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Abstract—Clustering is a common operation in statistics. When
data considered are functional in nature, like curves, dedicated
algorithms exist, mostly based on truncated expansions on Hilbert
basis. When additional constraints are put on the curves, like in
applications related to air traffic where operational considerations
are to be taken into account, usual procedures are no longer
applicable. A new approach based on entropy minimization
and Lie group modeling is presented here, yielding an efficient
unsupervised algorithm suitable for automated traffic analysis. It
outputs cluster centroids with low curvature, making it a valuable
tool in airspace design applications or route planning.
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I. INTRODUCTION

Clustering aircraft trajectories is an important problem in
Air Traffic Management (ATM). It is a central question in
the design of procedures at take-off and landing, the so called
sid-star (Standard Instrument Departure and Standard Terminal
Arrival Routes). In such a case, one wants to minimize
the noise and pollutants exposure of nearby residents while
ensuring runway efficiency in terms of the number of aircraft
managed per time unit.

The same question arises with cruising aircraft, this time
the mean flight path in each cluster being used to opti-
mally design the airspace elements (sectors and airways).
This information is also crucial in the context of future air
traffic management systems where reference trajectories will
be negotiated in advance so as to reduce congestion. A special
instance of this problem is the automatic generation of safe and
efficient trajectories, but in such a way that the resulting flight
paths are still manageable by human operators. Clustering is
a key component for such tools: major traffic flows must be
organized in such a way that the overall pattern is not too
far from the current organization, with aircraft flying along
airways. The classification algorithm has thus not only to
cluster similar trajectories but at the same time make them
as close as possible to operational trajectories. In particular,
straightness of the flight segments must be enforced, along with
a global structure close to a graph with nodes corresponding
to merging/splitting points and edges the airways.

II. PREVIOUS RELATED WORK

Several well established algorithms may be used for per-
forming clustering on a set of trajectories, although only a
few of them were eventually applied in the context of air
traffic. The spectral approach relies on trajectories modeling

as vectors of samples in a high dimensional space, and uses
random projections as a mean of reducing the dimensionality.
The huge computational cost of the required singular values
decomposition is thus alleviated, allowing use on real recorded
traffic over several months. It was applied in a study conducted
by the Mitre corporation on behalf of the Federal Aviation
Authority (FAA) [?]. The most important limitation of this
approach is that the shape of the trajectories is not taken
into account when applying the clustering procedure unless a
resampling procedure based on arclength is applied: changing
the time parametrization of the flight paths will induce a
change in the classification. Furthermore, there is no mean
to put a constraint on the mean trajectory produced in each
cluster: curvature may be quite arbitrary even if samples
individually comply with flight dynamics.

Another approach is taken in [?], with an explicit use of an
underlying graph structure. It is well adapted to road traffic as
vehicles are bound to follow predetermined segments. A spatial
segment density is computed then used to gather trajectories
sharing common parts. For air traffic applications, it may be of
interest for investigating present situations, using the airways
and beacons as a structure graph, but will misclassify aircraft
following direct routes which is quite a common situation,
and is unable to work on an unknown airspace organization.
This point is very important in applications since trajectory
datamining tools are mainly used in airspace redesign. A
similar approach is taken in [?] with a different measure of
similarity. It has to be noted that many graph-based algorithms
are derived from the original work presented in [?], and
exhibit the aforementioned drawbacks for air traffic analysis
applications.

An interesting vector field based algorithm is presented in
[?]. A salient feature is the ability to distinguish between close
trajectories with opposite orientations. Nevertheless, putting
constraints on the geometry of the mean path in a cluster
is quite awkward, making the method unsuitable for our
application.

Due to the functional nature of trajectories, that are ba-
sically mappings defined on a time interval, it seems more
appropriate to resort to techniques based on times series, as
surveyed in [?], [?] or functional data statistics, with standard
references [?], [?]. In both approaches, a distance between
pairs of trajectories or, in a weaker form, a measure of simi-
larity must be available. The algorithms of the first category are
based on sequences, possibly in conjunction with dynamic time
warping [?] while in the second samples are assumed to come



from an unknown underlying function belonging to a given
Hilbert space. However, it has to be noticed that apart from this
last assumption, both approaches yield similar end algorithms,
since functional data revert for implementation to usual finite
dimensional vectors of expansion coefficients on a suitable
truncated basis. For the same reason, model-based clustering
may be used in the context of functional data even if no notion
of probability density exists in the original infinite dimensional
Hilbert space as mentioned in[?]. A nice example of a model-
based approach working on functional data is funHDDC [?].

III. DEALING WITH CURVE SYSTEMS: A PARADIGM
CHANGE

When working with aircraft trajectories, some specific
characteristics must be taken into account. First of all, flight
paths consist mainly of straight segments connected by arcs
of circles, with transitions that may be assumed smooth up to
at least the second derivative. This last property comes from
the fact that pilot’s actions result in changes on aerodynamic
forces and torques and a straightforward application of the
equations of motion. When dealing with sampled trajectories,
this induces a huge level of redundancy within the data, the
relevant information being concentrated around the transitions.
Second, flight paths must be modeled as functions from a
time interval [a, b] to R3 which is not the usual setting for
functional data statistics: most of the work is dedicated to
real valued mappings and not vector ones. A simple approach
will be to assume independence between coordinates, so that
the problem falls within the standard case. However, even
with this simplifying hypothesis, vertical dimension must be
treated in a special way as both the separation norms and
the aircraft maneuverability are different from those in the
horizontal plane.

Finally, being able to cope with the initial requirement of
compliance with the current airspace structure in airways is
not addressed by general algorithms. In the present work, a
new kind of functional unsupervised classifier is introduced,
that has in common with graph-based algorithms an esti-
mation of traffic density but works in a continuous setting.
For operational applications, a major benefit is the automatic
building of a route-like structure that may be used to infer new
airspace designs. Furthermore, smoothness of the mean cluster
trajectory, especially low curvature, is guaranteed by design.
Such a feature is unique among existing clustering procedures.
Finally, our Lie group approach makes easy the separation
between neighboring flows oriented in opposite directions.
Once again, it is mandatory in air traffic analysis where such
a situation is common.

In the first section the notion of entropy of a curve system
is introduced. The modeling of trajectories with a Lie group
approach is then presented. The next two sections will show
how to estimate Lie group densities and to cluster curves in
this new setting. Finally, results on a synthetic example are
briefly given and a conclusion is drawn.

IV. THE ENTROPY OF A SYSTEM OF CURVES

Considering trajectories as mappings γ : [t0, t1] → R3

induces a notion of spatial density as presented in [?]. As-
suming that after a suitable registration process all flight paths
γi, i = 1, . . . , N are defined on the same time interval [0, 1] to
Ω a domain of R3, one can compute an entropy associated with

the system of curves using the approach presented in [?]. Let
a system of curves γ1, . . . , γN be given, its entropy is defined
to be:

E(γ1, . . . , γN ) = −
∫

Ω

d̃(x) log
(
d̃(x)

)
dx,

where the spatial density d is computed according to:

d̃ : x 7→
∑N
i=1

∫ 1

0
K (‖x− γi(t)‖) ‖γ′i(t)‖dt∑N

i=1 li
. (1)

In the last expression, li is the length of the curve γi and K
is a kernel function similar to those used in nonparametric
estimation. A standard choice is the Epanechnikov kernel:

K : x 7→ C
(
1− x2

)
1[−1,1](x),

with a normalizing constant C chosen so as to have a unit
integral of K on Ω.

Since the entropy is minimal for concentrated distributions,
it is quite intuitive to figure out that seeking for a curve system
(γ1, . . . , γN ) giving a minimum value for E(γ1, . . . , γN ) will
induce the following properties:
• The images of the curves tend to get close one to

another.
• The individual lengths will be minimized: it is a direct

consequence of the fact that the density has a term in
γ′ within the integral that will favor short trajectories.

Using a standard gradient descent algorithm on the entropy
produces an optimally concentrated curve system, suitable for
use as a basis for a route network. Figure 2 illustrates this
effect on an initial situation given in Figure 1.

Figure 1. Initial flight plan.

The displacement field for trajectory j is oriented at each
point along the normal vector to the trajectory, with norm given
by:∫

Ω

γj(t)− x
‖γj(t)− x‖

∣∣∣∣
N
K ′ (‖γj(t)− x‖) log d̃(x)dx‖γ′j(t)‖ (2)

−
(∫

Ω

K (‖γj(t)− x‖) log d̃(x))dx

)
γ′′j (t)

‖γ′j(t)‖

∣∣∣∣∣
N

(3)

+

(∫
Ω

d̃(x) log(d̃(x))dx

)
γ′′j (t)

‖γ′j(t)‖

∣∣∣∣∣
N

, (4)



Figure 2. Entropy minimal curve system from the initial flight plan.

where the notation v|N stands for the projection of the vector
v onto the normal vector to the trajectory. An overall scaling
constant of:

1∑N
i=1 li

,

where li is the length of trajectory i, has to be put in front
of the expression to get the true gradient of the entropy. In
practice, it is not needed since algorithms will adjust the size
of the step taken in the gradient direction.

V. A LIE GROUP MODELING

While satisfactory in terms of traffic flows, the previous
approach suffers from a severe flaw when one considers flight
paths that are very similar in shape but are oriented in opposite
directions. Since the density is insensitive to direction reversal,
flight paths will tend to aggregate while the correct behavior
will be to ensure a sufficient separation in order to prevent
hazardous encounters. Taking aircraft headings into account in
the clustering process is then mandatory when such situations
have to be considered.

This issue can be addressed by adding a penalty term
to neighboring trajectories with different headings but the
important theoretical property of entropy minimization will be
lost in the process. A more satisfactory approach will be to take
heading information directly into account and to introduce a
notion of density based on position and velocity.

Since the aircraft dynamics is governed by a second order
equation of motion of the form:(

γ′(t)
γ′′(t)

)
= F

(
t;

γ(t)
γ′(t)

)
,

it is natural to take as state vector:(
γ(t)
γ′(t)

)
.

The initial state is chosen here to be:(
0d
e1

)
,

with e1 the first basis vector, and 0d the origin in Rd. It is
equivalent to model the state as a linear transformation:

0d ⊗ e1 7→ T (t)⊗A(t)(0d ⊗ e1) = γ(t)⊗ γ′(t),

where T (t) is the translation mapping 0d to γ(t) and A(t) is
the composite of a scaling and a rotation mapping e1 to γ′(t).
Considering the vector (γ(t), 1) instead of γ(t) allows a matrix
representation of the translation T (t):(

γ(t)
1

)
=

(
Id γ(t)
0 1

)(
0d
1

)
.

From now, all points will be implicitly considered as having
an extra last coordinate with value 1, so that translations are
expressed using matrices. The origin 0d will thus stand for the
vector (0, . . . , 0, 1) in Rd+1. Gathering things yields:(

γ(t)
γ′(t)

)
=

(
T (t) 0

0 A(t)

)(
0d
e1

)
. (5)

The previous expression makes it possible to represent a
trajectory as a mapping from a time interval to the matrix Lie
group G = Rd×Σ×SO(d), where Σ is the group of multiples
of the identity, SO(d) the group of rotations and Rd the group
of translations. Please note that all the products are direct. The
A(t) term in the expression (5) can be written as an element
of Σ ⊗ SO(d). Starting with the defining property A(t)e1 =
γ′(t), one can write A(t) = ‖γ′(t)‖U(t) with U(t) a rotation
mapping e1 ∈ Sd−1 to the unit vector γ′(t)/‖γ′(t)‖ ∈ Sd−1.
For arbitrary dimension d, U(t) is not uniquely defined, as it
can be written as a rotation in the plane P = span(e1, γ

′(t))
and a rotation in its orthogonal complement P⊥. A common
choice is to let U(t) be the identity in P⊥ which corresponds in
fact to a move along a geodesic (great circle) in Sd−1. This will
be assumed implicitly in the sequel, so that the representation
A(t) = Λ(t)U(t) with Λ(t) = ‖γ′(t)‖Id becomes unique.

The Lie algebra g of G is easily seen to be Rd × R ×
Asym(d) with Asym(d) is the space of skew-symmetric d × d
matrices. An element from g is a triple (u, λ,A) with an
associated matrix form:

M(u, λ,A) =

 0 u
0 0

0

0 λId+A

 . (6)

The exponential mapping from g to G can be obtained in a
straightforward manner using the usual matrix exponential:

exp((u, λ,A)) = exp(M(u, λ,A)).

The matrix representation of g may be used to derive a
metric:

〈(u, λ,A), (v, µ,B)〉g = Tr
(
M(u, λ,A)tM(v, µ,B)

)
.

Using routine matrix computations and the fact that A,B being
skew-symetric have vanishing trace, it can be expressed as:

〈(u, λ,A), (v, µ,B)〉g = nλµ+ 〈u, v〉+ Tr
(
AtB

)
. (7)

A left invariant metric on the tangent space TgG at g ∈ G
is derived from (7) as:

〈〈X,Y, 〉〉g = 〈g−1X, g−1Y 〉g,

with X,Y ∈ TgG. Please note that G is a matrix group acting
linearly so that the mapping g−1 is well defined from TgG to
g. Using the fact that the metric (7) splits, one can check that
geodesics in the group are given by straight segments in g: if



g1, g2 are two elements from G, then the geodesic connecting
them is:

t ∈ [0, 1] 7→ g1 exp
(
t log

(
g−1

1 g2

))
.

where log is a determination of the matrix logarithm. Finally,
the geodesic length is used to compute the distance d(g1, g2)
between two elements g1, g2 in G. Assuming that the transla-
tion parts of g1, g2 are respectively u1, u2, the rotations U1, U2

and the scalings exp(λ1), exp(λ2) then:

d(g1, g2)2 = (λ1 − λ2)
2

+ (8)

Tr
(

log
(
U t1U2

)
log
(
U t1U2

)t)
+ ‖u1 − u2‖2. (9)

An important point to note is that the scaling part of an
element g ∈ G will contribute to the distance by its logarithm.

Based on the above derivation, a flight path γ with state
vector (γ(t), γ′(t)) will be modeled in the sequel as a curve
with values in the Lie group G:

Γ: t ∈ [0, 1] 7→ Γ(t) ∈ G,

with:
Γ(t).(0d, e1) = (γ(t), γ′(t)).

In order to make the Lie group representation amenable
to statistical thinking, we need to define probability densities
on the translation, scaling and rotation components that are
invariant under the action of the corresponding factor of G.

VI. NONPARAMETRIC ESTIMATION ON G
Since the translation factor in G is the additive group Rd, a

standard nonparametric kernel estimator can be used. It turns
out that it is equivalent to the spatial density estimate of (1),
so that no extra work is needed for this component. As for
the rotation component, a standard parametrization is obtained
recursively starting with the image of the canonical basis of Rd
under the rotation. If R is an arbitrary rotation and e1, . . . , ed is
the canonical basis, there is a unique rotation Re1 mapping e1

to Re1 and fixing e2, . . . , ed. It can be represented by the point
Re1 = r1 on the sphere Sd−1. Proceeding the same way for
Re2, . . . Red, it is finally possible to completely parametrized
R by a (d − 1)-uple (r1, . . . , rd−1) where ri ∈ Si−1, i =
1, . . . , d. Finding a rotation invariant distribution amounts thus
to construct such a distribution on the sphere.

In directional statistics, when we consider the spherical
polar coordinates of a random unit vector u ∈ Sd−1, we deal
with spherical data (also called circular data or directional
data) distributed on the unit sphere. For d = 3, a unit vector
may be described by means of two random variables θ and ϕ
which respectively represent the co-latitude (the zenith angle)
and the longitude (the azimuth angle) of the points on the
sphere. Nonparametric procedures, such as the kernel density
estimation methods are sometimes convenient to estimate the
probability distribution function (p.d.f.) of such kind of data
but they require an appropriate choice of kernel functions.

Let X1, . . . , Xn be a sequence of random vectors taking
values in Rd. The density function f of a random d-vector may
be estimated by the kernel density estimator [?] as follows:

f̂(x) =
1

n

n∑
i=1

KH (x−Xi) , x ∈ Rd,

where KH(x) =| H |−1 K(H−1x), K denotes a multivariate
kernel function and H represents a d-dimensional smoothing
matrix, called bandwidth matrix. The kernel function K is a d-
dimensional p.d.f. such as the standard multivariate Gaussian
density K(x) = (2π)d/2 exp

(
− 1

2x
Tx
)

or the multivariate
Epanechnikov kernel. The resulting estimation will be the sum
of “bumps” above each observation, the observations closed
to x giving more important weights to the density estimate.
The kernel function K determines the form of the bumps
whereas the bandwidth matrix H determines their width and
their orientation. Thereby, bandwidth matrices can be used to
adjust for correlation between the components of the data.
Usually, an equal bandwidth h in all dimensions is chosen,
corresponding to H = hId where Id denotes the d×d identity
matrix. The kernel density estimator then becomes:

f̂(x) =
1

nhd

n∑
i=1

K
(
h−1(x−Xi)

)
, x ∈ Rd.

In certain cases when the spread of data is different in
each coordinate direction, it may be more appropriate to use
different bandwidths in each dimension. The bandwidth matrix
H is given by the diagonal matrix in which the diagonal entries
are the bandwidths h1, . . . , hd.

In directional statistics, a kernel density estimate on Sd−1

is given by adopting appropriate circular symmetric kernel
functions such as von Mises-Fisher, wrapped Gaussian and
wrapped Cauchy distributions. A commonly used choice is the
von Mises-Fisher (vMF) distribution on Sd−1 which is denoted
M(m,κ) and given by the following density expression [?]:

KVMF (x;m,κ) = cd(κ) eκm
T x, κ > 0, x ∈ Sd−1, (10)

where

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
(11)

is a normalization constant with Ir(κ) denoting the modified
Bessel function of the first kind at order r. The vMF kernel
function is an unimodal p.d.f. parametrized by the unit mean-
direction vector µ and the concentration parameter κ that
controls the concentration of the distribution around the mean-
direction vector. The vMF distribution may be expressed by
means of the spherical polar coordinates of x ∈ Sd−1 [?].

Given the random vectors Xi, i = 1, . . . , n, in Sd−1, the
estimator of the spherical distribution is given by:

f̂(x) =
1

n

n∑
i=1

KVMF (x;Xi)

=
cd(κ)

n

n∑
i=1

eκX
T
i x, κ > 0, x ∈ Sd−1.

Please, note that the quantity x − Xi which appears in the
linear kernel density estimator is replaced by XT

i x which is
the cosine of the angles between x and Xi, so that more
important weights are given on observations close to x on
the sphere. The concentration parameter κ is a smoothing
parameter that plays the role of the inverse of the bandwidth
parameter as defined in the linear kernel density estimation.
Large values of κ imply greater concentration around the mean
direction and lead to undersmoothed estimators whereas small
values provide oversmoothed circular densities [?]. Indeed, if



κ = 0, the vMF kernel function reduces to the uniform
circular distribution on the hypersphere. Note that the vMF
kernel function is convenient when the data is rotationally
symmetric.

The vMF kernel function is a convenient choice for our
problem because this p.d.f. is invariant under the action on
the sphere of the rotation component of the Lie group G.
Moreover, this distribution has properties analogous to those
of multivariate Gaussian distribution and is the limiting case
of a limit central theorem for directional statistics. Other
multidimensional distributions might be envisaged, such as the
bivariate von Mises, the Bingham or the Kent distributions
[?]. However, the bivariate von Mises distribution being a
product kernel of two univariate von Mises kernels, this is more
appropriate for modeling density distributions on the torus and
not on the sphere. The Bingham distribution is bimodal and
satisfies the antipodal symmetry property K(x) = K(−x).
This kernel function is used for estimating the density of
axial data and is not appropriate for our clustering approach.
Finally, the Kent distribution is a generalization of the vMF
distribution, which is used when we want to take into account
of the spread of data. However, the rotation-invariance property
of the vMF distribution is lost.

As for the scaling component of G, the usual kernel
functions such as the Gaussian and the Epanechnikov kernel
functions are not suitable for estimating the radial distribution
of a random vector in Rd. When distributions are defined over
a positive support (here in the case of non-negative data), these
kernel functions cause a bias in the boundary regions because
they give weights outside the support. An asymmetrical kernel
function on R+ such as the log-normal kernel function is
a more convenient choice. Moreover, this p.d.f. is invariant
by change of scale. Let R1, . . . , Rn be univariate random
variables from a p.d.f. which has bounded support on [0; +∞[.
The radial density estimator may be defined by means of a sum
of log-normal kernel functions as follows:

ĝ(r) =
1

n

n∑
i=1

KLN (r; lnRi, h), r ≥ 0, h > 0,

where
KLN (x;µ, σ) =

1√
2πσx

e−
(ln x−µ)2

2σ2

is the log-normal kernel function and h is the bandwidth
parameter. The resulting estimate is the sum of bumps de-
fined by log-normal kernels with medians Ri and variances
(eh

2 −1)eh
2

R2
i . Note that the log-normal (asymmetric) kernel

density estimation is similar to the kernel density estimation
based on a log-transformation of the data with the Gaussian
kernel function. Although the scale-change component of G is
the multiplicative group R+, we can use the standard Gaussian
kernel estimator and the metric on R.

VII. UNSUPERVISED ENTROPY CLUSTERING

The first thing to be considered is the extension of the
entropy definition to curve systems with values in G. Starting
with expression from (1), the most important point is the
choice of the kernel involved in the computation. As the
group G is a direct product, choosing K = Kt.Ks.Ko with
Kt,Ks,Ko functions on respectively the translation, scaling
and rotation part will yield a G-invariant kernel provided the

Kt,KsKo are invariant on their respective components. Since
the translation part of G is modeled after Rn, the epanechnikov
kernel is a suitable choice. As for the scaling and rotation, the
choice made follows the conclusion of section VI: a log-normal
kernel and a von-Mises one will be used respectively. Finally,
the term ‖γ′(t)‖ in the original expression of the density, that
is required to ensure invariance under re-parametrization of the
curve, has to be changed according to the metric in G and is
replaced by 〈〈γ′(t), γ′(t)〉〉1/2γ(t). The density at x ∈ G is thus:

dG(x)) =

∑N
i=1

∫ 1

0
K (x, γi(t)) 〈〈γ′i(t), γ′i(t)〉〉

1/2
γi(t)

dt∑N
i=1 li

(12)

where li is the length of the curve in G, that is:

li =

∫ 1

0

〈〈γ′i(t), γ′i(t)〉〉
1/2
γi(t)

dt (13)

The expression of the kernel evaluation K (x, γi(t)) is split
into three terms. In order to ease the writing, a point x in G will
be split into xr, xs, xo components where the exponent r, s, t
stands respectively for translation, scaling and rotation. Given
the fact that K is a product of component-wise independent
kernels it comes:

K (x, γi(t)) = Kt

(
xt, γti (t)

)
Ks (xs, γsi (t))Ko (xo, γoi (t))

where:

Kt(x
t, γti (t)) = ep

(
‖xt − γti (t)‖

)
(14)

Ks(x
s, γsi (t)) =

1

xsσ
√

2π
exp

(
− (log xs − log γsi (t))

2

2σ2

)
(15)

Ko(x
o, γoi (t)) = C(κ) exp

(
κTr

(
xotγoi (t)

))
(16)

with C(κ) the normalizing constant making the kernel of unit
integral. Please note that the expression given here is valid
for arbitrary rotations, but for the application targeted by the
work presented here, it boils down to a standard von-mises
distributions on Sd−1:

Ko(x
o, γoi (t)) = C(κ) exp

(
κxotγoi (t)

)
with normalizing constant as given in (11). In the general case,
it is also possible, writing the rotation as a sequence of moves
on spheres Sd−1,Sd−2, . . . and the distribution as a product of
von-Mises on each of them, to have a vector of parameters κ:
it is the approach taken in [?] and it may be applied verbatim
here if needed.

The entropy of the system of curves is obtained from the
density in G:

E(dG) = −
∫
G
dG(x) log dG(x)dµG(x) (17)

with dµG the left Haar measure. Using again the fact that G is a
direct product group, dµ is easily seen to be a product measure,
with dxt, the usual Lebesgue measure on the translation part,
dxs/xs on the scaling part and the lebesgue measure dxo on
Sd−1 for the rotation part. It turns out that the 1/xs term
in the expression of dxs/xs is already taken into account
in the kernel definition, due to the fact that it is expressed



in logarithmic coordinates. The same is true for the Von-
Mises kernel, so that in the sequel only the (product) lebesgue
measure will appear in the integrals.

Finding the system of curves with minimum entropy re-
quires a displacement field computation as detailed in [?]. For
each curve γi, such a field is a mapping ηi : [0, 1] → TG
where at each t ∈ [0, 1], ηi(t) ∈ TGγi(t).Compare to the
original situation where only spatial density was considered,
the computation must now be conducted in the tangent space
to G. Even for small problems, the effort needed becomes
prohibitive. The structure of the kernel involved in the density
can help in cutting the overall computations needed. Since it
is a product, and the translation part is compactly supported,
being an epanechnikov kernel, one can restrict the evaluation
to points belonging to its support. Density computation will
thus be made only in tubes around the trajectories.

Second, for the target application that is to cluster the flight
paths into a route network and is of pure spatial nature, there
is no point in updating the rotation and scaling part when
performing the moves: only the translation part must change,
the other two being computed from the trajectory. The initial
optimization problem in G may thus be greatly simplified.

Let ε be an admissible variation of curve γi, that is a
smooth mapping from [0, 1] to TG with ε(t) ∈ Tγi(t)G and
ε(0) = ε(1) = 0. We assume furthermore that ε has only a
translation component. The derivative of the entropy E(dG)
the t curve γi is obtained from the first order term when γi
is replaced by γi + ε. First of all, it has to be noted that dG
is a density and thus has unit integral regardless of the curve
system. When computing the derivative of E(dG), the term

−
∫
G
dG(x)

∂γidG(x)

dG(x)
dµG(x) = −

∫
G
∂γidG(x)dµG(x)

will thus vanish. It remains:

−
∫
G
∂γidG(x) log dG(x)dµG(x)

The density dG is a sum on the curves, and only the i-th term
has to be considered. Starting with the expression from (12),
one term in the derivative will come from the denominator. It
computes the same way as in [?] to yield:

γt′′i (t)

〈〈γ′i(t), γ′i(t)〉〉G

∣∣∣∣
N
E(dG) (18)

Please note that the second derivative of γi is considered only
on its translation component, but the first derivative makes use
of the complete expression. As before, the notation |N stands
for the projection onto the normal component to the curve.

The second term comes from the variation of the numerator.
Using the fact that the kernel is a product KtKsKo and that
all individual terms have a unit integral on their respective
components, the expression becomes very similar to the case
of spatial density only and is:

−
(∫
G
K (x, γi(t)) log dG(x)dµG(x)

)
γt′′i (t)

〈〈γ′i(t), γ′i(t)〉〉
1/2
G

∣∣∣∣∣
N

(19)

+

∫
Rd
e(t)Kt′ (xt, γti (t)) log dG(x)〈〈γ′i(t), γ′i(t)〉〉

1/2
G dxt

(20)

with:

e(t) =
γti (t)− xt

‖γti (t)− xt‖

∣∣∣∣
N

VIII. RESULTS

Only partial results are available for the moment and
several traffic situations are still to be considered. On simple
synthetic examples, the algorithm works as expected, avoiding
going to close to trajectories with opposite directions as
indicated on Figure 3.

Figure 3. Clustering using the Lie approach

In a more realistic setting, the arrivals and departures
at Toulouse Blagnac airport were analyzed. The algorithm
performs well as indicated on Figure 4. Four clusters are iden-
tified, with mean lines represented through a spline smoothing
between landmarks. It is quite remarkable that all density based
algorithms were unable to separate the two clusters located at
the right side of the picture, while the present one clearly show
a standard approach procedure and a short departure one.

Figure 4. Bundling trajectories at Toulouse airport

An important issue still to be addressed with the extended
algorithm is the increase in computation time that reaches 20
times compared to the appoach using only spatial density en-
tropy. In the current implementation, the time needed to cluster
the traffic presented in Figure 3 is in the order of 0.01s on a
XEON 3Ghz machine and with a pure java implementation.
For the case of Figure 4, 5 minutes are needed on the same
machine for dealing with the set of 1784 trajectories.



IX. CONCLUSION AND FUTURE WORK

The entropy associated with a system of curves has proved
itself efficient in unsupervised clustering application where
shape constraints must be taken into account. For using it in
aircraft route design, heading and velocity information must be
added to the state vector, inducing an extra level of complexity.
The present work relies on a Lie group modeling as an unifying
approach to state representation. It has successfully extended
the notion of curve system entropy to this setting, allowing the
heading/velocity to be added in a intrinsic way. The method
seems promising, as indicated by the results obtained on simple
synthetic situations, but extra work needs to be dedicated to
algorithmic efficiency in order to deal with the operational
traffic datasets, in the order of tens of thousand of trajectories.

Generally speaking, introducing a Lie group approach to
data description paves the way to new algorithms dedicated
to data with a high level of internal structuring. Studies are
initiated to address several issues in high dimensional data
analysis using this framework.
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