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Abstract

Gaussian-beam based methods are well-known for modeling quasi-optical
systems constituted by mirrors, lenses, and horn antennas. In this article,
a solution is proposed to include dichroic surfaces while maintaining the
Gaussian-beam formulation. Special attention is devoted to the case where
the dichroic surface response presents a zero near the angle of incidence. Nu-
merical experiments are led on a dielectric slab to show the efficiency of the
method.

1 Introduction

Millimeter-wave devices can include quasi-optical systems constituted by various
elements, e.g. mirrors, lenses, dichroic surfaces, horn antennas. The size and the
number of elements makes beam-based methods appropriate to tackle the mod-
eling of theses systems [1]. For example, in [2] the incident field is expanded in
terms of Gaussian beams, and afterward the beams are tracked through mirrors
and lenses. To account for dichroic surfaces, a specific solution has been pro-
posed in [3, 4].
In this article, we propose a Gaussian-beam based method for modeling quasi-
optical systems constituted by mirrors, lenses, dichroic surfaces, and horn anten-
nas. More specifically, the method to include dichroic surfaces in [3] is extended
to the case where either the reflection or transmission coefficient has a zero near
the angle of incidence.
In Section 2, the expansion and shooting are briefly presented. In Section 3, the
method to deal with the transmission and reflection through a dichroic surface is
detailed in 2D. In Section 4, numerical experiments are led to test the validity of
the method.
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2 Gaussian Beam Shooting Algorithm

2.1 Expansion

The expansion of a field in terms of Gaussian beams can be realized using Gabor
frames/bases, which consist in representing the field on a phase-space discrete
lattice [5]. To reduce the number of beams, physics-based expansions can also be
used [6]. In this case, a set of beams, which parameters are chosen accordingly
with the configuration, are matched with the initial field on a matching interface.

2.2 Shooting algorithm

To deal with the interaction of Gaussians beams with dielectric or metallic in-
terfaces, a phase-matching approach can be used [7]. This consists in assuming
that one incident Gaussian beam yields one transmitted and one reflected Gaus-
sian beams. This leads to Gaussian-beam shooting algorithm where each beam
generated by the expansion of the incident field is tracked through mirrors and
lenses [2]. The stopping criterion of the tracking is either based on the beam
power or the number of interactions.

3 Transmission and Reflection through a Dichroic

Surface in 2D

3.1 Configuration

Figure 1: Configuration

In this Section, we explain how to integrate a dichroic surface in a Gaussian-
beam shooting algorithm in a 2D case. Note that the 3D case could be treated in
a similar way. The configuration is illustrated in Fig. 1. In a coordinate system
(x, y, z), the direction y is chosen as the direction of invariance and the dichroic
surface is placed at z = 0. A second coordinate system (xi, yi, zi) is associated
with the incident field. Both coordinate systems are related by a rotation of an-
gle θi. The polarization is so that the electric field is oriented along y.
The dichroic surface is assumed to be transversely periodic, of period d ≤ λ/2,
where λ is the wavelength, so that only the 0-th order Bloch-Floquet mode is
propagative. Thus, for a plane wave illumination of wavevector (kxi, kzi) in the
incident frame, the transmission and reflection can simply be expressed by means
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of the coefficients T (kxi) and R(kxi). In this article, theses coefficients are as-
sumed to be already known. For a multilayer slab or for a grid of metal strips [8],
they could be analytically calculated. In other cases, they could be computed
using the finite element method, or the periodic method of moments.

3.2 2D Gaussian Beams

The following formulation of Gaussian beams is used here. In the plane zi = 0,
the electric field, oriented along y, is given by

ui(xi, 0) = ai0e
j k
2qi0

(xi−xi0)
2

e−jβi(xi−xi0). (1)

The beam is then characterized by four parameters:

• a complex amplitude ai0;

• a spatial shift xi0;

• a complex curvature radius qi0, which imaginary part can be written kW 2
i0/2

where Wi0 is the beam waist size;

• a phase shift βi, which characterizes a beam angular tilt of arcsin(βi/k) for
βi ≤ k.

From (1), two asymptotic analytical expressions can be derived. They depend
either on a far-field or a paraxial approximations.

3.3 General case

As for the shooting algorithm, we assume that an incident Gaussian beam yields
one transmitted and one reflected Gaussian beams. The transmitted and re-
flected beam parameters are obtained by means of a matching in the spectral
domain. For the sake of conciseness, only the transmission case is presented.
The transmitted field spectrum can be expressed as

ũt = T (kxi)ũi, (2)

where ũi is the Fourier transform of (1). Next, we perform the most general
approximation of T near kxi = βi from which the transmitted field can be cast as
a Gaussian beam. This approximation is explicitly given by

T (kxi) = eT0+T1(kxi−βi)+T2(kxi−βi)
2

(3)

where the coefficients T0, T1 and T2 can be obtained via a point matching tech-
nique on three points. From this approximation, the transmitted beam param-
eters, i.e. at0, xt0, qt0 and βi, can be derived. This model is denoted GBM for
Gaussian Beam Matching.

3.4 Simplified case

When the transmission coefficient is slowly varying with respect to kxi, the trans-
mitted spectrum can be written as

ũt = T (βi)ũi. (4)
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Thus the transmitted beam can be approximated to the incident beam up to a
multiplicative constant. This simplified model is denoted as SBM for Simplified
Beam Matching.

3.5 Special case

When the transmission coefficient has a zero near the beam angle of incidence,
the transmitted field cannot be modeled with only one Gaussian beam. We
propose here a solution to treat this situation. The transmitted spectrum is
firstly expressed as

ũt = ũi + (T (kxi)− 1)ũi. (5)

Because the term T (kxi)− 1 is not vanishing, the transmitted field can efficiently
be modeled by means of a sum of 2 Gaussian beams: the incident beam asso-
ciated with ũi, plus another beam associated with (T (kxi) − 1)ũi. The latter
requires an approximation of T (kxi) − 1 similar to (4). This method, denoted
GBM2, can be applied in a similar way on the reflected field.

4 Numerical experiments

4.1 Test-case

We test our method on a dielectric slab of relative permittivity εr = 2.1 and
thickness h = 1.13λs, where λs is the wavelength in the slab. The incident
Gaussian beam is such that ai0 = 1V/m, xi0 = 0, qi0 = 4jπλ and βi = 0 at
a frequency of 200 GHz. Besides, the incident reference frame is rotated of an
angle θi = 45◦. Using analytical formulations, one can easily demonstrate that
the reflection coefficient of the slab equals zero at an incidence of approximatively
42.44◦. Therefore, we are in a typical situation where GBM2 is of interest.
In Fig. 2 and 3, we show the transmitted and reflected far fields computed with
GBM2, SBM and the reference solution given by [9]. For the transmitted field, all
the methods match. Nevertheless, the thickness of the slab implies a lateral shift
of the transmitted field of xt0 = 0.4λ, that SBM cannot model. This notably
implies an error in the far-field phase with SBM. For the reflected field, even if
the field is weak, SBM yields significant errors because it does not account for
the zero in the slab reflection coefficient. Conversely, GBM2 remains accurate.
This shows the efficiency of replacing (4) by (5) in such situations.

4.2 Influence of the slab thickness

In Fig. 4, for various slab thicknesses, we display the root-mean-square error of
GBM, GBM2, and SBM with respect to the reference method in the far-field.
With SBM, the error rapidly increases with the slab thickness. With GBM,
the error is weak but there are peaks near thicknesses for which the reflection
coefficient presents a zero. With GBM2, the results are accurate regardless of
the slab thickness.
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Figure 2: Normalized transmitted electric field (dB) in the far-field zone

5 Conclusion

In this article, we have proposed a Gaussian-beam based method for modeling
quasi-optical systems constituted by mirrors, lenses, dichroic surfaces, and horn
antennas. A solution has been proposed to deal with the particular case where
a dichroic surface response presents a zero near the angle of incidence. Numeri-
cal experiments have shown the efficiency of this method on a dielectric slab of
various thicknesses. The final presentation should include a comparison of the
complete Gaussian beam method with measurements.
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Figure 3: Normalized reflected electric field (dB) in the far-field zone

in Electromagnetics in Advanced Applications (ICEAA), 2011 International
Conference on. IEEE, 2011, pp. 682–685.

[4] K. Elis, A. Chabory, and J. Sokoloff, “3D interaction of gaussian beams with
dichroic surfaces for the modeling of quasi-optical systems,” in Antenna Tech-
nology and Applied Electromagnetics (ANTEM), 2012 15th International
Symposium on. IEEE, 2012, pp. 1–5.

[5] D. Lugara, C. Letrou, A. Shlivinski, E. Heyman, and A. Boag, “Frame-based
gaussian beam summation method: Theory and applications,” Radio Science,
vol. 38, no. 2, 2003.

[6] A. Chabory, J. Sokoloff, S. Bolioli, and P. F. Combes, “Computation of elec-
tromagnetic scattering by multilayer dielectric objects using gaussian beam
based techniques,” Comptes Rendus Physique, vol. 6, no. 6, pp. 654–662,
2005.

[7] G. A. Deschamps, “Ray techniques in electromagnetics,” Proceedings of the
IEEE, vol. 60, no. 9, pp. 1022–1035, 1972.

[8] S. Tretyakov, Analytical modeling in applied electromagnetics. Artech
House, 2003.

[9] J. Chen, “Computation of reflected and transmitted horn radiation patterns
for a dichroic plate,” TDA Progress, pp. pp 236–254, 1994.

6



0 10.2 0.4 0.6 0.8 1.2 1.4 1.6

0

−60

−40

−20

−50

−30

−10

R
M

S
 e

rr
o

r 
(d

B
)

SBM

GBM

GBM2

Figure 4: Root-mean-square error in the far-field zone (dB)
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