURE 23.6
Correction gains time variations and estimation error norm convergence [UKF
(left) - IUKF (right)].
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