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23.1 General Introduction
23.1.1 Nonlinear Invariant State Estimation: A Brief Review

Many recent progresses in the field of sensors miniaturization have led to
the design of small and cheap integrated navigation system hardwares (com-
plete IMU, GPS module, etc.), which have, for their part, contributed to
boost significantly the market of mini-UAVs over the last decades, making
them more accessible to everyone. Nevertheless, this accessibility is frequently
inconsistent with good measurement performances. For instance, the GPS
modules used commonly in the Paparazzi autopilot (cf. Paparazzi project at:
https://wiki.paparazziuav.org/) deliver a position with an average accu-
racy of 5 meters, up to 10m under certain flight conditions. Therefore, a need
for multisensor data fusion arises, especially when the objective consists in
developing robust advanced control strategies for mini-UAVs. To this aim,



2 Optimal Invariant Observers Theory for Nonlinear State Estimation

nonlinear estimation offers several well-proven algorithmic techniques which
permit to recover an acceptable level of accuracy on some key flight param-
eters (anemometric angles, orientation/attitude, linear and angular speeds,
position, etc.) for mini-UAVs closed-loop handling qualities. An overview
of nonlinear estimation methods can be found in the litterature from many
surveys or books (see [1-3] for example). Fig. (23.1) attempts to propose a
classification of these latter and positions chapter 23 topic in it (white terms
in grey boxes). As they merge different nonlinear estimation principles, opti-
mal invariant observers can be qualified as hybrid filters. Although dynamical

NONLINEAR ESTIMATION

Model-Based Methods ‘ Data-Based Methods

State Parameter Mixed*
Estimation Estimation Estimation

—{ Kalman approaches: EKF, MEKF, additive EKF, QUEST. .. y

Unscented filters: UKF

Nonlinear observers:
| invariant
|

|
‘—+ Adaptive techniques: noise/nonlinear adaptive estimators. .. ’-—

* ?Mixed” means joint state/parameter estimation.

FIGURE 23.1
Classification of existing nonlinear state estimation techniques and chapter 23
topic positioning.

systems possessing symmetries have been studied in control theory, few results
taking benefit of system invariances for observers design exist today. Invariant
nonlinear estimation theory appears so as a young research area in which the
first main contributions can be dated from the beginning of 2000s (see [4-20]
and the references therein). Initially, research was going on in the development
of constructive methods to derive invariant observers for nonlinear estimation
purposes which preserve systems’ symmetries. If this kind of non-systematic
approaches keeps physical readiness, it requires however to tune an important
number of setting parameters potentially when computing estimation gains,
which can be cumbersome for complex system modelings. That is why, re-
searchers have then tried to develop more systematic techniques which are able
to facilitate estimators’ gains computation. The Invariant Extended Kalman
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Filter (IEKF - cf. bibliographical references [7,10]) permits to determine gain
matrices for minimum variance estimation. This optimality must be considered
here w.r.t. an invariant state estimation error which will be defined precisely
further. An important drawback in this method is that it requires to linearize
a system of differential equations which govern the invariant state estimation
error dynamics. Such an operation appears suitable for simple system mod-
elings only s.t. UAVs whose dynamics can be represented easily based on
kinematics relationships. Indeed, this kind of nonlinear state space represen-
tation can be differentiated analytically towards its state vector. For more
complex system modelings, this linearization may be difficult to carry out.
Nevertheless, the IEKF, and more generally invariant observers, are charac-
terized by a larger convergence domain, due to the exploitation of systems’
symmetries within the estimation algorithm (i.e., within filter equations and
gains computation), and present very good performances in practice. In order
to derive more tractable algorithms for nonlinear invariant state estimation,
an hybridation of the Unscented KF (UKF) principles (cf. [21-24]) with in-
variant observers theory has been recently proposed in [12;13,20]. Among
other things, it has been proved in these bibliographical references that an
Invariant UKF-like estimator (named IUKF) could be simply designed by
introducing both notions of invariant state estimation and invariant output
errors within any UKF algorithm formulation (standard version or square-
root/UD factorized ones - see [25,26]). Besides, it has been shown that, for
some well-known navigation problems devoted to UAVs, equations of any
TUKF-based observer in discrete-time could be expressed quite simply. In-
deed, state vector estimate can be determined recursively and approximated
by a weighted linear combination of n € N* invariant estimates. This chapter
relies strongly on these recent research works and more details about them
will be explained in the sequel. Similarly, an extension of nonlinear invariant
observers has been made for Rao-Blackwellized Particle Filters (PF) that can
be used for nonlinear state estimation (cf. [14]). Invariant PFs (IPF) rely on
the notion of conditional invariance which corresponds to classical system in-
variance properties, but once some state variables are assumed to be known.
It is those known states that will be sampled throughout the estimation pro-
cess. The observer structure is actually double. Indeed, the rest of the state
variables are marginalized out using IEKF's. It is noteworthy that, for the ob-
tained IPF, the Kalman gains computed are identical for all particles which
drastically reduces the computational effort usually needed to implement any
PF.

All the previous estimation methodologies have allowed the invariant ob-
servers theory to be applied in many various application fields since the begin-
ning of the 2000s. Rather than enumerating all of them, which would be out of
the scope of this chapter, we prefer focusing here on the use, become popular in
the domain of robotics, of the invariant observers for solving nonlinear attitude
estimation problems from both inertial/vision multisensors data fusion. Many
bibliographical references, such as for instance [18,27,28], tackle this specific
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issue exploiting nonlinear invariant observers. Both properties and capabilities
of this peculiar class of method make any invariant observer-based estimation
scheme dedicated to dynamical system navigation appealing, especially when
there exists, in addition, hardware redundancy. In that case, automated ve-
hicles can reach an acceptable level of robustness w.r.t. degraded operating
conditions such as, for example, in indoor or GPS-denied environments, and
in case of single or multiple sensor faults. Using an invariant observer-based
algorithm to merge an extended (and potentially redundant) set of measure-
ments can still provide good performances and convergence properties in such
situtations.

Another interesting application of invariant observers theory can be found
in [29]. It reformulates the standard Linear Quadratic Gaussian (LQG) con-
troller synthesis into an Invariant LQG (ILQG) design by making use of an
IEKF for the observer part. This leads to marginally modify the standard
equations of the LQG synthesis in order to account for, and to exploit, sys-
tem’s symmetries and invariances. The resulting controller appears to be more
robust and less sensitive to both estimated trajectory and misestimates. Such
an ILQG-based observer-controller design offers new interesting solutions and
opens new perspectives for motion planning applied to robotics.

23.1.2 Chapter Outline

This chapter aims at introducing the basics of optimal nonlinear invariant
state estimation to engineers, research scientists and applied mathematicians.
Although it gathers some new theoretical results, this chapter tries to expand
upon the past treatments of both invariant observers theory and UK filtering,
to provide a more comprehensive view on recent developments and updates
in the domain. Chapter redaction should be accessible to both senior under-
graduate and 1%* graduate students, and should prove to be well-suited for
practicing professionals. Chapter contributors expect that this text will mini-
mize newcomers’ pain in assimilating and applying all the theoretical concepts
presented. By underlying the links between differential geometry and dynam-
ical systems modeling, it is hoped that the content will be also of perennial
interest for students, scholars and engineers working in various disciplines.
This work has been also motivated by the practical problems encountered by
the authors with the subject for UAVs flight control and guidance, civil A/C
modeling and identification and dynamic system fault detection, isolation and
recovery.

The present chapter is organized as follows. Section 23.2 starts with the
presentation of fundamental theoretical prerequisities dealing with both dif-
ferential geometry and group theory. A permanent connection of the different
mathematical concepts introduced so far with a generic system representation
is made. Then, the notion of invariant for dynamical systems possessing sym-
metries is introduced in §23.2.2. An academic example, illustrating the whole
theoretical background, ends this introductive part in a third step.
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The 1% part of section 23.3 is devoted to invariant observers theory. The
general form of the invariant observer is then specialized, and the TUKF is
naturally introduced in paragraph 23.3.2.

Section 23.4 illustrates the performances reached by the developed IUKF
algorithm, by solving the non-aided AHRS navigation problem, in the case
of an automated free-falling parafoil vehicle.

23.1.3 Mathematical Notations
(E(ay» fay/hay) || Continuous (discrete) system symbol, process/output Egs.
Rn

N*/ Natural numbers set—{0} /n-dimensional Euclidean space

[1;n] Natural numbers > 1 and < n

(wg, x¢, ¥, 2¢) Input, state, output and measurement vectors at time ¢

(M, (G,e)) (differentiable) Manifold, (Lie) Group

(g,e) Standard group and neutral elements

St Circle group

dgec Composite transformation

(e, Pg; Pe) Input, state and output local actions

o Group multiplication operator

v Moving frame

dim( )/Im( ) Vector space dimension/function image subset

(LE/m) Fundamental invariants, invariant output/state errors

0(+)/0x; or v; Euclidean basis vectors

E[-]/0:; Mathematical expectation/Kronecker symbol

x® it" sigma point

qr[-] QR factorization

cholupdate(-, -, -)|| Rank-1 update of Cholesky decomposition

Syt Square-root covariance matrix at time instant k

| S Cross estimation error covariance matrix between (x1,X2)

(q, %) Quaternion s.t. q = (1 ¢2 g3 q4)*, Hamilton product

wp Gyroscopic bias vector

(as, bs) Accelerometric and magnetic scaling factors
I

23.2 Dynamical Systems Possessing Symmetries
23.2.1 Theoretical Background

Defining symmetries and invariances for controllable dynamic systems repre-
sented by nonlinear state-space representations requires first to reinterpret ge-
ometrically all modeling variables. To do so, let us consider ¥ be a continuous-
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time nonlinear modeling given by:

X = fxeug)
DE {yt e (23.1)

In Eq. (23.1), the known input, state and output trajectory vectors, denoted
by u;, x¢ and y;, evolve actually through time within 3 Euclidean open sets
UcR" X cR*and Y < R? ((m,n,p) € (N*)3) respectively. Applying
invariant theory to system X relies then on many mathematical notions which
have, for most of them, their origins in both differential geometry and group
theory. Therefore, some fundamental prerequisities are first of all introduced
in this section before exploiting them to establish the main results related
to dynamical systems possessing symmetries. For more complete definitions
see [30-32].

Definition 1 (Topological manifold) A topological manifold of dimen-
ston v € N* is a topological space which is locally homeomorphic to the Eu-
clidean space R". o

Definition 1 means that if M is a topological manifold, then Vx € M, there
exists a bijective continuous function (whose inverse is also continuous) which
maps every neighbourhood of x to R". It is clear by construction that the
space M = U x X x ) is a topological manifold (Cartesian product of Eu-
clidean open sets). Through such homeomorphisms, called also charts, one
can defined local coordinates of any point x in M. Intuitively, searching for
the symmetries or invariances of ¥ can be viewed as a problem of determining
whether two different local coordinate systems (e.g., x¢, u; and y; transformed
by rotation, translation or homothetie) define an identical dynamics (f, k) on
a given manifold.

Definition 2 (Transition map) Let ¢, g be two charts of a topological
manifold M. The application ¢ap = s o @, is called a transition map. o

Definition 2 will be used to introduce the notion of differentiable manifold.

Definition 3 (Differentiable manifold) A r-dimensional topological man-
ifold M will be said differentiable iff its transition maps are all differentiable.
Besides, it will be said of class C* (k € N*) iff its transition maps are all k-
times continuously differentiable. o

Definition 3 implies that a tangent space can be attached to every point of
a r-dimensional differentiable manifold. Formally, it will correspond to a 7-
dimensional Euclidean space which gathers all the tangent directions (i.e.,
vectors) at which one can tangentially pass through the point.

Definition 4 (Tangent vector and space) Let M < R" be a real val-
ued C*® manifold of dimension r € N*. Let x be a point of M. A wvector
v € R" will be a tangent wvector of M at x if there exists a C* curve
¥ :R —> M s.t. 9(0) = x and DI(0) = v. The set Ty M = {DJ(0)/I.r—n €
C* and ¥(0) = x} corresponds to the tangent space of M at x. o
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Definition 4 is of primary importance for introducing and defining the notion of
derivative for a map between two differentiable manifolds. It will be especially
true in the sequel when the group action will be introduced and applied to
the dynamic system modeling of Eq. (23.1).

Among the most common manifolds, Lie groups have a central place in the
application of invariant theory for dynamical systems possessing symmetries.
Indeed, as it will be shown in the following, most of the applicative bench-
marks used to illustrate both systems symmetries and invariant observers will
highlight very well-known Lie groups.

Definition 5 (Group) Let G be a given set. Let o be a composition law s.t.
o: G x G — G. The couple (G,e) is a group iff the following azioms hold:
0 V(g1,82) € G gregaeC;

0 V(g1,82,83) € G°, (g10g2) egs = g1 *(g2083);

O Jdeec G, VgeG, eeg=gee=g;

ongG, ElgileG,g.gil:g*l.g:e_ o

Definition 6 (Lie groups) A Lie group is a differentiable manifold that
carries also the algebraic structure of a group s.t. group law (or multiplication)
and its inverse correspond to C* operations. o

The simplest example of Lie group is the real axis R with the addition oper-
ation. In that case, 0 is the identity element and the inverse of z € R is —x
which is an element of R. Higher-dimensional examples can be found with the
Euclidean space or both specials linear SL(n) and orthogonal SO(n) groups.
Thus, a Lie group structure can be associated with rotations and dilatations
(i.e., translations + homotheties) for instance, and these kinds of geometrical
transformations will play an important role in the sequel, especially in §23.4
when ¥ will correspond to a pure kinematics modeling based on quaternions.
It is noteworthy that a Lie group of dimension r is often referred to as a
r-parameter group.

At this point, introducing the notions of symmetry and invariance for
dynamic systems requires the definition of group action. This group action
relates each element of a given group G to a specific transformation. Therefore,
it defines a set of parameterized maps which act on a given manifold M.

Definition 7 (Group action) Let (G,e) be a Lie group with identity ele-
ment € and M be a r-dimensional manifold (r € N*). A group action pgec
on M is a reqular map (g,x) € G x M — @g(x) € M s.t.

O Vxe M, po(x) =x;

2] v(glagQ) € GQ; Vx € Ma QDgl (9082 (X)) = Sogl‘g2 (X) o
It can be noticed in definition 7 that g is by construction a diffeomorphism
on M for all g € G. The most important class of group action which plays
a crucial role in the invariant theory applied to dynamical systems, such as
presented below, is provided by the transformations parameterized on a given
Lie group G and acting on G itself (~ to automorphisms) by left or right
multiplication.
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Example 1 (Affine group) Consider the 2-parameter Lie group A(1,R) of
affine transformations x € R — ax + b € R whose parametrization consist
in (a,b) € G = R* x R. The Lie group law is defined by (a,b) e (¢,d) =
(ac,ad + b) € G and the neutral element by e = (1,0). Considering the group
action of the affine transformations of z, ((a,b),2) € G xR — ax + be R, for
any (c,d) € G, axiom @ of definition 7 reads: V(q,p)e(c,a)(T) = acx + ad + b.

We can also deduce that: (a,b)™' = (1/a,—b/a) (inversion map). o
Remark 1 (Full-rank group action) In the sequel, only full-rank group
actions, i.e., s.t. Vg € G, dim(Im(pg)) = dim(G), will be considered. o

Remark 2 (Identification) Moreover, in the following, only full-rank group
actions from G acting on X < R™ (c¢f. Eq. (23.1)) s.t. dim(G) = dim(X) =
n € N* will be considered. It implies that G and X can be identified. o
From remarks 1 and 2, it follows first that the group actions will consist in
Euclidean transformations parameterized by R"-state vectors x;. Besides, over
the open set X ¢ R™, such transformations can be assimilated to left or right
multiplications (denoted by ©) i.e., s.t.: g : (8,%) € G X X — pg(x) = gox €
X (left multiplication) or g : (g,%) € G x X — pg(x) = xog~! € X (right
multiplication).

Definition 8 (Group orbit) Let G be a group acting on X < R™ by a left
multiplication. Let x be a point of X. The set O(x) = {y = g o x/g € G}
defines the group orbit of x. o
Definition 8 means that the orbit of any given point x € X is a X'-points set
to which x can be moved by the elements of G.

23.2.2 Notion of Invariant

This paragraph makes use of the dynamic system ¥ of Eq. (23.1). Let G <
R™ be a Lie group (as a n-dimensional Euclidean open set). We define the
composite group transformation ¢g acting on M =U x X x YV s.t.:

bg 1 (8,0, X, y1) € G X M — (Yg(uy), pg(xt), pg(ye)) = (U, X4, Yy) € M

where 1g, g and pg are 3 group actions which share an identical parametriza-
tion group (G) and act locally on the Euclidean open sets U, X and ) respec-
tively. Based on previous remarks (see §23.2.1), g is equivalent here to a left
multiplication o.

Definition 9 (Invariant/equivariant dynamic system) System 3 of Eq.
(28.1) will be said G-tnvariant if I(Yg, Pg)gec, V(8 u,x¢) € G x U x X:
f(X4,Us) = Dpg(x¢) - f(x¢,uz) and G-equivariant if 3(pg)gec : GXY — Y,
V(g,u,x) € G x U x X: WXy, Uyp) = pg(h(x,uy)). o
In other words, the coordinates transformations of definition 9 must be de-
termined s.t. their respective action on input, state and output vector vari-
ables keep the whole system dynamics unchanged i.e., X; = f(X;, U;) and
Y: = h(X¢, U). Previous definition means that all process and output equa-
tions must remain explicitly identical when applying ¢g.
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Proposition 1 (Moving frame) Let x; € X be a point of the state open set
and c € Im(pg) be an element of the image of the local diffeomorphism @g.
Then, g € G, gox; = ¢ with g = v(x¢). The map v : X — G is called the
moving frame. o

Based on the Cartan moving frame method (see [30-32]), the existence of the
moving frame of proposition 1 is guaranteed. Equality g ¢ x; = ¢ is better
known under the name of normalization equations. Solving these equations
rely on the application of the implicit functions theorem which ensures the
existence of a local solution . From a geometrical point of view, element
c=(ci co ... c,)T € R" defines a cross section C at point c of the group
orbit O(x) (see Fig. 23.2). Selecting ¢ = e in the normalization equations

O(x)

FIGURE 23.2
Moving frame illustration.

permits to deduce that v(x;) = x; . The definition procedure of v which
consists in solving g ¢ x; —e = 0 is a very useful direct method to deter-
mine the analytical expression of y(x¢), V¢ and so, the expression of system’s
fundamental invariants.

Corollary 1 (Uniqueness of the moving frame) The uniqueness of the
moving frame v < Vg e G, Vx, € X, y(pg(x1)) o g = v(x¢). o
The result provided by corollary 1 will be widely exploited in section 23.3 for
the definition of the different invariant state estimators.

It follows from all these theoretical results that dynamical system X’s
invariants are finally defined by substituting for g, v(x;) = x; ' in the com-
posite group transformation triplet (¢g)gec. Doing so will define a set of
m+w+p—w = m+p fundamental invariants for X since dim(G) = dim(&X’) = n.

Definition 10 (Fundamental invariants) The set of the m + p funda-
mental invariants of system ¥ of Eq. (23.1) is defined by: l(ug,x;) =
(1 (W), py 1 (30)) = (I e, BX0)) where B reads o, (,): :

23.2.3 Academic Example

We consider in this subsection the case of a nonholonomic car (cf. Fig 23.3).
This system is parameterized s.t.: - § is the angle between front wheels and
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car axis; - 6 is the angle formed by the (Oz) axis and car axis; - (x,y) are the
coordinates of the middle of the rear axle in the reference frame. Moreover,
u is the car speed modulus and v = tan(d)/L. Making explicit the speeds
composition rule, the car dynamics reads:

z ucos()
T 19; = uSLr;(@) = f(xt,ue = (uv)") (23.2)

yi = (z y)T = h(x¢, uy)

One can easily check that car’s dynamics is independent of both frame origin
and orientation. This implies that ¥ is invariant by both translation and ro-
tation transformations i.e., invariant under the action of the planar Special
Euclidean group SE(2) describing roto-translations in 2D-Euclidean space.
The state space X = R? x 8! (where S! designates the circle) coincides

FIGURE 23.3
Academic example of the nonholonomic car.
(left: standard parametrization - right: group action effect).

topologically with SE(2) as illustrated by Fig. 23.4. The trajectory T(t) cor-
responds to the real path followed by the car but projected in SE(2). If we
identify the reference Lie group G, used to parameterize the group actions,
to R? x S, it follows that the process dynamics of Eq. (23.2) will be invari-
ant when applying the input and state transformations g, (u;) and @g, (x¢)
defined by (go = (o yo 00)7):

u U x cos By — ysin g + xg X
e, (1) = <v) = (V) , Pgo(x¢) = [ xsinfy +ycosbo+yo | =Y
0+ 6 S

System ¥ is indeed invariant by these 2 transformations since for instance:

A

X =(zcosby — ysinby + xg) = & cosfy — §sinby = u(cos b cos by — sin 6 sin Gy)

= ucos(f + 6p) = Ucos©

(]
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Moreover, system’s output equation appears also G-compatible if we consider
the local transformation pg,(y:) defined by:

_ (xcosty —ysinby+x0\ B
paa(30) = (L omgt U ) — g (). Y (0) = XY

The composite group transformation ¢g, = (Vg,, Pg,, Pg,) defined above is s.t.
dim(G@) = dim(X) = n = 3 as mentioned by remark 2. Since dim(Im(¢g,)) =
dim(G) = 3 (cf. remark 1), the identification of G to X" allows to deduce easily
the inverse element of any go € G, especially the group element which moves
any x; € X to the neutral element e = 0. Therefore, the moving frame is given
by: x; '=—((z cos +ysinf) (—zsinf+ycosf) 0) T Indeed, the normalization
equations read:

xcosby —ysinby + g rg = —xcosf —ysinfb

0
Vgo(x¢) = | @sinbp +ycosby+yo |=e= [0 | = {yo=xsind —ycosd
0+ 6y 0 0y = —0

| S2K2 W S

FIGURE 23.4
SE(2)-topological equivalence of the state space X = R? x S!.

23.3 Optimal Invariant Nonlinear State Estimation
23.3.1 Invariant Observer

Considering a continuous nonlinear G-invariant/equivariant dynamical system
modeling ¥ such as in Eq. (23.1), the general form of a nonlinear continuous-
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time symmetry-preserving state observer will be defined s.t.:

n

%o =f(Xeywe) + ) Kl (wg, &), 2] wi(e) (23.3)

i=1

In (23.3), % refers to the estimated state vector. z is the measurements vector.
All the measurements are assumed to be corrupted by noises and some of them
are subject to bias-type errors. Both assumptions on noises and additive state
variables will permit to account for these disturbances for invariant nonlinear
state estimation. Eq. (23.3) follows the standard expression of many nonlinear
state estimators (such as Luenberger observers or Kalman filters) in which a
model-based prediction, calculated here from G-invariant process equations, is
corrected to produce estimation time derivative. For invariant nonlinear state
estimation however, correction must be constructed s.t. Eq. (23.3) will be also
G-invariant. In other words, observer’s dynamics must verify similar invariance
properties w.r.t. the original system. Thus, in formulation (23.3), predicted
state derivative correction appears expressed as the linear combination of the
n invariant basis vectors w;(%;) with associated scalar weighting coefficients
K;[l(ug, %X¢), z¢]. Each K; factor expression shows that the observer gain de-
pends nonlinearly on system fundamental invariants | which read, based on
previous underlying assumptions:

I(u, %¢) Vg1 (W), og-1(Xe), pi=1(91))

Iﬁia €, pﬁgl h(f(tv ut)))

(
( A

@ (15 R (%), U (w)))
(1% h(e, 1)) €U x ¥ < R™#7

(23.4)

In (23.4), e corresponds to the neutral element associated with the local state
transformation ¢gec and can be viewed as a constant quantity. Eq. (23.4)
defines a set of m+p invariants which are functionally independent. In practice,
the correction term will depend on these latter through the introduction of
an invariant innovation vector, also called invariant output error, denoted by
E and expressed s.t.:

E = 1 (91) — pg () = hle, 1) — py () = B B 2)  (23.5)

This invariant output error connects the measurements to their estimated
values through the local transformation p, or equivalently, connects the image
by p of z; to the one by h of both system neutral element and input invariants.
Therefore, Eq. (23.3) can be rewritten s.t.:

n

o= (%o we) + ) KB, 1 24) ] wi (%) (23.6)

=1

(Wi(Xt))ie[ 1;n ] forms a G-invariant frame which projects each correction term
on the G-invariant tangent state space T, X defined by f(%¢, u;). They are
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defined s.t.:
Vie[1:n], wi(k) = [Dgpizl(xt)]fla(.)/axi (23.7)

In (23.7), 0(:)/0x; refers to the i*h canonical basis vector of R™. The invari-
ant frame computation requires the inversion of the Jacobian matrix D(pﬁt_l
which can be carried out analytically and easily in many practical applications.
This calculation is however non-systematic since the composite transformation
¢gec is proper to each system modeling. The observer dynamics in Eq. (23.6)
is clearly G-invariant. Indeed, by posing % =F (X¢,uy,2¢), we have Vg € G:

F(@g(f(t)’ wg(ut)v pg(zt)) = Dcpg(f(t) ’ F()A(ta ui, Zt) (238)
since (see [18-20] for more calculation details):

m f (G-invariant) verifies f(pg(Xt), ¥g(us)) = Dog(Xe) - f(X¢, ue);

w E is invariant by construction i.e., E(¢g (%), Iizg’;;, pe(ze)) = E(%y, Iﬁj VZt);

w and Vie [1;n]], wi(pg(Xt)) = Dpg(X¢) - w;(%¢) (due to the unicity of 7).

Similarly to E, the convergence analysis (i.e., X; — x¢) of F in Eq. (23.6)
appears facilitated when an invariant state estimation error, denoted by
1(xX¢,%¢), is considered instead of a linear system error x; — X;. This error
reads:

n(xe, Xe) = Qg1 (xe) — cp*t_l(f(t) =%, tox;—e (23.9)

By definition, n verifies Vg € G, n(pg(xt), pe(X:)) = n(x¢,%X:) and its dy-
namics through time is driven by an autonomous differential equation s.t.:

n(xe, X¢) = T(n(xe, Xe), I’;i) (with T smooth function) (23.10)

This result shows that the invariant state estimation error depends on system’s
trajectory t — (x¢,u;) through its fundamental invariants. It is noteworthy
that when V¢, I35 = I(u;) (with I continuous function of uy), 17 is independent
of the followed state trajectory x;, which increases de facto the convergence
domain of F.

Followingly, when no error impairs system’s observation equations (i.e.,
Vi = h(Xt,u;) = z(t)), it follows that E := 0 by definition. In that peculiar
case, each K; weight must satisfy:

Vie[1;n], KJ[EG:, I, ¥:) =0]=0 (23.11)

in order to confer to the invariant observer a consistent behaviour. Hence, a
linearized version w.r.t. E of the continuous-time symmetry-preserving invari-
ant state observer (23.6) can be derived s.t.:

o= f (% u) + ) {I_{Z-[E] x E(%z, |{;;,zt)}.wi(f<t) (23.12)

i=1
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by expanding in Taylor’s series function K;[E(%, Iﬁ‘;,zt)] at first order.
In (23.12), Vie [1;n], Ki[E] = K;[E(ks, I3, 2)] € Mixp(R). At this point,
the design of the invariant observer described in Eq. (23.12) relies on the
determination of the n gain vector(s) I_(i[E]. For numerous applications, the
invariant observer gain(s) calculation can be addressed ad hoc by first, inves-
tigating the observer detailed nonlinear equations, and then, by choosing gain
value(s) which will meet some predefined requirements in terms of: - conver-
gence (guarantee and domain); - decoupling purposes; - subsystems settling
time/damping ratio; - etc. This calculation can also be carried out with more
genericity by adapting well-proven optimal filtering techniques. This has led to
the development of the so-called Invariant Unscented Kalman Filter (TUKF)
from Eq. (23.12). The IUKF gain vector(s) computation resumes the main
steps of the standard UKF a