N

N

Extended Verification of Secure UAANET Routing
Protocol

Jean-Aimé Maxa, Mohamed-Slim Ben Mahmoud, Nicolas Larrieu

» To cite this version:

Jean-Aimé Maxa, Mohamed-Slim Ben Mahmoud, Nicolas Larrieu. Extended Verification of Secure
UAANET Routing Protocol. DASC 2016, 35th Digital Avionics Systems Conference, Sep 2016, Sacra-
mento, United States. 10.1109/DASC.2016.7777970 . hal-01365933

HAL Id: hal-01365933
https://enac.hal.science/hal-01365933

Submitted on 13 Sep 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://enac.hal.science/hal-01365933
https://hal.archives-ouvertes.fr

Extended Verification of Secure UAANET Routing
Protocol

Jean-Aimé Maxa! 2 , Mohamed Slim Ben Mahmoud! and Nicolas Larrieu

1

L' ENAC, TELECOM/Resco, F-31055 Toulouse, France
2 Univ de Toulouse, F-31400 Toulouse, France
maxa@recherche.enac.fr
slim.ben.mahmoud@gmail.com
nicolas.larrieu@enac.fr

Abstract—

UAYV Ad hoc Network (UAANET) is a wireless ad hoc network
composed of Unmanned Aerial Vehicles (UAVs) and Ground
Control Station (GCS). It requires an efficient and secure routing
protocols to find accurate and secure route between nodes to
exchange data traffics. There have been several secure routing
proposals to ensure data authentication and integrity services of
ad hoc routing protocols. However, most of them are vulnerable
against wormhole attacks and therefore cannot be used for
UAANET directly without amendment. The wormhole attack
involves two attackers who perform a colluding attack.

In this paper, we present a new UAANET secure routing
protocol called SUAP (Secure Uav Ad hoc routing Protocol).
It ensures message authentication and provides detection and
prevention of wormhole attacks. SUAP is a reactive protocol
using public key cryptography, hash chains and geographical
leashes. We have carried out a formal verification analysis of
SUAP security properties using the AVISPA tool, an automated
model checker for the analysis of security features. We have also
validated our security proposal through formal model checking
using Simulink and Stateflow tools. Additionally, we use a hybrid
experimental system (based on virtual machines and a virtual
mesh framework) under a realistic UAANET scenario to evaluate
SUAP routing performances and validate its security properties.

Index Terms—UAV Ad hoc NETwork, Security Architecture,
AVISPA, Model Driven Development, Routing Protocol.

1. Introduction

Technological and research advances in embedded systems
help to produce small UAVs with highly effective capacities.
Recently, their reputation has drastically increased as their use
is not limited to the military domain anymore but extended to
civilian applications to perform automated surveillance with
minimal human intervention [1]. In order to enable the scal-
ability and the duration of Unmanned Aerial System (UAS')
missions, it is possible to collaborate between autonomous
teams” of UAVs and GCS through an ad hoc wireless network
called UAANET. Ad hoc networks are considered suitable
for UAV based networks because of their self-forming, self-
healing and self-organizing features. Once UAVs have been
configured, they can form their network structure with the

A Unmanned Aircraft System is composed of UAVs, communication
links, ground control stations, launch and recovery system, and any other
system elements that may be required during flight operation

2also called UAV swarms

guidance from the GCS. Thus, the network becomes resilient
to eventual failures of nodes. Ad hoc networks have been
largely investigated by the research community for a bunch
of mobile systems such as sensors, cars, or civil aircraft.
However, much of the work carried out in these areas does not
take into account some specific features of UAANET (detailed
in section 2) which raises some networking issues.

Furthermore, from a security perspective, UAANET routing
protocol must also be secured to protect network and data
(payload and command & control) traffic from malicious
attackers. Hence, control packets need to be authenticated
to verify both the identity of the message originator and
the message integrity. Security of routing protocols has been
widely investigated in wired networks and Mobile Ad hoc
Networks (MANETS), but as far as we know, there is no
existing work dedicated to UAANET routing protocols with
security features. There have been some proposals to ensure
the security of ad hoc routing protocols in MANET but
most of them are vulnerable against wormhole attack [2].
The wormhole attack involves two attackers who perform a
colluding attack. One attacker record packets at a particular
location and replay them at another attacker by using a high-
speed private network.

In this paper, we present the formal verification of our new
secure routing protocol for UAANET called SUAP (Secure
Uav Ad hoc routing Protocol). This protocol ensures mes-
sage authentication, data integrity and provide detection and
prevention of wormhole attacks. SUAP is based on SAODV
routing protocol [3] and use a public key cryptography, hash
chains and geographical leashes. It uses digital signatures for
non-mutable fields (e.g. destination IP Address) and hash
chains for mutable fields (i.e the hop count). Two distinct
mechanisms are combined to provide security against worm-
hole attacks. The first one is used during route maintenance in
which hello and route error packets are sent to reckon one hop
neighbors and to detect link breaks. We use a mechanism that
mathematically analyzes the correlation between the hop count
and the distance traveled by the packet (detailed in section
3). The second mechanism is used during the route discovery
process in which each node computes a hash hop by hop by
taking into account the respective address of the previous node

and next hop to which the message is forwarded (detailed in
section 3).

Additionally, in order to validate SUAP security properties,
we use a formal verification through model checking with
Embedded coder formal verification tools [4] and AVISPA
(Automated Validation of Internet Security Protocols) tool
[5]. AVISPA is a modular and expressive formal language
used to verify SUAP security properties. With regards to
Embedded coder, it is a code generator containing several
integrated model and code consistency verification tools used
with Simulink & Stateflow framework to validate the con-
formance between SUAP high-level models (security require-
ments) and its associated source code. This latter is performed
to contribute to UAS certification as initially presented in our
previous work [6].

Finally, we used a hybrid experimental system [7] (based on
virtual machines and the Virtualmesh framework to emulate
physical aspects) to evaluate SUAP routing protocol effec-
tiveness under a realistic UAANET scenario. We compared
SUAP and AODV [8] in a realistic scenario with three UAVs
in flight.

This paper is organized as follows. In section 2, we highlight
the state of the art and the existing work on UAANET secure
routing. Section 3 describes the SUAP routing protocol by
specifying the modified structure of route discovery and route
maintenance packets along with its implementation method-
ology. The formal verification with AVISPA and Embedded
coder will be detailed in section 4. In section 5, we present
our performance evaluation of SUAP protocol with a hybrid
testbed presented in [7] to add an overlay of security properties
validation. Finally, we draw our conclusions and future works
in section 6.

II. Secure Routing For UAANET

A. UAANET state of the art

UAANET is a specific case of UAS. It is composed of
UAVs, payloads (e.g. digital cameras) several communication
links, ground control stations, launch and recovery system, and
any other system elements required during flight operation.
The architecture of a typical UAS is shown in Figure 1. For a
detailed description of each of those subsystems, interested
readers should check the paper in [9]. It is important to
emphasize the existence of several kinds of UAVs, each
designed for a different purpose. It is possible to categorize
them in many ways using different metrics. In this paper,
we mainly focus on civil, commercial and research-dedicated
UAVs. Military ones are out of the scope of the paper due to
their specific requirements.

Moreover, similar to MANETS, the UAANETS architecture
is an infrastructure-less network which uses multiple nodes
to forward data packets. It also shares characteristics such as
self-organized abilities, self-managed information, communi-
cations and cooperation between nodes to perform data de-
livery. However, UAANETSs have some specific features that
differentiate it to MANET [1] as explained in the following:

C2 and payl

o

1))

2)

3)

4)

C2 and payload
traffics

- \\k C2 and payload B =8

) \ traffics - -
/
n_So-8 Autopilot
=
Payload
system
Radio
modem

traffics Oy

ong range GCS
Antenna software
Image/video Radio

processing unit modem

C2: Control and Command GCS: Ground Control Station

Figure 1 Example of UAS Architecture

Network connectivity: The intermittent degree of
UAANET network connectivity is more important than
in MANETs or VANETs [10]. This is mainly driven
by the UAV mobility degree, and the UAV mobility
pattern. Such communication interruption could be crit-
ical when they are transmitting important information
(control/command traffic). In addition, UAV failure
may cause connectivity failure, which results routing
failure, and therefore communication failure or longer
delay. Another aspect that affects the connectivity is
the connection outages. Due to the UAV movements
and variations of distances between UAVs, link qual-
ity fluctuates and may cause loss of connectivity and
performance degradations.

Number of nodes : When UAV deployed in a given
mission has a relatively high speed, it can be sufficient
to cover a restricted mission areas. Then, the need for
a large number of UAVs is not justified in such a case.
Usually, UAV mission involves an average of 3 to 4
UAVs [11].

Sufficient energy: Depending on their sizes and types,
UAVs are usually assumed to have enough energy
and computing power compared to certain nodes in
MANETSs. This is driven by the fact that the energy
needed to move the UAV is much greater than the
energy needed to compute data. Similarly, as nodes in
Wireless sensor network (WSN) UAVs are on batteries,
and certain mission can last long.

Mobility (3D): Mobility model plays a significant role
in designing network protocols for UAANETs. UAV
mobility patterns are a lot different from any other
vehicle. A UAV movement is above all 3D based.
This brings a whole set of challenges on the physical
layer, the antenna behaviors and the security aspect
(e.g., misbehavior detection). Indeed, several existing

misbehavior detection techniques often rely on nodes
position. Thus, a study must be carried out to take into
account the altitude information into the misbehavior
detection algorithm. Furthermore, note that based on the
mission, the UAV movement can follow different types
of mobility pattern. It can be straight following a way-
point, circular staying in a specific zone, oval and scan
when patrolling around a given circuit.

5) Strict delay constraints: Generally, UAANETSs are
used for real-time applications, such as aerial pho-
tography and video capture. Accordingly, the con-
trol/command traffic should arrive in time to avoid the
loss of control of the whole UAS.

B. Routing protocol for UAANET

Routing is an essential parts of the UAANET communica-
tion architecture as UAVs must relay control and data traffics
between them to the GCS. It must take into account the
UAANET specific features to accurately find routes between
UAVs and the GCS. Particularly, a noticeable delay during
transmission must be avoided as control traffics flows in
real-time between entities. Once a control packet process is
delayed, it can induce network instability and an unexpected
behavior of the UAVs. Generally, in addition to the require-
ments present in the generic wireless ad hoc networks (such
as: finding the most efficient route, allowing the network to
scale, controlling latency, etc.), UAANETS also require some
requirements such as: location-awareness algorithms (due to
the possibility to perform routing based on geographical
information), energy awareness (due to the small size of power
unit), and most importantly, a strong robustness mechanism to
the intermittent links and constant changing topology features
caused by the high speed of UAVs. Thus, the conventional ad
hoc routing protocols designed for MANET are not necessarily
suitable for UAANET.

Typically, most of existing UAANET routing protocols are
an extension of the following well-known MANET routing
protocols: AODV, OLSR [12] and DSR [13]. Geographical
routing, as surveyed in [14], could also be efficient in spe-
cific contexts. The question is now: which of these routing
protocols fits UAANET environments. To provide an answer
to this question, in [7], we introduced an emulation-based
performance evaluation of MANETSs routing protocols for
UAANETs. This realistic study considers the Linux kernel
networking stack requirements, the protocol implementations,
the background traffics, the real time execution features and
a realistic UAVs mobility model that was deduced from real
UAS flights. Also, we used real-time data traffic based on
actual data acquired from real UAS experiments. Our results
showed that AODV suits better in UAANET compared to
OLSR and DSR. Our mobility pattern and emulation system
certainly affected the measures, but we found similar results
to those exposed in [15]. Accordingly, in [6], we introduce
the model design of SUAP (Secure Uav Ad hoc routing
Protocol). Also, a first preliminary outdoor experiments have

been carried out in [16] to evaluate its network requirements
and performances.

C. Security Challenges For UAANET

Generally, in ad hoc networks, the wireless links are prone
to link attacks, which consist of passive eavesdropping and
active interfering. These attacks are strengthened by the fact
that there is not a clear secure boundary within the network,
which can be compared with the clear line of defense in the
traditional wired network. UAVs can join, leave and move
inside the network. Consequently, with a commercial high-
gain antennas configured in specific frequencies, anyone can
listen to the frequency and receive the signals (e.g. GPS signal)
send by the GCS and the UAVs. Moreover, the absence of
centralized management infrastructure makes the detection of
attacks difficult as it is not easy to monitor the traffic in a
highly dynamic network. In addition, due to the intermittent
connectivity caused by UAVs mobility, differentiate malicious
failures from network disruption caused by the dynamic envi-
ronment is challenging, especially, if the adversaries modify
their attack pattern.

Also, the fact that UAANETS has restricted power supply
features also contribute to its vulnerabilities. Indeed, depend-
ing on UAVs sizes, UAV can have limited storage capacities
which make easier to launch a denial-of-service attacks. An
attacker can launch sleep deprivation attack [17] which aims
to drain the battery power of a UAV by sending meaningless
packets.

Accordingly, to protect UAANET from attacks, the routing
protocol must provide a set of security properties to provide
an accurate and secure path from the source to the destination.
These requirements consist of:

1) Node authentication: only authorized nodes should per-
form route computations and discovery; minimal expo-
sure of network topology;

2) Message authentication: detection of spoofed and fabri-
cated routing messages;

3) Message integrity: detection of altered routing messages;

4) Avoiding formation of routing loops and redirection of
routes from shortest paths.

III. SUAP Routing protocol

There have been several proposals to enhance security in
AODV and these include SAODV [3], ARAN [18], SEAR
[19], SEAODV [20]. These routing protocols ensure message
authentication but fails when facing wormhole attacks. They
rely on cryptographic mechanisms to secure routing packets.
They prevent forgeries by allowing intermediate nodes to
check the packets’ authenticity. Specifically, with SAODV,
the hop count is protected by hash chains preventing nodes
from modifying the hop count value. However, its security
features have some flaws as attackers can leave the hop count
unchanged to falsify how a path is selected. Generally, the
kinds of attacks that are prevented by SAODV are limited
to those involving impersonation of nodes or manipulation

of routing control messages, and it remains vulnerable to
wormbhole attacks.

A. Wormhole Attacks

Wormbhole attacks also known as tunneling attack is a
colluding attack led by one or two attackers working together
to create a wormhole link. One attacker forwards control
messages to the second one (usually located several hops
away) without changing the packets through a high quality
out-of-band link. This means that distant nodes are considering
themselves as neighbors since the hop count is not increased.
Thus, this attack cannot be detected even with a strong
authentication mechanism. Once attackers have successfully
attracted routes through them, they can degrade the network
performance by dropping or selecting data packets and create
a DoS attacks. Figure 2 demonstrates an example scenario
of this attack within UAANETSs, where Al and A2 are the
colluding attackers while the node NO and N3 are the victim
node. In this example, the GCS send a route discovery packet
to node NO which forward the request to N1. By putting Al in
the vicinity of NO, it can receive the information and replays
it to A2 placed next to destination N3. As a result, NO and
N3 assume that they are neighbors.

B. SUAP security features

SUAP is an extension of the SAODV routing protocol
that can be used to protect the route discovery mechanism
providing integrity, authentication, non-repudiation security
services and an additional security features against wormhole
attacks through geographical leashes approach.

The following assumption is considered by SUAP network
and attacker model:

o Nodes are homogeneous. UAVs and GCS are coming
from the same manufacturer (in our case Delair Tech)
which allows us to put aside the security issue from
selfish nodes. Apart from being captured or controlled
by an attacker, a node will not change its behavior and
will always cooperate with its neighbors;

o Nodes have sufficient energy power and network re-
sources (i.e bandwidth) to perform cryptographic com-
putation;

o All UAVs utilizes omnidirectional antennas. Communi-
cation range is r and cannot exceed Dmax (r < Dmax).
Dmax is a maximum one-hop range;

o Nodes rely on efficient symmetric and asymmetric cryp-
tography algorithm for encryption/decryption, authenti-
cation and hashing. RSA and SHA-256 algorithms have
used respectively for message authentication and hashing.
It should be noted that SHA-512 can also be used. Both
belongs to the SHA-2 functions which are preimage-
resistance and collision-resistance. The hash algorithms
in this standard have a secure features as for a given al-
gorithm, it is computationally infeasible to find a message
that corresponds to a given message digest. Also it is not
computationally unfeasible to find two distinct messages
producing the same digest.

¢ All nodes are clocks synchronized. This is possible with
the presence of GPS on-board of UAVs and GCS;

o We assume that there is an efficient and reliable key
management within the network to share, to manage and
to revoke node cryptographic keys;

« Routing control packet confidentiality is not insured.
Indeed, routing packets are processed in real time by
the flying UAVs. As such, even if an attacker is able
to eavesdrop the message, its action is limited in passive
mode because in the future, the past information is no
longer valuable.

o Hash function H is only known by legitimate nodes and
pre-loaded with keys at the bootstrapping. The selected
function is included in route discovery packet and signed
with a digital signature. This leads to the protection of
the hash function from attacker modification. In order
to breach the hash function, any attacker must hack the
digital signature. Attack on cryptography algorithm is not
considered in our research.

« In regards to attackers capabilities, we consider the work
of Cordasco et al. in [21] based on Dolev-Yao model
in which they present a topology and protocol agnostic
model that takes into account a real-world scenario.
Accordingly, we considered that the following attacks
are possible: data traffic disclosure, routing information
disclosure, performance degradation and topology modi-
fication.

By taking into account those requirements, we propose the
SUAP routing protocol which is a security extension of the
SAODV protocol, based on public key cryptography, hash
chains and geographical leashes [22]. It uses digital signatures
for non-mutable fields and hash chains for mutable fields (i.e
the hop count). A node that generates a routing message signs
it with its private key, and the nodes that receive the message
verify the signature using the sender’s public key. The hop
count cannot be signed by the sender, because it must be
increased at every hop.

Therefore, a mechanism based on hash chains is used. A
hash function maps a variable-length message into a fixed-
length hash value, or message digest. This function has the
property that the results of applying the function to a large
set of inputs will produce distributed and random outputs.
Virtually, the hash function use an iterative use of a com-
pression function such as SHA [23]. Particularly, hash chains
are based on one-way hash functions. A hash chain of length
N is constructed by applying a hash function ”h” N times to
a random value ’seed”.

[0 St

Intrinsically, the routing protocol is still vulnerable against
wormhole attacks. Accordingly, a version of geographical
leashes based security algorithm is used to estimate the corre-
lation between the traveled distance and the hop count value.
In order to do so, SUAP requires each node in the network

h :m;

(No,A1)

4

hop count =0

d(No, A2)

®
-
y hop count = 1~ sy—hopcou"t=2—>‘Y\ \

hop count=3

NO

-

— N

/ — > RREP

—— > RREQ

< \ hop count = 1
(|:||:||:|‘|:||:||:||:||:||:|() A2 d(AZND)

hop count =1

_ >

Figure 2 Illustration of Wormhole Attack in UAANETSs

Table I Notation Table

Paremeter | Description

hc Hop count

Dmax One hop distance maximum

Rjj Distance between nodes i and j

c(i) connectivity state between node i and node j
Distance between the first target

d(No, A1) and the first attacker

d(A1,A2) Distance between the two attackers
Distance between the first target

d(No, A2) and the second attacker
Distance between the second target

d(A2,D) and the second attacker

T The total distance of the legitimate route

D The total length of the path through

W the wormhole link

to be tightly synchronized and maintains a local connectivity
with its direct neighbor. It should be noted that, when it comes
to node synchronization, a synchronization upper bound and
lower bound must be set up. This should be measured in our
upcoming real world experiments.

C. Enhanced Beacon Message

Beacon message is sent by broadcast to one-hop neighbors
to maintain the local connections updated. Our objective with
SUAP is to protect these packets from wormhole attacks.
Hence, besides signing all the data fields, we use a mechanism
that analyzes the correlation between hop count and distance
traveled by the packet. When sending messages, each node
includes its actual location information. To protect from ma-
licious modification, message fields are signed (including the
geographical position).

Figure 3 illustrates the format of modified beacon messages.

To illustrate our proposition, we considered the Figure 2
and the notation in table I. The connectivity between two
legitime nodes can be expressed by (1), with R; ; is the current
communication range.

(i j) = {(1)

The presence of wormhole link modifies this condition to

).

if R;; < Dma:v} (1)

if R;; > Dmax

. J1 si R;; < Dmax
(i, f) = {1 st R;j; > Dmaa:} @
Furthermore, we have :
d(No, Al) < Dmax
d(A2,N3) < Dmazx
d(No, A2) > Dmax
d(A1,N3) > Dmax
It results that.
d(No, A1)* 4 d(A1, A2)* > Dmaz?
thus,
d(Al, A2) > Dmax — d(No, A1)
We have (3) :
Dw = d(Al, A2) + d(No, A1) + d(A2, N3)
Dw > Dmax 3)
Knowing that
T= Y R
i=0,5=0
e When the node NO send the packet, To = Rol that

corresponds to hc = x + 1 with z € N;

o When the node N1 send the packet, T1 = To+ R12 that
corresponds to hc = x + 2;

o When the node N2 send the packet, 72 = T'1 + R23 that
corresponds to hc = x + 3;

thus,

T
-1< 1 4
_hc<D + “)

Dmazx max

By taking into account the inequality (3), we can compare
the hop count value present in the packet and the hop count
value computed on the traveled distance by following the
corresponding value depicted in the Table II and the formula
(4). If there is a difference, the wormhole link is detected, and
the packet is rejected. Otherwise, the link is considered as free

Type | | | |

Destination IP Address

AODV fields

3K 3K 3Kk K K K K kK kK

Extension Type| Length |

Padd Length

J

5k Kk kK kK

Public Key

Altitude

Latitude

. SUAP security
fields

Longitude

Signature

Hashold

Hashnew

—

Figure 3 Format of SUAP Modified Beacon Message Extension

Table II Mapping Table Between the Distance Traveled and
Hop Count

T Hop count (hc)
0<To< Dmazx 0
Dmaz < T1 < 2Dmax 1

(n—1)Dmax < T,—1 < (n+ 1)Dmaz | n-1

of the wormhole attack and the signature verification process
begins. Note that because of the position information included
in the packet, it is possible to compute the relative distance
between 2 neighbor nodes using 3D Euclidean distance.

D. Securing Route Discovery

In order to implement a hop-by-hop authentication, each
node must verify the incoming message from its one-hop
neighbors before sending it by unicast to its neighbors. Each
node must ensure that the packet is authenticated and was not
forwarded through wormhole link. Thus, each node should
make sure that it has a trust relationship with its neighbors.
Such secure relationship between each pair of nodes relies
on the exchange of beacon messages between neighbors as
explained previously. In SUAP, the route discovery process is
similar to that of standard AODV, but two hash extension is
appended to the end of route discovery packets as explained
in the following.

During the route discovery process route request and re-
sponse are exchanged. In this mechanism, nodes do not need
to send its geographical position. Instead, each node assumes
that its local connectivity is secure thanks to the neighbor
information provided by the previous mechanism. Each node
then sends in unicast all route discovery packets to its direct
neighbors. Each node also includes the address of the next
hop to which the message is forwarded and apply a hash
chain to the packet mutable fields. The non-mutable fields
are signed as stated previously. An illustration of the request
message is shown in Table III. The source node appends its

Table III SUAP Request Packet Signature Extension Fields

Field Value
Type 64
Hash

hash function selected by the sender node.
It is used to compute the hash chain field
The signature of all the non-mutable fields
Hashnew = H [CurrentNode, NextNode, Hashold]

function

Signature

CurrentNode is the address of node

sending the request packet. It can be

its public key or its I[P Address.

The Nextnode is the next node public key or IP
Address.

Hashold is the previous chain element received
from the previous node

It is the previous chain element received from the
previous node. When receiving packets, nodes
change the value of Hashnew into Hashold

The actual hop count of the packet.

It is the number of times the hash is performed

Hashnew

Hashold

Hop Count

own address and the next node address to the hash chain
called Hashnew. It also includes the Hashold (which is the
previous Hashnew) within the packet. When an intermediate
node says Ni receives a request, it checks its signature and
verify the Hash chain. It re-computes the Hash chain with H
[previousnode, MyIPAddress, Hashold] and verify if it has the
same result as the one included in the packet.
Considering the Figure 2, we compute the hash chain as the
following:
The GCS node executes the following operation:
o Select a H hash function;
o Compute Oldhash = H(seed), seed is a value selected
randomly by the sender;
o Compute Hashnew = H(GCS, NO, Oldhash), NO is the
next node address;
o Compute message S to NO: [64, H, signature, Hashnew,
Oldhash]
When the node NO, receives the packet, it processes the
following operation:

o Integrity verification by computing Hashverifier = H
[previousnode, actualnode, Oldhash] and verify the result
compared to Hashnew. Since, we use a one way hash
function, the slightest change would lead to difference.
Besides, the hash function is only known by legitimate
node.

o If Hashverifier = H[GCS, NO0,0Oldhash] = Hashnew, it
indicates that the link is free of wormhole attack. Other-
wise, it means that the packet has been transmitted via a
wormbhole link. The packet is then rejected.

o Assign the new Oldhash = Hashnew;

o Compute the new Hashnew with Hashnew = H[N1, N2,
Oldhash].

The operation is repeated until the packet reaches the
destination. The same mechanism is also used for the response
packet. As regards the exact value of the hop count values, it
can be inferred from the number of times that the hash was
used for verification. It can also be included in the hash chain
computation. Note that this mechanism can also be efficient
against man in the middle attacks in which malicious nodes
tries to breach route discovery mechanisms by forwarding
control packets from one point to another.

E. Security Block Design Architecture and Model Checking

UAS needs to be certified to have an airworthiness approval
in order to be used in real world deployment. Accordingly,
on a regional French scale, our UAS communication system
needs to be validated by the French UAV professional civil
federation. Although a specific validation and certification
standards for UAANETs is yet to be shaped, the process
and safety standards followed by the aeronautical industry
for embedded software design can be applicable as explained
in [24]. Accordingly, several standards have to be met. The
most closely related to our topic is DO 178C Europe version
EUROCAE ED-12C [25] and DO 331 [26]. On the one hand,
the DO 178 standard put emphasis on model driven approaches
that can generate high-level software code through high-level
models (which represent the features of the final system) as
inputs. It also recommends the use of formal methods along
with the methodology to contribute to the validation of the
final system. On the other hand, the DO 331 standard deals
with tools used to generate software code. In this standard,
the RTCA?® introduce the use of three different advanced
verification methodologies: model checking, formal proofs and
code assertions [27].

Model-driven development methodologies (i.e. MDD) claim
the use of models as primary artifacts in the development
process. A system model composed of block diagrams and
state charts is the focus of the development process, from
requirement specifications to simulation testing and integra-
tion. When used with a code generator, it generates a high
level code which facilitates the early verification of the design
through formal verification tools. It also execute model-and-
code consistency checking for system verification purposes.

3Radio Technical Commission for Aeronautics

Step 1:
Requirements

Simulink & Stateflow

Simulink
Design Verifier

Code Coverage
Tool

S-Function

Configuration Simulink Code

Inspector Embedded Coder

Step 4:
Glue Code

Step 3:
Source code

Code Coverage
Tool

Linking

Step 5:
Object code

Step 6:
Compilation

Step 7:

Integration

Figure 4 Set of MDD Tools Used to Design This Secure
Routing Protocol

Accordingly, our design is based on Matlab Simulink and
Stateflow frameworks. Simulink is composed of a block-
diagram environment which allows us to accurately design
the routing protocol while the stateflow framework allows us
to define a finite number of states in the algorithm which
are changed based on a defined condition. Figure 4 represents
the model driven development workflow and schematizes the
integration process. It is composed of the seven different steps
as explained in [6].

In order to specify our specification into high-level models,
we use a dedicated security design architecture for the security
part as depicted in Figure 5. To have an idea of the routing
architecture design, we advised interested readers to check
our paper in [16]. The specification follows the IETF draft
[28] in which each requirement (messages, tables, parameters,
extension specification) has been meticulously respected. Our
system includes several blocks transmitting signals between
them denoting the security and network requirements spec-

ifications. They also contain several instances of stateflow
graphic representation. These blocks describe the possible pro-
tocol behavior as will detail in the following. To give a general
idea of the complexity of the SUAP model specification, we
present in the Table IV some significant metrics of the global
system.

Table IV Metrics of the SUAP Protocol Specification

Code lines 6236
Blocks 30
Procedures 188
States 30
Signals 36
Macro definitions 14

In the security architecture design, each packet received
from the link layer must be verified by a module called Packet
identifier” to check whether or not the packet has a security
extension. In case, it does not contain a sufficient security
extension, the packet is rejected by the Packet rejector module.

The packet rejector module role is to delete suspicious pack-
ets. If the packet has its security extension activated, its content
is extracted from the Content extractor module. This module
explicitly identifies which part contains the signature, the hash
chains and the location information for the wormhole detector.
Then, the packet is verified by the wormhole tester module
which mainly compute either the association between the hop
count and the distance traveled by the packet (if beacon and
route error messages are exchanged), or compute the actual
hash chains for the message. In this step, if the packet fails
to prove its required security level against wormhole attacks,
it is redirected to the packet rejector module. Otherwise, it
is sent to Authentication and Integrity tester module. In this
block, the authentication of non-mutable fields and integrity
of mutable fields is verified. If all the information within the
security extension is valid, the packet is directed to the routing
module to check whether or not the packet has reached its final
destination.

IV. SUAP Formal Verification Analysis
A. The AVISPA tool

AVISPA is an automated formal verification tool used
to verify the security properties of secure routing protocols.
It consists of various modules as shown in Figure 6. It
specifies a security problem associated with one or more
security properties in the High-Level Protocol Specification
Language HLPSL. The HLPSL is an expressive role-based
formal language which allows specifying flow patterns, data
structures, intruder models, complex security properties and
various cryptographic primitives along with their algebraic
properties. Furthermore, the AVISPA tool also comprises a
low-level specification language, called Intermediate Format
IF. It contains infinite-state transition systems which will be
given as input to the various back-ends of the AVISPA tool.
These back ends implement a process of automatic analysis
techniques in order to find anomalies by simulating a hidden
attack on the input protocol.

ubpP

Authentication

and Integrity
tester

Routing
verifier

Hop count
protector

" Wormhole
Signature
detector
generator builder

HOL03ray 1axovd

Non
Secure

Packet
Identifier

Figure 5 Secure UAANET Routing Protocol Design Archi-
tecture

Secure Packet Builder

Link Layer ‘

High-Level Protocol Specification Language
(HLPSL)

Translator
HLPSL 2IF

[Intermediate Format }

(IF)

On-the-fly CL-based SAT-based Tree Automata-based
Model-Checker Attack Searcher Model-Checker Protocol Analyser
OFMC CL-AtSe SA TMC TA4SP

Figure 6 Architecture of AVISPA tool

It should be noted that the security property verification
is processed under the assumptions of perfect cryptography
and that the network is under the control of a Dolev-Yao
intruder [29]. All back-ends analyze a protocol by considering
the asynchronous model of an active intruder who controls the
network but cannot break cryptography keys. Upon comple-
tion, each back-end outputs the result and states whether or not
the protocol meets his security requirements. The output gives
a description of the protocol goal and in case of a security
violation, presents the related attack trace.

In our case of SUAP analysis, as we will see in the
next section, the AVISPA tool has not revealed any attacks
on message authentication but it has discovered attacks on
confidentiality properties by means of back ends On-the-fly
Model Checker OFMC. However, confidentiality attacks of
network control packets are not critical within UAANETS as
network control packets do not contain sensitive information
that could be used later by the attackers. They are executed
in real time and as such does not have a significant value

when processed later in time (on the contrary of payload
traffics). Furthermore, through AVISPA, we were also able
to demonstrate that even if the attacker does not have the
cryptographic keys, a wormhole attack can be launched into
the network. Note that in this paper, we only consider some of
the most common execution scenarios of SUAP, consisting of
a finite number of protocol sessions executed in parallel. For
instance, the scenario in which beacon messages containing
location information is not expressed.

B. Analysis of SUAP

In order to verify SUAP using AVISPA, it has to be mod-
eled using HLPSL specifications. All nodes within UAANET
that executes the same actions are grouped together within
basic roles. A basic role is a module in which can be
specified what information a class of nodes can initially use
(as parameters of the role), their initial state, and the ways in
which this state can change. Note that the network is seen as
a collection of agents. The behavior of each of these agents
is defined within a basic role module. These agents exchange
messages through variables of type channel. Since AVISPA
consider a Dolev-yao model for attacks modeling, this implies
that channels have no protection and that intruder can have
complete information about the network topology.

Our HLPSL specification of SUAP formalizes three pro-
tocol roles that can be considered as equivalence classes
between nodes having the same behavior for sending and
receiving messages: a source node A, a destination node F, and
three intermediate nodes B, C, D in which B communicates
with A and C, C then communicate with B and D, and D
communicates with C and F as depicted in Figure 8. The
node A send a route request to node F through node B, C, D.
The message contains mutable fields and static fields. Since
AVISPA does not allow the modeling of mutable elements, all
the data are considered static throughout the packet lifetime
and signed with the signature of the sender node. The notion
of hop count update is specified with oldhash and newhash
fields which are always modified before packet forwarding.
For illustration purposes, the HLPSL code for the source node
is depicted in Figure 7.

The properties of the SUAP specification that we have to
analyze are the following:

o Authentication of NA, Tophash and F during the request
phase: the receiving node checks (Na, f) to verify if that
is already processed this request.

« Authentication hop by hop of Hashnew : each neighbor
node compute a Hashverifier and compare it to Hashnew

o Authentication of ND and A in the reply phase: the
receiving node checks (ND, A) to verify that it has not
already processed the response.

We have formalized two HLPSL specifications, represent-
ing two different network topologies corresponding to two
attacks. The first contains an attacker that can launch black
hole while the second illustrates a wormhole attack and its
effect.

The authentication verification is both end-to-end and hop
by hop, checked by each node during route discovery process.
Our HLPSL specification formalizes all this as follows. We
simulate both the request phase and reply phase: the source
node A starts the session and send a message containing the
packet identifier, data payload, Hashnew and hashold and the
top hash. This message is forwarded to nodes B, C and D to
reach F. Similarly, F sends a reply that reaches A through B,
C and D.

When a node receives a request packet from another in-
termediate node, it will only validate the certificate and the
signature of the previous intermediate node. Eventually, the
packet will arrive at the destination node. This node will
validate the certificate of the source node and its signature.
Then the destination will verify if it had not already processed
the request packet by looking to the tuple (NA, A). If the
message was already processed, it is discarded, otherwise,
the destination processes the packet and generates a route
reply that contains the packet identifier, the IP address of the
source from which the corresponding request had arrived, the
certificate of the destination node, a timeout value, a seed,
and a hash value. All those information is signed with the
private key of the destination node. Afterwards, it sends the
packet by unicast to the node from which it has received the
associate request packet and also verify if these nodes are free
of the wormhole attack. The intermediate nodes will unicast
the packet hop by hop to reach the sending node. Their role
is to validate the certificate and verify the signature.

C. Analysis of the first HLPSL specification of SUAP

The analysis with the AVISPA tool of our first HLPSL
specification of SUAP prove that message authentication is
ensured. However, we also found that SUAP suffers from
spoofing attack, where the intruder pretends to be a wvalid
intermediate node. The node A send a secure packet by
broadcast to node B which is intercepted by the intruder 1.

1) A= I:{SREQ,F,Nd'}inv(Ka), Hash,certA

2) A— B:{SREQ,F,Nd'}inv(Ka), Hash, certA

3) I - B:{SREQ,F,Nd'}inv(Ka), Hash,certA

4) B—1:{SREQ,F,Na'}inv(Ka), Hash,certA, certB

The intruder I relay the request to node B, who thinks that
the intruder I is the node A. Note that I can move from his
initial position to be in the vicinity of B and C. As such,
the intruder I can overhear the message and send it to C. I
can perform the same operation during reply phase. When the
intruder executes the sequence, an incorrect routing state attack
can be launched. This attack can be categorized as rushing
attacks in which the intruder was able to rush its control
packets to disrupt the path selection algorithm.

Furthermore, the SREQ fields indicate the non-mutable
fields of the control packets while the notation F is the
destination node. The notation inv(Ka) indicates the private
key used by the sender node A, and finally, Hash and cert
illustrate respectively the hash and certificate fields.

Moreover, our results also show that entities that are in
the vicinity of valid nodes can easily intercept the message.

role sourceNode (

AB,C,D,F: agent,

Ka, Kb, Kc, Kd, Kf : public_key,
Hf : function, %Hash function
KeySet : (public_key) set,
RCV, SND : channel(dy)

)

played_by A def=

local

State : nat,

REQstatic, REPstatic : text,
SREQ, SREP : protocol_id,

init
State :=0

transition
step1.
State =0 A RCV(start) =I>
State"= 8 ANa' := new()
A Hash_new' := new()
N Hash_new' := Hf(A,B,Oldhash)

A witness(A,B,Na,Na’)
step2.

State":=9 A wrequest(A,B,Na,Na') %weak authentication%
end role

Hashnew, Oldhash, Na, Nd : message %Na, et Nd a enlever peut étre, KHC = Tophash%%

N\ SND(SREQ.REQstatic.Na'.Oldhash.Hashnew'{Na'.SREQ.REQstatic}_inv(Ka))

State = 8 A RCV(SREP.REPstatic.Nd'.Oldhash.Hashnew'{Nd'.SREP.REPstatic'}_inv(Kb).H) A in(Kb, KeySet)A Hashnew'=Hf(A,B,Oldhash)=I>

Figure 7 HLPLS Source node role code

A ----> B: { SREQ, NA, A, id}_inv(Ka),
oldhash, newhash}

B ----> C: { SREQ, NA, A, id}_inv(Ka),
oldhash, newhash}

D----> F: { SREQ, NA, A, id}_inv(Ka),
oldhash, newhash?}

B ----> A: { SREP, NF, F, id}_inv(Kf),
oldhash, newhash?}

Figure 8 The SUAP Protocol (an example with five nodes

This implies that SUAP does not take into account the routing
packet confidentiality. Nonetheless, during communication
between UAVs, for instance, during surveillance mission,
network control packets do not contain sensitive information
that could be used later by the attackers. Their encryption
is thus unnecessary. However, some messages from the ap-
plication layer such as c2 and setting traffics must be kept
confidential by way of encryption schemes. Confidentiality is
mostly achieved by using public or symmetric key encryption
to ensure secure communications.

D. Second HLPSL Specification of SUAP and Its Analysis

To consider wormhole attacks, we created a second HLPSL
specification of SUAP protocol. Accordingly, we created a
chain of collaboration between intruders to develop a parallel

path from the source node A to the destination F. Con-
sequently, since the intruders are not required to perform
cryptographic operations, the request messages may reach
the destination faster than in other authorized network path.
This operation can be executed within only a portion of the
network. The same operation is executed during reply phase.

To model this tunneled attack, we formalized a second
HLPSL specification in which, as depicted in Figure 9, we
added a polymorphic role that we called node J. J can reach
three nodes that are geometrically aligned. It breaches the
normal execution of the protocol to simulate intruder tunnel.

1) A= I:{SREQ,F,Nd'}inv(Ka), Hash,certA

2) A— B:{SREQ,F,Nad'}inv(Ka), Hash,certA

3) I - J:{SREQ,F,Nd'}inv(Ka), Hash, certA

4) J— D :{SREQ,F,Nda'}inv(Ka), Hash, certA

5) D— F:{SREQ,F,Nd'}inv(Ka), Hash, certA, certD

6) F— D :{SREP,A,Nd'}inv(Kf), Hash,certF

7) D— J:{SREP,F,Nd}inv(Kf), Hash,certF,certD

8) J—1I:{SREP,F,Nd'}inv(Kf), Hash,certF,certD

9) I - A:{SREP,F,Nd'}inv(Kf), Hash, certF,certD

O)

Figure 9 Specification of wormhole attacks with SUAP

Specifically, when the intruder I receive a message from
A, it starts the attack by making use of the intruder J (other
polymorphic role of the intruder I) to simulate the intruders

tunnel. J sends then the exact similar packet to node F. When
receiving the packets, F assume that A is its neighbor, it then
sends an identical packet to A on the same path. Node F
then sends the packet to J, which forward it to its intruder
associate I, which can now send the packet to node A. As
a result, the path is then constructed through nodes I and
J. Upon termination, the intruders can decrease the network
performance by selection routing control packets or deleting
some of them.

As described previously, SUAP adds geographical leash
properties to check if a wormhole link exists within the
network. It is because of this additional information added
to the data packets that SUAP is robust against wormhole
attacks. Expressing our mechanism into HLPSL specification
was not worth it since AVISPA does not allow integer oper-
ations. Consequently, we have modeled this property through
Simulink and Stateflow framework. We were able to model
and generate code through embedded coder. A model-and-
code consistency checking through formal verification tool has
been performed.

As shown in Figure 4, simulink code inspector examines
blocks, state diagrams, parameters, and settings in the model
to determine whether they are structurally equivalent to the
operations, operators, and data in the generated code. Then
it generates a traceability documentation with respect to the
EUROCAE ED-12C reference document that can be used for
certification purposes . Regarding simulink Design Verifier: it
identifies model design errors. It detects, blocks that lead to
errors, such as dead logic, integer and fixed-point overflows,
division by zero. Finally, with regarding to model coverage
tool, it gives line coverage information. It indicates which part
of the model is depicted by a given line of code. This is useful
when an error has been identified by the Simulink Design
Verifier to locate which part of the model is faulty.

As we can see in the Figure 11, we explicitly validate our
wormhole attack security solution through model checking by
using simulink and stateflow properties.

Those two figures illustrate that our modeling went well.
Our code and model objectives are joined. The Figure 10
indicates the model verification. It reports that all the block
models and charts diagram are properly diagram and not
faulty. The Figure 11 indicates the code generation report
of our high-level models. Note that this high-level models
represent the different features and behaviors of the SUAP
protocol as depicted in Figure 5.

One important feature of Embedded coder is that if the
high-level models contains design errors in which the formal
verification tools testing fails, it does not generate software
codes and generate errors instead. In our case, all the ver-
ification processed by the set of formal verification tools
mentioned in the Figure 4 went well. It reports that embedded
coder was able to generate a high level code for the input
model requirements. This proves that our design is validated
and respond to our security specific needs. To validate its
effectiveness, the performance evaluation is carried out and
demonstrated in the next section.

V. SUAP performance validation
A. Testbed Architecture

In this section, we will evaluate SUAP performances. It
should be noted that there have been some studies [15]
conducted to measure routing protocols within UAANETS.
Most of them are simulation-based and as such do not take into
account the inherent features of UAS embedded systems and
software*. Consequently, the simulation-based performance
evaluation may not be the best solution in UAANET paradigm
since it hides several important parameters due to the lack
of OS-based implementations. These limitations could induce
significant differences between simulations and real test-bed
results especially in our case in which we have to deploy our
software based routing protocol in real flight outdoor experi-
ments. Accordingly, we use a hybrid experimental system to
combine the low cost of a simulation with the accuracy of a
real protocol stack. We use virtual machine implementations to
deal with the entire complexity of Linux operating system. The
traces used to generate UAVs mobility patterns were extracted
from real traces so that physical related factors could be as
realistic as possible. The system we used to evaluate protocols
is divided in several parts. It includes a set of tools that can fit
to several scenarios: an hypervisor to run the virtual machines,
measurement tools and a framework to allow virtual machines
to communicate through a virtual wireless medium. We chose
to use VirtualBox [30] as a virtualisation tool because it is an
easy-to-use and efficient hypervisor. The virtualized system is
a 12.04 version Ubuntu, working with the 2.6.38 version of
the Linux kernel. An illustration of this system is depicted in
Figure 12.

B. The virtual mesh framework

Our testbed architecture uses a Virtualmesh framework
that has been proposed initially by [31]. It is a framework
which interfaces a Linux-based system with an OMNeT++
[32] simulation. Omnet++ is a powerful network simulator
which simulates several systems and normalized protocols.
Using Virtualmesh could be summed up in the following steps

o A virtual wireless interface is created on the Linux system
we want to include in the simulation;

e The OMNet++ simulation is launched (which has to
include some modules supplied by the framework);

e The framework links the Linux virtual interface to the
simulation. This uses UDP sockets, so we can use either
real or emulated Linux systems.

Once these steps are complete, a new node appears in the
simulation. Any packet sent through the virtual interface is en-
capsulated in a UDP packet and sent to the simulation, which
relays the packets depending on physical simulation param-
eters: nodes transmission range, signal attenuation, emission
power, etc. Conversely, a packet received by an agent in the

4Such as the Linux kernel networking stack, the network protocol imple-
mentation or the real time execution of background traffic.

0 Code Generation Advisor - suapv3

File Edit Run Settings Help
Find: v a5
Code Generation Advisor
E_[3 i Code Generation Advisor _ ! . Traceability =
- % A, Check model configuration settings against code generation « Debugging
% @ Identify unconnected lines, input ports, and output ports MISRA-C:2004 guidelines I+
x 0 Check for optimal bus virtuality Polyspace
% /M Check Data Store Memory blocks for multitasking. strong typ .
% @ ~identify block output signals with continuous sample time a
% O Identify questionable blocks within the specified system
% /M Check the hardware implementation
% A Identify questionable software environment specifications
% O Identify questionable code instrumentation (data I/0)
- @ ~Check for blocks that have constraints on tunable paramete
% @ Identify blocks using one-based indexing
% O Identify lookup table blocks that generate expensive out-of-re
% @ Check output types of logic blocks Run Selected Checks
% @ Check if Read/Write diagnostics are enabled for Data Store bl
% (@ ~Check for partial structure parameter usage with bus signal show report after run
% @ ~Check data store block sample times for modeling errors
% @ ~Check for potential ordering issues involving data store acc
Report
1] | Report: ...\report 428.ntml |Save As...
@ ModelAdvisor Date/Time: 13-Jun-2016 18:51:21
Summary: (@ Pass: 13) Fail: 0 A Warning: 4 [] Not Run: 0
L-Z/J Upgrade Advisor
[
() Performance Advisor al l K0
Help

Figure 10 Design verification check with Embedded coder

Code Generation Report for 'suapv3’

Summary

Code generation for model "suapv3"

Model version
Simulink Coder version
C source code generated on

1.2176
8.7 (R2014b) 08-Sep-2014
Mon Jun 13 18:16:39 2016

Configuration settings at the time of code generation: click to open
Code generation objectives:
Validation result: Not run

Figure 11 Design verification check with Embedded coder

tcpdump
(passive measurment

| A J

Communication through the simulation

Routing protocol

Trafic generator

(active measurment) Virtualmesh

Analysis tools /

Figure 12 Testbed implementation

Communication

Kwith the VMs

Coordination
software

Trace files

simulation is relayed to the virtual interface. An illustration of by Delair-Tech’, from a mission with only three UAVs, we
this system is exposed in Figure 13. extracted control traffic characteristics. As we supposed a

SThis is the French company we work with for the Secure Uav Ad
hoc NETwork (SUANET) research project, more information available on
http://www.delair-tech.com.

Furthermore, in order to test protocols ’performances, we
wanted to generate a realist traffic. Using traces supplied

Omnet++ simulation

@ An IP packet is sent through the virtual interface.

This packet is encapsulated using a framework specific protocol then
sent to the simulation.

The packet is decapsulated, then sent through the simulation within
a MAC frame.

The packet is received by the destination node (in terms of MAC addresses),
then reencapsulated to be sent to the Linux system's virtual interface.

@ The Linux system receives the IP packet.

Figure 13 The virtual mesh functioning

Ad-hoc network

Control packets

Video, control packets

£
/ Relay UAV
I /Relayed packets
v

Ground station

a

|

Obstacle

Figure 14 Our Video Surveillance Scenario

video surveillance mission, we considered that a HD video
would be the main applicative traffic from UAVs to the ground
station. The used codec is supposed to be H264 for being a
popular codec for this kind of video quality. We supposed a
4 Mbits throughput for a full HD image (1920x1080 pixels)
at 30 images per seconds (these characteristics were extracted
from a promotional video from Delair-Tech including a lot
of images taken by in-flight UAVs). H264 being a variable
rate codec, we decided to include an arbitrary value of 50%
variability for each image sent and separated in 1,000 bytes
packet to avoid fragmentation.

In order to evaluate routing protocols, we create an exper-
imental test according to what could be a real UAV swarm
mission. It consists of three drones scanning an area for video
surveillance purposes. We suppose that an obstacle blocks
traffics from two of the drones to the ground station, so the
third one should be responsible for relaying packets. This
scenario is illustrated in Figure 14.

Regarding mobility model, we use a realistic mobility

scenario through real traces supplied by Delair-Tech, corre-
sponding to three UAVs scanning a specific area.

C. Evaluation scenario

In this section, our objective is to assess the security prop-
erties of SUAP that was not verified with AVISPA tool. This
security particularly concerns the authentication of mutable
fields which changed every time an eligible node processes
the packet. For instance, it was not possible with AVISPA to
check the hop count authentication. Furthermore, we also want
to go further in the verification by assessing the control packet
end-to-end delay both with a non-secure routing protocol and
SUAP.

Accordingly, we simulate blackhole attacks within
UAANET environment®. In blackhole attack, an attacker
breach the route discovery process by forging false routing
packets to intercept data packets exchanged between
neighbors. It then drops some or all data packets instead of
forwarding them to the next node. The ultimate objective of
this attack is to degrade the routing performance which often
results in a very low packet delivery ratio. The evaluation
objective is to analyze the behavior of AODV routing
protocol and SUAP routing protocol under this attack. The
analyzed parameters are shown in Table V. We examined
the effects of black hole attack on UDP traffic. Our Linux
implementation of SUAP is designed through MDD approach.
Libgcrypt encryption library [33] is used for digital signature
creation and hash chain generation. For the purpose of
securing non-mutable fields, RSA algorithm [34] was used
while SHA-1 [35] is used for hash chain generation.

During the emulation, we evaluate the following network
parameters:

%Because, the implementation time of wormhole attack and security solution
within OMNET++ was too important and complex, we decided to simulate
only blackhole attack which is already enough to assess authentication and
integrity services.

Table V Generated traffic

Type Source—Destination ~ Paquet size Rate
Tick 1—2,1=3 64 bytes 1.0 packet/s
Georef 2—1,3—1 64 bytes 1.8 packet/s
Command 1—2,1=3 64 bytes 0.034 packet/s
Video 2—1,3—1 4 Mbits/s

1: UAVI; 2: UAV2; 3: UAV3.

o Packet Delivery Ratio (PDR): the ratio of packets that
are successfully delivered to a destination compared to
the total number of packet that has been sent. This gives
us an idea of how successful each protocol is in delivering
data packets.

o End-to-End Delay (EED): the average time taken for a
packet to be transmitted across the network from the
source to the destination.

o Routing overhead: the size of routing packets required
to build routes. This allows us to measure the quantity
of control packets exchanged to maintain connectivity. It
also indicates the total amount of secure overhead added
onto the routing.

o Loss rates: the rate of packets lost when a route cannot be
established. It gives us an idea of how much data packet
is lost during breakages. If the routing protocol is able to
recover rapidly, the loss rate is not significant.

« Connectivity rates: the percentage of connectivity during
the whole communication duration. It indicates the sta-
bility of each routing protocol to keep routes alive.

D. Evaluation Results

In order to evaluate the security properties of our secure
routing protocol, we executed a single and a collaborative
blackhole attacks [36] both against AODV routing protocol
and SUAP routing protocol. We remind that blackhole attack
is a sharp attack executed against ad hoc routing protocols.
In a single blackhole attack, a malicious node forge routing
control packets and advertise for an active route to a specific
destination. It then drops all received data packets without
forwarding them. The attack can be more severe when two
or more blackhole nodes cooperate with each other to create
a DoS and to degrade network performances, this is called
collaborative blackhole attack. Blackhole attack is a less
complex attack than wormhole already introduced in this paper
to justify and design the security mechanisms embedded in the
routing protocol. However, by simulating blackhole attacks we
are able to validate and verify the different additional security
mechanisms introduced in this paper.

Table VI illustrates experiment results over a one-hour test
confront to a single blackhole and a collaborative blackhole
attack.

e Average loss duration: the effect of a single black
hole attack clearly affects the loss burst duration. With
AODV, the route loss lasts approximately 7 seconds with
single black hole and 15 seconds with collaborative black
hole, which indicates that during this period, there is no
communication between the GCS and the UAVs. This

o Packet delivery ratio:

is caused by the omnipresent malicious agents within
the network. From time to time, the attacker leaves the
vicinity of the GCS which allows data packets from the
GCS to be exchanged on the legitimate route. Regarding
SUAP, it behaves correctly as delays narrow 2 seconds
for single blackhole attack and 5 seconds for collabo-
rative attack. Typically each time a packet is sent, it is
authenticated. As a result, nodes do not send data packets
to non-authorized nodes. Consequently, this 2 s and 5
s delay is not caused by the attacks but caused by the
dynamic nature of UAANET environment which breaks
UAVs connectivity uniformly.

o Loss rate: because of the previous metric, we notice

that the loss rate is very important with AODV. All
route discovery and route maintenance packets are not
processed by the intended destination or neighbors nodes.
The attacker which is considered as regular node drops
all data packets received. On the contrary, because SUAP
data packets are authenticated, they do not suffer from
a long disconnection. Hence, the loss rate is acceptable
which merely corresponds to the loss caused by UAVs
mobility.

o Connectivity during unstable states: we extracted con-

nected and disconnected states on the links GCS-UAV2
and UAV2-UAVI1. To prevent short unstable states to
disturb the measurement, two losses that are too close in
time (less than 0.1 s) are merged. We extracted what
we called “unstable states” in which, we took away
states during which connectivity or non-connectivity were
stable for each protocol. We only focus on connectivity or
dis connectivity that happens intermittently. Our objective
is to assess the protocol behavior in those cases. This
unstable state extraction is shown in Figure 15. As we can
see in Table VI, SUAP stands out from AODV making
connectivity up to 90 % and 88 % compared to 9.8 %
and 7.7 %.

SUAP allows to deliver more
data than with AODV. Thanks to the hop count hash
chains, SUAP has fresher routes than AODV, hence
UAVs has more up-to-date routing tables, implying more
number of packets being delivered. With single black
hole attacks, we obtain 95 % of PDR and 88.5 %
for collaborative attacks. This difference lies on the
attacker mobility pattern which shadows connectivity
between two legitimate nodes. Regarding AODV, the
beacon message is not protected which creates non-
existing routes to a malicious node. The routing table is

Table VI Experiment results over a one-hour test with single and collaborative blackhole attacks

Parameter with black hole attack AODV (single) | SUAP (single) | AODV (collaborative) | SUAP (collaborative)
Average loss duration 7.34 s 2.04 s 15s 5s

Loss rate 55 % 2.8 % 94 % 5.8 %
Connectivity during unstable state | 10 % 88 % 6 % 82 %
Packet delivery ratio 40.5 % 95 % 5.68 % 88.5 %
Average end-to-end delay 5.11 ms 35.11 ms 7.3 ms 45 ms
Number of route loss 68 21 129 30
Connectivity percentage 9.8 % 90 % 7.7 % 88.68 %
Routing overhead (percentage 0.6 % L1 % 0.8 % L5 %
compared to all traffic)

Security overhead

(compa};ed to routing overhead) 48 % 4%

not maintained updated. Thus, most of the data packets
are lost (more than 50 % of packets are lost in both single
and collaborative attack simulations).

Average end-to-end delay: the blackhole attack does
not have an effect on the end-to-end delay because
malicious nodes immediately drop data packets. When a
packet is sent through the blackhole nodes, it will never
reach the destination. So, there is no question of delay.
Nonetheless, the important delay noticed with SUAP
is explained by the time required to add the signature
and hash each hop. A RSA signature verification last
approximately 5 ms, the signing 10 ms and the decryption
about 10 ms [37].

Number of route loss: we noticed more stability with
SUAP when facing blackhole attacks. In SUAP, the route
is lost because of the mobility. From time to time, UAVs
does not have a direct communication. In case of AODV,
even when there is UAV to UAV communication, the at-
tacker was able to disrupt the route by publishing a close
neighbor thanks to non-authenticated hello messages.
Connectivity percentages: we noticed that we get more
connectivity rates with SUAP than in AODV. This is
because each control packets with AODV is dropped by
the attacker(s) whereas in SUAP, if the hello message is
not properly authenticated, the node is not included in
routing table.

Overhead: the blackhole does not affect AODV be-
cause when packet is dropped, the sender node does
not have a feedback. An ACK is not required during
route discovery. As a result, it will retry sending a route
request RREQ until a certain threshold (16 in AODV)
and approximately 60 bytes each time. The total amount
of packet overhead slightly increases when the number
of attackers increases because the disconnection rate is
increased which induces more route maintenance packets.
Regarding SUAP, it generates a significant amount of
control packets compared to AODV. SUAP uses both
digital signatures and hash chains to provide security.
The extension header is about 64 bytes on top of its non-
secure routing protocol parts. As a result, the overhead
size per control message is higher in SUAP than in
AODV. This extension header also increases depending
upon the number of nodes. Compared to AODV, SUAP

transmits less routing messages in number but more in

S1Z¢€.
Unstable states, during which the connectivity —
depends on the protocol.
o)
Protocol A
—>» Time
Protocol B
Time
I I I ”

Stable states, during which, regardeless of the
used protocol, connectivity stays the same.

Figure 15 “Unstable states” extracted from the measurement

VI. Conclusion and future research

In this paper, we have presented an extended approach to
security analysis and validation of a new secure UAANET
routing protocol (SUAP). SUAP is a reactive routing protocol
that uses digital signatures for authentication, hash chains for
data integrity and geographical leashes to counter blackhole
and wormhole attacks. In order to verify its security prop-
erties, we have specified and verified its security properties
through AVISPA tool. We found that message authentication
is properly insured as OFMC back-end states that it is safe. We
also discovered that SUAP is vulnerable against confidentiality
attacks but these kinds of attacks are not critical for UAANETSs
due to the real-time characteristics of routing control packets.
Furthermore, to complete our security property validation,
we carried out a model driven development of our security
requirements with Simulink and Stateflow tools in which we
were able to check the model and code consistency through
a set of integrated formal verification tools included within
Embedded Coder. In addition, to evaluate the effectiveness
of SUAP, both security property validation and performance
evaluation have been carried out with a hybrid testbed associ-
ating a virtual mesh emulation and OMNET++ simulations.
We found that compared to AODV, SUAP improves the
UAANETSs quality of service in many aspects.

In regards to our short-term perspectives, our next long-
run project would be to deploy our secure routing protocol

into real world outdoor experiments with three UAVs and
one GCS. This last part of our project will allow us to validate
and compare the different security mechanisms that have been
developed so far. Furthermore, even though the hash function
is protected by a digital signature, we would also like to add a
mechanism is which we periodically change the hash function
used throughout the mission to avoid reverse engineering
attacks. Such a mechanism adds a security fence when the
signature is somehow hacked.

(1]

(2]

[3]

(4]
(3]

(6]

(7]

(8]
(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

References

1. Bekmezci, O. K. Sahingoz, and $. Temel, “Flying ad-hoc networks
(fanets): A survey,” Ad Hoc Networks, vol. 11, no. 3, pp. 1254-1270,
2013.

R. Maulik and N. Chaki, “A study on wormhole attacks in manet,”
International Journal of Computer Information Systems and Industrial
Management Applications ISSN, pp. 2150-7988, 2011.

M. G. Zapata, “Secure ad hoc on-demand distance vector routing,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 6,
no. 3, pp. 106-107, 2002.

E. Coder, “Generate ¢ and ct++ code optimized for embedded systems,
2014 the mathworks.”

A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuéllar, P. H. Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani
et al., “The avispa tool for the automated validation of internet security
protocols and applications,” in Computer Aided Verification. Springer,
2005, pp. 281-285.

J.-A. Maxa, M. Slim Ben Mahmoud, and N. Larrieu, “Secure routing
protocol design for uav ad hoc networks,” in Digital Avionics Systems
Conference (DASC), 2015 IEEE/AIAA 34th. 1EEE, 2015, pp. 4A5-1.
J.-A. Maxa, G. Roudiere, and N. Larrieu, “Emulation-based performance
evaluation of routing protocols for vaanets,” in Communication Tech-
nologies for Vehicles. Springer, 2015, pp. 227-240.

C. Perkins, E. Belding-Royer, S. Das et al,, “Rfc 3561-ad hoc on-
demand distance vector (aodv) routing,” Internet RFCs, pp. 1-38, 2003.
E. Pastor, J. Lopez, and P. Royo, “Uav payload and mission control
hardware/software architecture,” IEEE Aerospace and Electronic Sys-
tems Magazine, vol. 22, no. 6, pp. 3-8, 2007.

J. Li, Y. Zhou, and L. Lamont, “Communication architectures and proto-
cols for networking unmanned aerial vehicles,” in Globecom Workshops
(GC Wkshps), 2013 IEEE. 1EEE, 2013, pp. 1415-1420.

K. Daniel, B. Dusza, A. Lewandowski, and C. Wietfeld, “Airshield:
A system-of-systems muav remote sensing architecture for disaster
response,” in Systems Conference, 2009 3rd Annual IEEE. 1EEE, 2009,
pp. 196-200.

P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and
L. Viennot, “Optimized link state routing protocol for ad hoc networks,”
in Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for
the 21st Century. Proceedings. IEEE International. 1EEE, 2001, pp.
62-68.

D. B. Johnson, D. A. Maltz, Y.-C. Hu, and J. Jetcheva, “The dynamic
source routing (dsr) protocol for mobile ad hoc networks,” IETF Draft,
draft-ietf-manet-dsr-009. txt, 2003.

A. Maghsoudlou, M. St-Hilaire, and T. Kunz, “A survey on geographic
routing protocols for mobile ad hoc networks,” Carleton University,
Systems and Computer Engineering, Technical Report SCE-11-03,2011.
M. Hyland, B. E. Mullins, R. O. Baldwin, and M. A. Temple,
“Simulation-based performance evaluation of mobile ad hoc routing
protocols in a swarm of unmanned aerial vehicles,” in Advanced
Information Networking and Applications Workshops, 2007, AINAW07.
21st International Conference on, vol. 2. 1EEE, 2007, pp. 249-256.
J.-A. Maxa, M.-S. B. Mahmoud, and N. Larrieu, “Joint model-driven
design and real experiment-based validation for a secure uav ad hoc net-
work routing protocol,” in ICNS 2016, 2016 Integrated Communications
Navigation and Surveillance Conference, 2016.

T. Bhattasali, R. Chaki, and S. Sanyal, “Sleep deprivation attack
detection in wireless sensor network,” arXiv preprint arXiv:1203.0231,
2012.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

(23]

[26]

[27]

(28]

[29]

[30]
[31]

[32]

[33]
[34]
[35]

[36]

[37]

K. Sanzgiri, D. LaFlamme, B. Dahill, B. N. Levine, C. Shields, and
E. M. Belding-Royer, “Authenticated routing for ad hoc networks,”
Selected Areas in Communications, IEEE Journal on, vol. 23, no. 3,
pp. 598-610, 2005.

Q. Li, M. Zhao, J. Walker, Y.-C. Hu, A. Perrig, and W. Trappe, “Sear:
a secure efficient ad hoc on demand routing protocol for wireless
networks,” Security and Communication Networks, vol. 2, no. 4, pp.
325-340, 2009.

M. Mohammadizadeh, A. Movaghar, and S. M. Safi, “Seaodv: secure
efficient aodv routing protocol for manets networks,” in Proceedings of
the 2nd International Conference on Interaction Sciences: Information
Technology, Culture and Human. ACM, 2009, pp. 940-944.

J. Cordasco and S. Wetzel, “An attacker model for manet routing
security,” in Proceedings of the second ACM conference on Wireless
network security. ACM, 2009, pp. 87-94.

Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet leashes: a defense
against wormhole attacks in wireless networks,” in INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, vol. 3. IEEE, 2003, pp. 1976—1986.
T. Polk, L. Chen, S. Turner, and P. Hoffman, “Security considerations
for the sha-0 and sha-1 message-digest algorithms,” Tech. Rep., 2011.
N. Larrieu and A. Varet, “Methodology for rapid prototyping avionic
software,” Rapid Prototyping of Software for Avionics Systems, pp. 23—
60.

C. M. Holloway, “Towards understanding the do-178c/ed-12¢ assurance
case,” in [ET Conference Proceedings. The Institution of Engineering
& Technology, 2012.

L. Rierson, Developing safety-critical software: a practical guide for
aviation software and DO-178C compliance. CRC Press, 2013.

G. Gigante and D. Pascarella, “Formal methods in avionic software
certification: the do-178c perspective,” in International Symposium On
Leveraging Applications of Formal Methods, Verification and Valida-
tion. Springer, 2012, pp. 205-215.

C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (aodv) routing,” Tech. Rep., 2003.

I. Cervesato, “The dolev-yao intruder is the most powerful attacker,” in
16th Annual Symposium on Logic in Computer Science—LICS, vol. 1.
Citeseer, 2001.

V. Oracle, “Virtualbox,” User Manual-2013, 2015.

R. Gantenbein, T. Braun, and T. Staub, “Virtualmesh: An emulation
framework for wireless mesh networks in omnet+,” in in The 2nd
International Workshop on OMNeT++ (OMNeT++ 2009) held in con-
Juction with the 2nd International Conference on Simulation Tools and
Techniques. ICST (Institute for Computer Sciences, Sociallnformatics
and Telecommunications Engineering), March 6-, 2010.

A. Varga et al., “The omnet++ discrete event simulation system,” in
Proceedings of the European simulation multiconference (ESM’2001),
vol. 9, no. S 185. sn, 2001, p. 65.

gnu, Cryptography implementation C, 2014 (accessed February 3,
2014). [Online]. Available: https://www.gnu.org/software/libgcrypt/

J. Jonsson and B. Kaliski, “Public-key cryptography standards (pkcs)#
1: Rsa cryptography specifications version 2.1,” 2003.

X. Wang, A. C. Yao, and F. Yao, “Cryptanalysis on sha-1,” in
Cryptographic Hash Workshop hosted by NIST, 2005.

F.-H. Tseng, L.-D. Chou, and H.-C. Chao, “A survey of black hole
attacks in wireless mobile ad hoc networks,” Human-centric Computing
and Information Sciences, vol. 1, no. 1, pp. 1-16, 2011.

M. Stam and A. K. Lenstra, “Speeding up xtr,” in Advances in
Cryptology—ASIACRYPT 2001. Springer, 2001, pp. 125-143.

35th Digital Avionics Systems Conference
September 25-29, 2016

