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Abstract—Wind optimal trajectory planning is a critical
issue for airlines in order to save fuel for all their flights.
This planning is difficult due to the uncertainties linked to
wind data. Based on the current weather situation, weather
forecast institutes compute wind maps prediction with a given
level of confidence. Usually, 30-50 wind maps prediction can
be produced. Based on those predictions, airlines have to
compute trajectory planning for their aircraft in an efficient
way. Such planning has to propose robust solutions which
take into account wind variability for which average and
standard deviation have to be taken into account. It is then
better to plan trajectories in areas where wind has low
standard deviation even if some other plannings induce less
fuel consumption but with a higher degree of uncertainty.

In this paper, we propose an efficient wind optimal algo-
rithm based on two phases. The first phase considers the wind
map predictions and computes for each of them the associated
wind optimal trajectory also called geodesic. Such geodesics
are computed with a classical Bellman algorithm on a grid
covering an elliptical shape projected on the sphere. This last
point enable the algorithm to address long range flights which
are the most sensitive to wind direction. At the end of this
first phase, we get a set of wind optimal trajectories.

The second phase of the algorithm extract the most ro-
bust geodesic trajectories by the mean of a new trajectory
clustering algorithm. This clustering algorithm is based on a
new mathematical distance involving continuous deformation
approach. In order to measure this mathematical distance
between two trajectories, a continuous deformation between
them is first built. This continuous deformation is called
homotopy. For any homotopy, one can measure the associated
energy used to shift from the first trajectory to the second one.
The homotopy with the minimum energy is then computed,
for which the associated energy measure the mathematical
distance between trajectories. Based on this new distance, an
EM clustering algorithm has been used in order to identify
the larger clusters which correspond to the most robust wind
optimal trajectories. This new approach avoids the main
drawback of the classical approach which uses the mean of
the trajectories issued from the first phase. This algorithm
has been successfully applied to north Atlantic flights.

I. INTRODUCTION

With the development of aviation industry and the im-
provement of the environmental awareness, more and more
airlines have paid attention to reduce fuel consumption

Fig. 1. Jet locations

during daily flight operations. Airlines pursue to minimize
the adverse effects of headwinds, or maximize the bene-
ficial effect of tailwinds when planning flight trajectories.
According to the jet stream profile of the world shown in
figure 1, it is easy to notice that the jet streams are in
the east-west direction instead of the north-south direction.
Therefore, the flights of east-west routes are affected more
significantly by en-route winds than the flights of north-
south routes. In order to achieve the best flight performance
in terms of the flight time and the fuel consumption, airlines
may adjust the flight trajectories based on en-route wind
profiles. Consequently, it is necessary to consider en-route
wind effects when planning flight trajectories. However, it is
difficult to identify the most suitable trajectory in a complex
wind field. The wind directions and strength are varying in
different regions, at different altitudes and different times.
Even though the problem is complex to solve, it may benefit
airlines in terms of fuel cost and on-time performance if the
optimal long-haul routes are able to be planned.

Planning optimal trajectories is a rich and dynamic
research domain with many application areas like robotics,
space or aviation. Depending on the problems’ needs, the
issues are different in nature and so are the techniques used
to solve them. Here, we are interested in finding the global



optimal path in presence of currents in a two dimensional
space. Several methods, such as Dijkstra algorithm [5] or
A* algorithm [14], discretize the domain and work on
the generated network to find the optimal path. These
algorithms are very efficient but the computed solution is
restricted to the network. Some others algorithms work
on the continuous space. Those algorithms are based on
front propagation methods such as Level Set methods, Fast
Marching methods and Ordered Upwind methods. These
different algorithms are developed by Sethian in [8]. In [3],
Petres adapts the Fast Marching Method to path planning
for Autonomous Underwater Vehicles taking into account
underwater currents. However, his algorithm cannot be
applied to vehicles featuring behaviors more complex than
a linear reaction to currents. In [10], Alton uses the Ordered
Upwind algorithm with the Semi-Lagrangian method to
generate optimal trajectories.

However, uncertainties related to the trajectory such as
those in the weather conditions, cannot be fully eliminated;
therefore, deviations between the actual and predicted tra-
jectories are unavoidable. Wind is one of the most critical
issue in the dispersion linked to predicted trajectory.

Usually, aircraft are optimizing trajectory in order to
minimize some criteria : fuel, time, etc... When such
planning is done in presence of wind one must take also
into account the robustness of the planned trajectory. As a
matter of fact airlines prefer to fly less efficient trajectories
in terms of fuel but with a higher robustness.

In this paper, we address this robust trajectory planning
in presence of wind with some uncertainties.

Weather forecast usually propose several possible situa-
tion by producing Ensemble Prediction. Ensemble Predic-
tion Systems (EPS) are an approach to weather forecasting
that has been adopted by the Numerical Weather Prediction
centers in order to characterize and quantify the uncertainty
inherent to prediction [9], a concept that cannot be captured
with deterministic forecasts. This prediction technique in-
volves generating a representative sample of the possible
future states of the atmosphere. This collection of individual
forecasts, called members, is generated by modifying the
initial conditions and/or the meteorological model equations
or parameters [1], [2].

The paper is organized as follow. The first part describes
the algorithm used to compute wind optimal trajectories
with a focus building of the network used by such algo-
rithm. The second part presents the clustering algorithm and
introduces a new mathematical distance between trajecto-
ries. The third part gives some results of the application of
this new concept to weather data with different dispersion
over the Atlantic Ocean and it shows how such algorithm
can identify robust wind optimal trajectories.

Fig. 2. Metric interpolation

II. WIND OPTIMAL TRAJECTORY COMPUTATION

A. Wind Grid Computation and Interpolation

We consider a 3-degree of freedom point-mass model
of a fixed-wing aircraft flying though the North Atlantic
Ocean. As an assumption, only cruise part of the flight is
considered not only for the simplicity purposes but also
because the cruise part is the majority of the flight. Ad-
ditionally, we assume that the aircraft is flying at constant
flight level. In this paper, we do not take temperature issue
into account. As a result, we note that based on those
assumptions, more complex problems can be simulated by
applying this methodology easily.

We compute the optimal trajectory based on the wind
predictions with a classical Bellman algorithm. In order to
use Bellman algorithm to solve the problem, we need first
to build a wind grid which stores wind data information.

1) Generate the wind grid: We generate a grid of
size N X M nodes on he North Atlantic Ocean. The area
from latitude 30 to latitude 70 and from longitude -90 to
longitude 10 is taken into account. Each integer latitude and
longitude point is regarded as a node. In order to generate
smooth trajectories, we divide each latitude and longitude
into 10 boxes. As a result, a 400 x 1000 grid table is
generated.

2) Wind data interpolation: Note that, the wind data

only contain the information at integer latitude and longi-
tude node and we need to have the information at all nodes.
We use Shepard’s Method[4] to do such interpolation.
Let F(P) be a function of the point P = (x,y) defined for all
P in the real plane R?, the value at point P is the weighted
average of the values at nearby 4 data point P;, P>, P; and
Py(integer node). Denote the value of F' at P; by F; and d; be
the distance between P; and the generic point P in R?(See
figure 2). The result was established by the function:

£eits] /£

F(P) =
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Fig. 3. Graph used for the wind optimal trajectory design.
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Fig. 4. Information contained in each node

B. Bellman Algorithm

In order to generate wind optimal trajectories, we start
building a graph G = {A/, L} based on the wind grid (see
figure 3), for which the set A represents the nodes and £
the links.

Each node stores the following information : Latitude ¢,
longitude A, altitude z, the east wind component Wg and
the north wind component Wy. Based on those initial data
coming from the wind grid, we compute also the wind norm

W] = W at each node and the associated wind
bearing Oy (see figure 4).

As it can be seen on figure 3, we have structured
our graph into layers in order to speed up the Bellman
algorithm. As a matter of fact, thanks to this structure,
only one Bellman algorithm iteration is requested to find
the minimum path.

Each node has also a list of successive neighbors which
are represented by the blue links on figure 3. Each node
(except the extreme north and extreme south) has some
neighbors in the north direction and in the south direction
(in our case, two in the north and two in the south). Such
limitation will ensure smooth trajectory, avoiding sharp
turns. Each link [ € £ = (A}, A}) connects one origin node
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Fig. 5. The Cartesian coordinates

N, and one destination node Ny. The grand circle distance
of link [, d; is given by the following formula :

w:Rmmm“EAE”

where B, = (X0, V0,20)" By = (x4,V4,z4)" are the Cartesian
coordinates of the nodes N, and Ny, A is the vector product
and R is the radius of the earth. For a given node P
(see figure 5), the Cartesian coordinates are given by the
following formula :

x = R.cos(0) xcos(A)
P=1{ y=R.cos(d)*sin(})
z=R.sin(A)

Each link contains also its associated bearing (see fig-
ure 6) 6; which is given by the following formula :

0;(N,,Ng) = arctan (%)

y =sin(Ay).cos(¢g)

x = cos(0,).sin(0g) — sin(d,).cos(dg). cos(Ay)
Ay =ha—ho

Based on the previous equation, one can now compute
the tail wind on each extremities of the link [ (TW,, and
TWia) :

TW, = ||W70||.cos(61 —Ow,)

TWy = ||Wql|.cos(6; — By,

Those two tail winds are then averaged and associated
to each link :

TWo+TW,
2

This last tail wind will be used for the cost associated to
each link in the shortest path computation.

W, =
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Fig. 6. Information contained in links

To compute the wind optimal trajectory, we will consider
for each link, the time needed by aircraft to connect node
N, to node Ny. This time #; is given by :

_ 4
T, +TW,

where T is the true airspeed of the aircraft.

Having a graph with layer structure, we have imple-
mented a Bellman-Ford algorithm for finding the shortest
between a node at the extreme left (V,) and all the nodes
at the extreme right (N;). The algorithm is organized into
three steps :

STEP 1: Initialization This step initializes distances
(dist) from source to all vertices as infinite and distance
to source itself as O.

STEP 2 : Propagation The source node is first consid-
ered and its associated neighboring links.

Starting from the source node Np = src (first column)
and for each link associated to N, the algorithm marks the
neighboring nodes of Np = src with the following rule ;

o if dist[Ng] > dist|[N,] +d; then update dist[N;] =

dist[Ny] = dist[N,] +d; (keep in node Ny the node N,
which has been use for this update

I

Shift to the next column (column 2) and apply the same rule
to all nodes which have been updated in order to propagate
the distance update to the third column. This process is
repeated until the propagation reach the last column (on
the right).

STEP 3 : Path building If one want to compute the
shortest path for the source node src to any destination

nodes on the right (dest), one first select a destination node
among the nodes belonging to the last column (column
number K). Select the node Ng_; in column K — 1 which
has updated the dest node in column K. Then, select the
node Nk_» in column K —2 which has updated the node
Nk—1 in column K — 1 and so on until the source node is
reached in this back propagation process.

For each weather sample, such minimum time path
algorithm is computed in order to create a set of wind
optimal trajectories that has to be clustered.

III. TRAJECTORY CLUSTERING ALGORITHM

A. Mathematical Distance Between Trajectories

The question of gathering mobile trajectories into clusters
of similar shapes first arose in the context of shape recog-
nition. Within this frame, contours of objects are closed
curves that describe the most important visual feature that
one wants to classify. A very important constraint to take
into account is the parametrization invariance: the shape of
an object is independent on the way its contour is followed.
In its seminal paper, Kendall introduced the notion of
shape manifold [11]: the originality of its work was the
use of a differential geometry setting to implicitly enforce
the invariance with respect to shape-preserving transfor-
mations. Curves were represented as finite sequences of
distinguished points, called landmarks. Some related al-
gorithms were eventually designed for air traffic analysis
applications. In a study conducted by the Mitre corporation
on behalf of the Federal Aviation Authority (FAA) [6],
a spectral clustering algorithm was applied to sampled
trajectories. Only the distance between landmarks was used,
no invariance under euclidean transformations were im-
posed. Due to the high computational complexity, a random
projection was first applied to the data in order to reduce the
dimension of the samples. The most important limitation of
this approach is that the shape of the trajectories is not taken
into account when applying the clustering procedure unless
a re-sampling procedure based on arc-length is applied:
changing the time parametrization of the flight paths will
induce a change in the classification. Methods based on
times series as surveyed in [12], [17] are appealing, but turn
out to be inadequate for the present application. Finally,
functional data statistics [7], [15] provides a powerful
framework, still lacking the re-parametrization invariance.
In this section, flight paths will be modeled as points in
an infinite dimensional riemanian manifold. An intrinsic
notion of distance exists in this setting and is defined as the
infimum of the length of the paths connecting two points.
Having this at hand allows the use of standard, distance
based algorithms like k-means, k-mediods or hierarchical
clustering.



B. Trajectories registration

A flight path may be modeled as a smooth curve
Y: [a,b] — R3 that maps a time to a position. Two distinct
trajectories y;,7Y> are most of the time defined on different
time intervals, say [a;,b1] (resp. [az,b2]) for v; (resp.
Y2), making the comparison between them quite awkward.
This issue is well known in the field of functional data
statistics as the registration problem. In a formal sense,
it amounts to find a pair (¢1,02) of strictly increasing
diffeomorphisms ¢;: [0,1] — [a1,b1], ¢2: [0,1] — [az,b2]
such that the transformed curves y; o1, > 0 0, defined on
the common interval [0,1], are as similar as possible. The
special problem instance:

1
min [ [1001(0) =20 42(1) [ ds
01,92J0

gives the Frchet distance between 7;,Y,. Computing the
optimal 01,0, is a difficult task, unless the curves are
assumed to be polygonal. Furthermore, as mentioned in
[15], the registration procedure may remove some important
features from the data: the extra degree of freedom provided
by the so-called warping functions ¢;,¢, may have the
detrimental effect of registering curves that does not need
it [16]. A discrete relative to the Frchet distance is known
as dynamic time warping and may be used to compare
sampled sequences. Nevertheless, it suffers from the same
drawback.

On the end of the other scale, a much simple procedure
is to select only affine transformations for the warping
functions. Given a trajectory y: [a,b] — R3, the affine
registration is Yo ¢ with:

o:1€[0,1] »a+ (b—a)

It amounts to shift the time origin so as to make it
coincident with 0, then to scale by the length b —a of the
time interval.

In between, registration procedures based on time land-
marks or monotonic polynomial approximation may be
used [16]. Most of the time, a penalty criterion must be
added to the similarity measure in order to avoid the over-
registration phenomenon. It worth mentioning a special
procedure, that will be used in the sequel, that is more in
line with geometry. Given a smooth curve y: [a,b] — R3,
its arclength is the smooth mapping:

sirclab)o | Y (@)l du

The length I, of the curve is just s(b). Assuming that
never vanishes, s is strictly increasing, thus invertible. It
induces a warping function:

E:1re€]0,1] »—)s_l(tly) € [a,b]

that is characterized by the property:
V1 €]0, 1] [|Dryo&(0)| = &y

where D, stands for the derivative with respect to ¢. This
warping function is intimately related to the landmarks
approach of [11], as sampling evenly in the interval [0, 1]
will result in a geometric even sampling on the curve
itself (with respect to arclength). It will be denoted as the
arclength warping in the sequel.

C. The manifold of paths

The idea of representing curves as point on an infi-
nite dimensional manifold arises in the field of pattern
recognition as an answer to the problem of assessing a
degree of similarity between two shapes [13]. Within this
frame, only closed curves were considered as they represent
objects contours. In the context of air traffic, flight paths
are never closed, unless the aircraft take off and land at
the same airport, which is a quite uncommon for airliners.
The initial mathematical model must be adapted to cope
this specificity. For the sake of simplicity, all trajectories
are assumed to be defined on the time interval [0, 1].

Definition 1: The space of immersions Imm([0, 1], R?)

is the set of smooth curves y: [0,1] — R? with nowhere
vanishing derivative in the interval 0, 1[.
Generally speaking, an immersion will be a curve with
nowhere vanishing derivative in the interior of its domain.
It is clear that for such a curve the arclength is well defined
and strictly increasing thus the geometric warping function
exists. It may be used to perform a registration step to
ensure that all curves are defined on [0, 1].

Given v in Imm([0,1],R?), its derivative norm ||D,Y]|
is a continuous mapping on the compact interval [0, 1] and
thus has a non-zero minimum value m. If €: [0,1] — R? is a
smooth mapping such that sup ;|| Ds€|| <m, then y+& will
have a nowhere vanishing derivative and thus still belongs
to Imm([0, 1],R?). This indicates that this space has locally
the structure of a vector space (in fact a Banach space) and
globally the one of a differentiable manifold. To get rid of
the influence of parametrization, the shape space is defined
as a quotient with respect to all increasing diffeomorphisms
of the interval [0,1]:

£ = Imm([0, 1],R®)/Diff " ([0, 1])

£ inherits the manifold structure from Imm([0, 1],R3). A
point in E will be denoted by [y] and is an equivalence
class of mappings Yo with ¢ € Diff"([0,1]). A tangent
vector at [y] is a couple ([y],v) where v is a smooth mapping
from [0,1] to R3. This mapping must be understood as
an infinitesimal displacement field on the base curve 7.
As usual, the set of tangent vector is called the tangent
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Fig. 7. Smooth path between two curves

bundle of E, denoted by 7E. An riemanian metric can be
introduced on ‘E, in the spirit of [13]:

() = [ W)+ AR )
- a(1),(1)) = (u(0),v(0)) @

where Yy is a representative curve of [y] and K is the
curvature of 7y at t. The parameters A, u are strictly positive
real numbers that tune the respective importance of the
curvature and the endpoints. Please note the difference with
the original metric for closed curves that appears in the
endpoints term. The riemanian metric is invariant under a
changer of parametrization and thus does not depend on
the particular choice of v in the equivalence class [y].

A smooth path between two points [yi],[y2] in £ is
represented by a smooth homotopy @ € Imm([0, 1],R?),
that is a smooth mapping from [0,1]? to R? such that:

o @(0,0)=71(0),@(1,9) =12(s)

e Y(s,t) €[0,1]%, D,®(s,t) #0
The derivative of @ with respect to the homotopy parameter
s, denoted by D;®n is a smooth curve on [0, 1], so that
for a given s, the couple ([®(s,e)],D;P(s,e)) is a tangent
vector in T Ejypi(s,¢)- An visual representation of an smooth
homotopy along with the associated tangent vectors is given
in figure (7).

Using the riemanian metric (1) on T‘E, the energy of a
path @ can be defined in the usual way:

1
E(CI)) :/(; 8[o(s,e)] (DXCI)(S,O),DxCI)(S,O))dS 3)

It is equivalent for a path to minimize the energy or
the length, the former is preferred as it saves a square
root in the expression. The critical points of E are called
geodesic paths. Since it is only a local condition (vanishing
derivative), it may not correspond to a minimum of E.
If such a global minimum exists, a path realizing it is
called a minimizing geodesic. In the finite dimensional
setting, the Hopf-Rinov theorem may be invoked to prove
the existence of a minimizing geodesic between arbitrary
points. Unfortunately, it doesn’t hold generally for infinite

Fig. 8. On this metric space each trajectory is represented by a point
(blue point)..

dimensional manifolds. It turns out that in the framework
defined above, a minimizing geodesic exits between any
two curves, thus making possible the definition of a distance
on E:

For any couple ([y1],[y2]) in E?, the distance between
[v1] and [y2] is given by:

1
/O \/g[q)(s,.)] (Ds®(s,0),DsD(s,0))ds

where @ is any homotopy between v;,7, realizing the
minimum of E.

The distance d turns E into a metric space and can be
used in any distance-based clustering algorithm.

D. Trajectory Clustering Algorithm

We consider a set of trajectories which has been build
thanks to the Bellman algorithm and the trajectory distance
defined in the previous section. Having such distance def-
inition, one can gather together such trajectories in order
to create clusters by using an adaptive clustering algorithm
(hierachical clustering). Based on a set of N trajectories,
clustering algorithm aims to partition such a set into K
clusters. To reach this goal, the trajectories are consider as
points in the associated metric space (see figure 8).

This algorithm uses two parameters, d,,i; and dpax, to
respectively fuse clusters and create new clusters. Initially,
each trajectory is considered as the centroid of a cluster.
We then apply the three following principles one after the
other:

« if two centroids are at a distance lower than d,,;,, we
fuse them into a single cluster, of which the resulting
centroid is the barycenter of the two initial centroids.
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Fig. 9. In this example the algorithm find eleven clusters with different
features.

The barycenter is computed the following way :
1 i=N
Hi = N z=21 Yi

o a new individual is aggregated to a cluster if its
distance from the closest centroid is lower than d,;,
and in this case we compute the new global centroid.

o Otherwise, we create a new cluster containing the
single trajectory.

The number of cluster is also a result of the algorithm.

An example of clustering resust is given on figure 9.

for each cluster ¢, one can compute the following fea-

tures :

o Number of trajectories in the cluster N,

e Mean trajectory which is the cluster centroid (Y.

« Dispersion of the cluster

Ne 5
L=l
i=1

where ||.|| is the norm in the trajectory metric space.

This clustering algorithm has been used to classify tra-
jectories produced by the Bellman algorithm.

The overall processing can be summarized by the fig-
ure 10

IV. RESULTS

This section presents the initial results that has been pro-
duced by this new algorithms. First we have consider two
wind samples over the Atlantic ocean from two different
day (January 09, 2016 and February, 14 2016). An example
of such map is given on figure 11.

Those two days present different wind dispersion data
with 34 wind samples at each point of the wind grid which
(resolution : 1 degree).

Wind Wind
Sample 1 Sample N
l Pi L
Interpolation Interpolation
l Pi L
Costs Costs
Computation Computation
l Pi L
Bellman Bellman
YK by Y N Trajectories
Clustering
I I Clusters

Fig. 10. Overall structure of the algorithm

[T TTITECTTIE

Fig. 11. Example of wind distribution over the Atlantic ocean

Based on those wind data, we have applied the algorithm
in order to compute the wind optimal route between two
points. The origin has been settled at 130=(1at, long): (A=30,
0=-90) and the destination at ﬁd(lat, long): (A=60, 6=10).
The first data sample presents less dispersion and may result
in a better planing in terms of robustness. The Bellman
algorithm has been applied 34 times between points B,
and P; and has generated 34 trajectories that have been
represented on figure 12.

Those trajectories have been clustered thanks to the
new distance that has been developed. Two clusters have
been extracted as it can be seen on figure 13. The first
cluster gather together 30 trajectories and the second one
4 trajectories. The trajectories belonging to the first cluster
are more robust and may be considered as the most robust
wind optimal trajectories between B, and P;. Fortunately,
the best trajectory in terms of flight duration belongs also
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Fig. 12.  Wind optimal trajectories for the first wind sample set (January
09, 2016)
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Fig. 13. Cluster produced for the first wind sample set. The cluster which
has the most representatives is represented in red.

to cluster 1 (Flight time 11h34’; to compute this flight time,
a True Air Speed of 450kts has been considered). The best
trajectory in cluster 2 has a flight time of 11h47’. If the
situation was opposite, one has to balance the associated
robustness, which is linked to the number of representative
in each cluster, with the associated flight duration.

The second wind sample data from February, 14 2016
is more critical in this sense. This day has much more
dispersion in the wind data and the trajectories produced
by the Bellman algorithm are also more spread as it can be
seen on figure 14.
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Fig. 14.  Wind optimal trajectories for the second wind sample set
(February, 14 2016)
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Fig. 15. Cluster produced for the second wind sample set.

Those trajectories have been also clustered and the
associated cluster are represented on figure 15. In this case,
nine clusters have been extracted with a maximum of five
representative. In this case, there is not a big difference
between cluster in terms of representative number, and we
can say that the associated robustness is the same. In this
case, one must select the one with the minimum flight
duration.

V. CONCLUSION

This paper has introduced a new approach for designing
robust wind optimal trajectory. A methodology for com-
puting tail wind on each link on a grid network over the
Atlantic ocean has been introduced. First, wind has been
interpolated on a more accurate grid, then tailwind formula
on each link has been established and tail wind on each
link has been computed. Based on this network an efficient
adaptation of the Bellman algorithm has been proposed
thanks to the layers structure of the associated graph. In
order to cluster trajectories produced by Bellman algorithm
a hierarchical clustering algorithm has been developed and
a new exact mathematical distance between trajectories
has been introduced. This new methodology has been
successfully applied to real wind data in order to identify
robust wind optimal trajectories.
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