
HAL Id: hal-01379306
https://enac.hal.science/hal-01379306

Submitted on 11 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Solving Aircraft Conflict Avoidance Using
Deterministic Global Optimization (sBB) Codes

Sonia Cafieri, Frédéric Messine, Ahmed Touhami

To cite this version:
Sonia Cafieri, Frédéric Messine, Ahmed Touhami. On Solving Aircraft Conflict Avoidance Using
Deterministic Global Optimization (sBB) Codes. GOW’16, XIII Global Optimization Workshop, Sep
2016, Braga, Portugal. pp 149-152; ISBN : 978-989-20-6764-3. �hal-01379306�

https://enac.hal.science/hal-01379306
https://hal.archives-ouvertes.fr


Proceedings of GOW’16, pp. 149 – 152.

On Solving Aircraft Conflict Avoidance Using
Deterministic Global Optimization (sBB) Codes∗

Sonia Cafieri1, Frédéric Messine2 and Ahmed Touhami1,3

1ENAC, MAIAA, F-31055 Toulouse, France
University of Toulouse, IMT, F-31400 Toulouse, France, sonia.cafieri@enac.fr

2LAPLACE-ENSEEIHT-INPT, University of Toulouse, France, frederic.messine@n7.fr

3Faculty of Sciences and Technologies. Hassan I University, Settat, Morocco, ahmed.touhami@gmail.com

Abstract In this paper, some improvements of spatial Branch and Bound (sBB) algorithms are discussed to
solve aircraft conflict avoidance problems formulated as MINLP. We propose a new quadratic con-
vex relaxation technique based on affine arithmetic. Moreover, a branching strategy is also proposed
for the considered problem. Preliminary numerical results validates the proposed approach.
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1. Introduction

In this work, we deal with the use of deterministic global optimization to solve the aircraft
conflict avoidance problem by means of aircraft speed changes. Specifically, we focus on exact
global solvers based on Branch and Bound methods. The selected solvers are Couenne and
IBBA, the first based on convex relaxations and the latter based on rigorous interval compu-
tations and linear relaxations. Both codes also include interval constraint propagation tech-
niques.

Two aircraft are said in conflict when the horizontal distance between them and their alti-
tude distance are smaller than standard safety distances. In this paper, we consider aircraft
in their en route cruise phase, all at the same altitude, so that only their horizontal distances
have to be handled through appropriate separation constraints. Aircraft are monitored and
suitable separation maneuvers are issued if in the observed time window conflicts may po-
tentially occur. The separation maneuver considered here is aircraft speed deviations, while
the directions of motions are kept fixed. Aircraft speed changes may not be able to solve all
possible conflict situations, like in the case of two aircraft flying face-to-face; such an approach
is however considered very promising to reduce the complexity of air traffic. Subliminal speed
control is in particular interesting: it is a speed control where aircraft speeds are changed in
a very tight range around original speeds, namely between −6% and 3%. In this work we
further consider speeds between −12% and 6% of the original speeds as a second range for
testing.

The optimization model for aircraft conflict avoidance based on speed changes considered
in this work is described in Section 2. In Section 3 we briefly recall on the main characteristics
of the two global optimization solvers Couenne and IBBA. A new convex relaxation based on
affine arithmetic, to be used within IBBA, is proposed in Section 4 for the quadratic convex
objective function of the considered model. In Section 5, some numerical tests are discussed.
Some conclusions are given in Section 6.

∗The authors gratefully acknowledges financial support under grant ANR 12-JS02-009-01 "ATOMIC".
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2. MINLP model

In this section, we recall the main elements of a model developed and described in [1]. It is a
MINLP model, where aircraft can change their speed once during the observed time window
in order to get a conflict-free configuration. The main decision variables are qi, i ∈ A (A being
the set of aircraft), representing the aircraft speed variations. For each aircraft i, qi = 1 means
that there is no change, qi > 1 means that aircraft i accelerates and qi < 1 that it decelerates.
The optimization criterion is

∑n
i=1(qi − 1)2, where n is the number of aircraft. The main

difficulty is represented by the separation constraints, for each pair of aircraft i and j:

‖xi(t)− xj(t)‖≥ d ∀t ∈ (0, T ), (1)

where T is the time horizon, d is the minimum required separation distance (5 Nautic Miles),
and xi(t) is the position of aircraft i. Letting xrij(t) = xi(t) − xj(t) be xr0ij + vrij t, with xr0ij
the relative initial position of aircraft i and j, and vrij be their relative speed, one obtains
||xr0ij + vrij t||2≥ d2 ∀t ∈ (0, T ), and therefore

‖vrij‖2 t2 + 2(xr0ij · vrij) t+ (‖xr0ij ‖2−d2) ≥ 0 ∀t ∈ (0, T ).

By computing the minimum tmij of the above quadratic convex function, and by introducing
binary variables yij to check the sign of tmij , following the procedure of Cafieri et al. [1], one
can reformulate the constraints above by eliminating the dependence on t. More precisely, the
following model (P) is obtained (see [1] for details):

(P)



min
qi,tmij ,yij

n∑
i=1

(qi − 1)2

s.t.
tmij ‖vrij‖2+xr0ij · vrij = 0, ∀(i, j) ∈ {1, · · · , n}2, i < j

−tmij (2yij − 1) ≤ 0, ∀(i, j) ∈ {1, · · · , n}2, i < j

−yij
(
‖vrij‖2(‖xr0ij ‖2−d2)− (xr0ij · vrij)2

)
≤ 0, ∀(i, j) ∈ {1, · · · , n}2, i < j

qi ∈ qi = [qi,qi], ∀i ∈ {1, · · · , n}
tmij ∈]−∞,∞[, ∀(i, j) ∈ {1, · · · , n}2, i < j

yij ∈ {0, 1}, ∀(i, j) ∈ {1, · · · , n}2, i < j

Remark 1. The optimization criterion in (P) is quadratic and convex.

3. sBB solvers: Couenne and IBBA

The deterministic global optimization solvers Couenne and IBBA, that we consider for the
present work, are both based on a spatial Branch-and-Bound (sBB) method. Its main characteris-
tics include Bissection/Branching techniques and Constraint Propagation techniques (named
HC4 or FBBT) [2, 4]. Further characteristics of Couenne and IBBA are summarized in Table 1.
Note that for computing bounds, Couenne uses convex relaxations (denoted by (Pconv) in Ta-
ble 1) [2], while IBBA uses linear relaxations (denoted by (PAFlin ) in Table 1) based on affine and
interval arithmetics [3, 5].

Remark 2. IBBA is numerically reliable (because it is mainly based on interval arithmetic).
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Table 1. Main characteristics of Couenne and IBBA

Couenne (Belotti et al.) [2] IBBA (Messine and Ninin) [3, 5]

- (P) ≥ (Pconv) - (P) ≥ (PAFlin ) + Er (where Er is a constant)
- Formal Preprocess - Interval and Affine Arithmetic
- wij = xixj and wii = x2i with McCormick constraints. - xi = mid(xi) + rad(xi)εi, with xi = [xi,xi], εi ∈ [−1, 1] .
- Relaxation⇒ + new variables and constraints. - Relaxation⇒ same nb of variables and constraints.
- Use of IPOPT. - Use of CPLEX.

4. Quadratic convex relaxation and branching strategy for IBBA

An idea to improve IBBA code is to keep the quadratic convex criterion instead of linearizing it.
This yields a new automatic way to make a convex relaxation of problem (P) by using affine
arithmetic. More specifically, the constraints, which are mainly concave, are linearized directly
using affine arithmetic, and the criterion is just rewritten by employing a change of variables
from qi to εi ∈ [−1, 1] as qi −→ mid(qi) + rad(qi)εi, where qi = [qi,qi], mid(qi) =

qi+qi

2 and

rad(qi) =
qi−qi

2 . Thus, the criterion of problem (P) becomes:

n∑
i=1

(qi − 1)2 −→
n∑
i=1

(mid(qi) + rad(qi)εi − 1)2

=
n∑
i=1

(rad(qi))
2εi

2 + 2(mid(qi)− 1)rad(qi)εi + (mid(qi)− 1)2

The quadratic part of the reformulated criterion reads εTAεε, with Aε a diagonal matrix hav-
ing elements rad2(qi); Aε is a matrix of size n× n.

Remark 3. Aε is positive semidefinite and then the criterion reformulated in terms of ε is kept convex.
Note that this property is independent on the selected application.

Proposition 4. If rad(qi)→ 0 then Aε → 0, thus the criterion reformulated in ε tends to be linear.

Another idea to improve IBBA (and possibly Couenne) is related to the branching strategy.
We remark that in the constraints of problem (P), the variables tmij and yij can be deduced from
variables qi. Thus, the idea is to branch only on variables qi, and to use the HC4-constraint
propagation technique to automatically reduce bounds on variables tmij and yij .

5. Numerical solutions

We tested IBBA on 5 problem instances, detailed in [1]; the aircraft are positioned around a
circle and all of them fly with the same speed 400NM towards the center of the circle. In the
two following tables, n represents the number of aircraft and r the radius of the circle, and the
time window is about 30 minutes. In Table 2, we solve problem (P) by considering a speed
variation qi ∈ [0.94, 1.03] (subliminal control), while in Table 3 we consider a larger range,
qi ∈ [0.88, 1.06]. In Table 2, we first report the numerical results in terms of computing time
obtained in [1] by using Couenne. In the three last columns of Table 2 and Table 3, we provide
the results obtained using IBBA in three different versions: (i)IBBA alone, (ii)IBBA using the
quadratic convex relaxation detailed in the previous section, (iii)IBBA using the McCormick’s
linear relaxations on the quadratic convex program. In the three cases, we use the CPLEX

software to solve the linear and convex quadratic programs. The number of iterations is also
reported in some cases.

We first note that the gain obtained by using the branching strategy discussed above is very
important: when this is not used, IBBA behaves not differently from Couenne (that so could
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Table 2. Results obtained with Couenne and 3 versions of IBBA, using qi ∈ [0.94, 1.03]

n r Couenne from [1] IBBA IBBA+Quad IBBA+McCormick

time (s) time (s) time (s) time (s)

2 1 ×102 0.11 0.01 0.19 0.01
3 2 ×102 0.98 0.23 1.31 0.23
4 2 ×102 8.43 0.89 2.70 0.88
5 3 ×102 469.86 41.37 80.79 40.35
6 3 ×102 46707.03 395.87 (67287its) 618.54 (66761its) 403.03 (66366its)

Table 3. Results obtained with Couenne and 3 versions of IBBA, using qi ∈ [0.88, 1.06]

n r IBBA IBBA+Quad IBBA+McCormick

time (s)/(#its) time (s)/(#its) time (s)/(#its)

2 1 ×102 0.04 / (94) 0.11 / (89) 0.04 / (94)
3 2 ×102 0.43 / (416) 0.74 / (383) 0.41 / (386)
4 2 ×102 4.36 / (2134) 5.82 / (1915) 4.09 / (1930)
5 3 ×102 117.56 / (32151) 136.25 / (29700) 111.57 / (29862)
6 3 ×102 2270.03 / (384552) 2489.33 / (360233) 2188.75 / (361720)

be considerably improved by using this strategy of branching). The impact of the proposed
quadratic convex relaxation is actually not very strong on the considered conflict avoidance
problem: a reduction in the number of iterations does not correspond to a smaller CPU-time.
This is due to the fact that solving a quadratic convex program with CPLEX is of course more
expansive than solving a linear one. Therefore, for the considered application the use of the
McCormick linear relaxation of the quadratic convex problem provides the most efficient re-
sults in terms of CPU-time. Note that the main variables qi vary within very tight bounds, and
therefore the quadratic part of the convex relaxation quickly disappears during the computa-
tion (Aε tends to be 0). As a consequence, when the variable ranges are small, the quadratic
relaxation is not efficient; with a larger variable range, [0.88, 1.06] (Table 3), the gain in the
number of iterations is indeed more important.

6. Conclusion

We have showed that we can obtain promising results using sBB global optimization solvers
such as Couenne and IBBA on an aircraft conflict avoidance model. A suitable branching strat-
egy and a new quadratic convex relaxation based on affine arithmetic, implemented in IBBA,
associated with a McCormick linear reformulation, enable to significantly improve the effi-
ciency of the solver.
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