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Abstract In global navigation satellite system 

(GNSS) receivers, the first signal processing stage 

is the acquisition, which consists of detecting the 

received GNSS signals and determining the 

associated code delay and Doppler frequency by 

means of correlations with a code and a carrier 

replicas. These codes, as part of the GNSS signal, 

were chosen to have very good correlation 

properties without considering the effect of a 

potential received Doppler frequency. In the 

literature, it is often admitted that the maximum 

GPS L1 C/A code cross-correlation is about 

−24 dB. We show that this maximum can be as 

high as −19.2 dB when considering a Doppler 

frequency in a typical range of [−5, 5] kHz. We 

also show the positive impact of the coherent 

integration time on the cross-correlation, and that 

even a satellite with Doppler outside the frequency 

search space of a receiver impacts the cross-

correlation. In addition, the expression of the 

correlation is often provided in the continuous 

time domain while its implementation is typically 

made in the discrete domain. It is then legitimate 

to ask the validity of this approximation. 

Therefore, the purpose of this research is twofold. 

First, we discuss typical approximations and 

evaluate their regions of validity. Second, we 

provide characteristic values such as maximums 

and quantiles of the auto and cross-correlation of 

the GPS L1 C/A and Galileo E1 OS codes in 

presence of Doppler, for frequency ranges up to 50 

kHz, and for different integration times. 
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Acquisition · Correlation · Cross ambiguity 
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Introduction 

The first stage of a global navigation satellite 

system (GNSS) receiver is acquisition, which 

consists in determining the Doppler frequency and 

the code delay of the received GNSS signals (Van 

Diggelen 2009, pp 127-224). As shown in Fig. 1, 

this is done by multiplying the received signal 

with local replicas of the carrier and of the code 

and integrating the result during a certain time, 

called coherent integration time and denoted   . 

The output value then provides the degree of 

similarity between the replicas and the received 

signal. Since the receiver does not know a priori 

the Doppler frequency and the code delay, the 

different possibilities have to be tested. The output 

of the acquisition, which is a two-dimensional 

function of the code delay and Doppler frequency, 

is called the cross ambiguity function, or CAF 

(Ipatov 2005, pp. 7-76; Motella et al. 2010). An 

illustration of a CAF is given in Fig. 1, with a GPS 

L1 C/A signal where the incoming signal has a 

Doppler frequency of 2600 Hz and a code delay of 

766 chips. The evaluation of the CAF can be 

performed sequentially by computing one point 

after the other, or in parallel using methods based 

on fast Fourier transforms (FFT) (Akopian 2005; 

Foucras et al. 2012; Leclère et al. 2013). 
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Fig. 1 Principle of the acquisition (top), 

Illustration of the cross ambiguity function for a 

GPS L1 C/A signal (bottom) 
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Quite often in the literature, approximate 

models are used for the expression of the CAF. 

However, the validity of such approximations has 

not been completely justified. For example, the 

model provided in Spilker (1996, pp. 57-120), and 

Holmes (2007, pp. 349-472) considers that the 

result of the codes correlation is independent from 

the carrier Doppler frequency, which is actually 

not the case. Indeed, the real auto and cross-

correlations of the GNSS codes can be affected by 

a Doppler frequency. For example, Spilker (1996, 

pp. 57-120) and Kaplan et al. (2005, pp. 113-152) 

provide the probability that the cross-correlation 

of C/A codes reaches a certain level, but only for 

Doppler frequencies multiples of 1 kHz. However, 

as shown later, these frequencies do not 

necessarily correspond to the worst cases, because 

they depend on the coherent integration time used. 

Some papers already discussed the impact of the 

cross-correlation with a Doppler on the carrier-to-

noise ratio or on the tracking discriminator error 

(Raghavan et al. 1999,Van Dierendonck et al. 

2002, Balaei and Akos 2011, Lestarquit and 

Nouvel 2012, Margaria et al. 2012). Other papers 

discussed the performance of several families of 

GNSS codes, looking at the auto and cross-

correlations affected by the carrier Doppler and by 

the data bit transitions (Soualle et al. 2005, 

Wallner et al. 2007, Soualle 2009, Qaisar and 

Dempster 2010). However, the impact of the 

Doppler frequency is essentially studied only for 

several frequency candidates or for a small 

frequency range. Qaisar and Dempster (2007) also 

presents some results regarding the impact of the 

sampling frequency and of the Doppler on the 

code correlation, but only for some specific 

values. 

Therefore, what is missing in the literature is a 

more exhaustive study regarding the impact of the 

Doppler frequency for an extensive set of values 

and the coherent integration time used. Here, we 

give the auto and cross-correlation results for 

Doppler frequencies in different frequency ranges 

corresponding to specific GNSS applications, and 

the impact of the coherent integration time is also 

discussed. 

The first section presents the signals definitions 

and the assumptions used. The second section 

deals with the study of the usual approximations 

on the CAF. The main objective is to provide the 

associated region of validity of the 

approximations. The results regarding the impact 

of the Doppler frequency in the CAF are presented 

in the third section, for the GPS L1 C/A and 

Galileo E1 OS codes. This allows us to compare 

the auto and cross-correlation properties for each 

signal.  Finally, conclusions are provided. 

 

Signals definitions 

The GPS L1 C/A signal transmitted by a satellite 

  can be defined as 

  
                                (1) 

where   is the time,    is the amplitude of the 

signal,    is the pseudo random noise (PRN) code, 

   is the data, and     is the carrier frequency 

used by the satellite (Navstar 2014). The GPS L1 

C/A codes contain 1023 chips and are generated 

with a chipping rate of 1.023 MHz, the code 

length is thus 1 ms. 

At the receiver antenna, the signal is the sum of 

  signals coming from   satellites, where each 

signal is the transmitted signal that has been 

respectively attenuated, delayed and affected by 

the Doppler effect. After the antenna, there is the 

front-end where the signal is amplified, filtered, 

down-converted to baseband or to an intermediate 

frequency    , and sampled at a frequency   . At 

the output of the front-end, considering a complex 

sampling, the signal received can be defined as 

  
          ∑                       

 

   

 

                                    (  (        )      ))  
       (2) 

where    is the sampling period (        ),    is 

the delay of the code,      is the Doppler 

frequency,    is the carrier phase, and   is a white 

Gaussian noise of zero mean coming from the 

thermal noise. Note that this model does not take 

into account some effects, such as the Doppler 

effect on the code, since it can be neglected 

regarding the small coherent integration times 

considered later, or the impact of the oscillator on 

the sampling frequency (Leclère 2014). Note also 

that we consider a complex sampling because with 

a real sampling there would be a term with the 

sum of frequencies after the mixing with the local 

carrier that would impact the correlation result 
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(Motella et al. 2010). Since we want to investigate 

specifically the impact of the Doppler frequency 

and of the coherent integration time, this double 

frequency term is not wanted. However, the results 

considering a real or complex sampling would be 

relatively similar. 

In the same way, considering the Galileo E1 OS 

signal which has a data component and a data free 

component called pilot, the signal after the front-

end can be written as 

  
           

∑(  (
                                

                                 
)

 

   

 

              (  (        )      ))         (3) 

where    is the secondary code on the pilot 

component, and    and    denote the data and 

pilot subcarriers due to CBOC modulation as 

defined in European Union (2015). The Galileo E1 

OS codes contain 4092 chips and are generated 

with a chipping rate of 1.023 MHz, the codes 

length is thus 4 ms. 

In this study, it is assumed that the navigation 

data   and secondary code    are constant during 

the integration. See Wallner et al. (2007) and 

Soualle (2009) for some results considering a bit 

sign transition during the integration. Also, the 

filtering and quantization performed by the front-

end are not taken into account. See Curran et al. 

(2010) for more details about that topic. Finally, 

the noise term is not considered since the focus of 

this research is on the correlation properties. 

 

Study of usual approximations 

In this section, we perform a study on two typical 

approximations, the first uses  a continuous time 

domain model although actual processing is 

performed in discrete time domain, and the second 

models the CAF assuming that the code and 

Doppler are independent. For simplicity, we 

develop the results for the GPS L1 C/A signal, i.e. 

     
    

, since they can be easily extended to the 

Galileo E1 OS signal and other GNSS signals. 

 

Approximation continuous/discrete 

In the literature, e.g. Kaplan et al. (2005, pp. 113-

152) and Holmes (2007, pp. 349-472), the output 

of the CAF is often modeled by the following 

continuous time version: 

    
 ( ̂  ̂ ) (4) 

 |∫            ̂       ̂    
  

 

| 

 |  ∫             
  

 

  ̂   (  (      ̂ )    )  | 

where the superscript   stands for continuous,   

denotes the L1 C/A code number of the code 

received,   denotes the L1 C/A code number of the 

code replica,  ̂ is the local estimate of the code 

delay, and  ̂  is the local estimate of the carrier 

frequency. This expression is an approximation of 

what is really performed in a GNSS receiver since 

the signals are actually discrete. Thus, the actual 

output of the CAF is 

    
 ( ̂  ̂ ) (5) 

 |∑                ̂       ̂    

   

   

| 

 |  ∑                 

   

   

  ̂   (  (      ̂ )      )| 

where the superscript   stands for discrete, and    

is the number of samples during the coherent 

integration time, i.e.       . Remember that (5) 

is still an approximation, since it does not take into 

account the filtering of the front-end and the other 

factors mentioned in the previous section. 

Therefore, the question is “are the results 

obtained with (4) close to those obtained with 

(5) ?”, which is intuitively believed to be the case. 

To check this, both equations have been evaluated 

for all the GPS L1 C/A codes, with a step of 10 Hz 

for  ̂  over a range of 50 kHz and a step of 1 chip 

for  ̂, and considering one sample per chip. The 

details of how to compute exactly the integral of 

(4) are given in the Appendix. 

Fig. 2 shows the difference between     
 ( ̂  ̂ ) 

and     
 ( ̂  ̂ ) as function of the code delay and 

Doppler frequency, and shows the distribution of 

this difference. It can be seen that the higher the 

Doppler frequency, the higher is the difference 
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between the two results, but this difference is 

clearly negligible since the maximum difference is 

0.0342 dB for a Doppler of 50 kHz. Therefore, we 

can conclude that using (4) as approximation of 

(5) is a valid hypothesis. 

 

 
Fig. 2 Difference between the CAF in the discrete 

and continuous cases, i.e.     
 ( ̂  ̂ )      

 ( ̂  ̂ ), 

assuming receiving and generating L1 C/A code 1 

 

Approximation on cross ambiguity function 

In the literature, e.g. Holmes (2007, pp. 349-472), 

the output of the CAF is often approximated as 

    
 ̅̅ ̅̅ ( ̂   ̂)  |            (     )| (6) 

where        ̂ is the difference of code 

delays,          ̂  is the difference of carrier 

frequencies, and      is the cross-correlation 

between the codes   and  , defined as 

         ∫                
  

 
 (7) 

If    ,      is the autocorrelation of the code  . 

The approximation given by (6) is the result of the 

following operation: 

    
 ̅̅ ̅̅ ( ̂  ̂ ) (8) 

 |∫             
  

 

  ̂   ∫   (  (      ̂ )    )  
  

 

| 

which is clearly not equal to (4). In Holmes (2007, 

pp. 349-472), it is mentioned that      in (6) has 

been factored out of the integral as an 

approximation assuming that    is small compared 

to the chip rate. 

 

 

 

 
Fig. 3 Comparison of the CAF of L1 C/A code 1 

computed using (4) and (6) when      chip 

(top), and      Hz (bottom) 

 

Therefore, the question is “when this 

approximation is valid, i.e. when the results 

obtained with (6) are equal or very close to those 

obtained with (4) ?”. First, it can be easily checked 

that if     , i.e.  ̂    , or if     , i.e. 

 ̂      , equation (6) is identical to (4), i.e. 

    
 ̅̅ ̅̅ (    ̂ )      

 (    ̂ ) (9) 



5 

 

    
 ̅̅ ̅̅ ( ̂     )      

 ( ̂     ) (10) 

This is illustrated by Fig. 3with      ms. As 

a note, the CAF is symmetric with respect to 

    , but not to   . Note that the model used 

does not consider any filtering; in practice the 

bandwidth is limited and the correlation peak is 

rounded. 
 

 
Fig. 4 Comparison of the CAF of L1 C/A code 1 

computed using (4) and (6) when |  |    chip. 

       chip (top),        chip (middle), 

       chip (bottom) 
 

 
Fig. 5 Comparison of the CAF of L1 C/A code 1 

computed using (4) and (6) when |  |    chip. 

       chips (top),        chips (middle), 

       chips (bottom) 

 

Then, as shown in Fig. 4, if |  |    chip, the 

approximation is very close to the exact value 

when      kHz, i.e. for the main lobe of the 

sinc. Outside the main lobe, the approximation 

differs from the exact value. The higher |  |, the 

higher is the difference. However, when |  |  

  chip, there are two cases as shown in Fig. 5 and 

Fig. 6. If the code autocorrelation without Doppler 

is very low, i.e. near −60 dB, a small error in the 

Doppler such as dozens of hertz will imply few dB 

of difference rapidly. However, if the code 

autocorrelation without Doppler is not too low, i.e. 

near −24 dB, the difference will be seen for a 

higher error in the Doppler, from hundreds of 

hertz, i.e. for frequencies within the main lobe. 

Finally, regarding the cross-correlation between 

two different codes, shown in Fig. 7, this case is 

similar to the case of the autocorrelation with 

|  |    chip shown in Fig. 5. 
 

 
Fig. 6 Comparison of the CAF of L1 C/A code 1 

computed using (4) and (6) when |  |    Hz. 

      Hz (top),        Hz (middle), 

       Hz (bottom) 
  

 
Fig. 7 Comparison of the CAF of L1 C/A code 1/ 

L1 C/A code 2 computed using (4) and (6). 

       chips (top),        chips (middle), 

       chips (bottom) 
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In order to have a global representation of the 

previous discussions, Fig. 8 shows in blue the 

areas where the difference between the exact 

computation and the approximation is lower than 

1 dB. In conclusion, it has been verified that the 

continuous-time expression of the CAF is a very 

good approximation of the discrete-time one. 

Furthermore, it has been observed that the CAF 

approximation that considers the code and 

Doppler independently given by (6) is: 

 Exact for a right estimation of the code delay 

or of the Doppler frequency (Fig. 3). 

 Quite exact for a code delay less than 1 chip 

and a Doppler frequency less than 1 kHz, the 

inverse of the code period (Fig. 4), 

corresponding to the main peak. 

 Quite exact for a code delay leading to a not 

too low correlation value such as −24 dB and a 

Doppler frequency less than about 200 Hz (Fig. 

5 top and Fig. 6). 

 Not valid for a code delay leading to not too 

low correlation value such as −24 dB and a 

Doppler frequency higher than about 200 Hz 

(Fig. 5 top and Fig. 6) 

 Not valid for a code delay leading to a very 

low correlation value such as −60 dB as soon as 

there is a very small Doppler frequency (Fig. 5 

middle and bottom and Fig. 6). 

 
Fig. 8 Difference between exact computation and 

approximation of the CAF for the L1 C/A code 1. 

Blue dots correspond to a not null difference 

smaller than 1 dB. 

 

Evaluation of the correlation properties 

In the previous section, it has been shown that the 

usual approximation that considers separately the 

code correlation and the sinc function is not 

representative of reality. Therefore, it is interesting 

to evaluate the level of the CAF for various 

Doppler frequencies. In this section, we provide 

statistics related to the values of the CAF for the 

auto and cross-correlation for the GPS L1 C/A and 

Galileo E1 OS codes; in particular, we give 

maximum values, distribution, i.e. probability of 

occurrence, and cumulative distribution through 

some quantiles. 

 

Simulation scheme 

The presented results come from exhaustive 

simulation runs for all the codes or couples of 

codes, for all code delays multiple of 1 chip, and 

for Doppler frequencies within different ranges 

using a step of 10 Hz. In order to speed up the 

computation time, the CAFs are computed 

following 

    
 ( ̂ )  
 

   
|    (   (   

     ̂    )        )| (11) 

which is similar to (5) but provides the result for 

all code delays  ̂ with a step of one sample Borre 

et al. (2007 pp. 75-86). The corresponding 

simulation scheme is presented in Fig. 9. 

 

IFFTFFT

FFT*

cl

–j2π fd nTse

ck Sk,l ( fd )
ǀ · ǀ

N

N N

 
Fig. 9 Simulation scheme 

 

Autocorrelation 

In this section, we present statistics related to the 

values of the CAF for the autocorrelation for the 

GPS L1 C/A and Galileo E1 OS codes. 

 

GPS L1 C/A signal 

Without any Doppler and except for the correct 

alignment, the autocorrelation of a C/A code can 

take only three possible values: 1/1023, 63/1023 

and −65/1023, which gives in log scale −60.20 dB, 

−24.21 dB and −23.94 dB, respectively. Now, if 

we include a Doppler frequency, the correlation 

characteristics change drastically and the 

maximum autocorrelation value can be up to 
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−19.18 dB, as shown in Fig. 10. In this figure, it 

can be seen that the maxima are different 

according to the L1 C/A code, and that they are 

not related to a specific frequency. Note that by 

Doppler frequency we mean Doppler frequency 

residual, i.e. the difference between the received 

and the local carrier frequencies. It is important to 

stress that it is the absolute value of the difference 

between these two frequencies that matters, not 

the frequencies themselves, as shown in the 

Appendix. Therefore, receiving a Doppler 

frequency of 1000 Hz and generating a local 

frequency of 2500 Hz (difference of 1500 Hz) 

gives exactly the same correlation result as with 

frequencies of 2500 and 1000 Hz respectively or 

with frequencies of 1500 and 3000 Hz 

respectively. This is why Fig. 10 shows only the 

positive frequencies on the x-axis. 

 

 
Fig. 10 Maximum of the CAF excluding the 

correct alignment as a function of the Doppler 

frequency, for an integration time of 1 ms, i.e. one 

code period. Each color represents a different L1 

C/A code. The horizontal blue dotted line 

represents the CAF for a 0 Hz Doppler, i.e. 

−23.94 dB. The horizontal magenta line represents 

the maximum CAF for a not null Doppler, i.e. -

19.18 dB. 

 

For a more complete evaluation, a statistical 

description is provided with different 

characteristic quantiles. For this, in addition to the 

0 Hz Doppler case, four frequency bands 

corresponding to different GNSS users are 

defined: 

 [−500; 500] Hz, which corresponds to a 

typical frequency search space for an 

assisted receiver (Van Diggelen 2009, pp. 

31-60), 

 [−5; 5] kHz, for a terrestrial receiver (Tsui, 

2005 pp. 30-50), 

 [−10; 10] kHz, for a receiver on a plane 

(Tsui 2005 pp. 30-50), 

 [−50; 50] kHz, for a spaceborne receiver in 

low earth orbit (Dion et al. 2010). 

Fig. 11 provides the statistical description of 

the CAF of GPS L1 C/A codes when considering 

these different Doppler frequency ranges. The 

black bar represents the 0 Hz Doppler case, and 

the horizontal blue dotted line represents the 0 Hz 

Doppler worst case, i.e. −23.94 dB. The 

interpretation of Fig. 11 is that for a Doppler 

frequency in the band [−5; 5] kHz (3
rd

 bar in the 

histogram), 90 % of the CAF values are below –

26.18 dB, i.e. there is only one point of the CAF 

over 10 that has a higher value. In the same way, 

still for the band [−5; 5] kHz, looking at the 

quantile 99.9 % only one point over 1000 has a 

value higher than −21.5 dB; and looking at the 

quantile 100 % the maximum CAF value is 

−19.18 dB. As it can be observed, for all the 

frequency bands, there is at least 1 % of the points 

(99%) of the CAF that are above the 0 Hz Doppler 

worst case of −23.94 dB. 

 
Fig. 11 Level of CAF values excluding the correct 

alignment according to the selected quantiles and 

for different frequency bands, considering the 32 

L1 C/A codes and an integration time of 1 ms 

 

The same study has been done considering 

longer coherent integration times. In Fig. 12, we 

report the maximum of the CAF in the band [−5; 

5] kHz for different coherent integration times (1, 

2, 4, 10 and 20 ms). It can be seen that with longer 
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integration times, the values on multiples of 1 kHz 

are the same while the values on not multiples of 

1 kHz decrease. Therefore, when the coherent 

integration time is longer than the code period, the 

CAF maximums are on multiples of 1 kHz. 

 
Fig. 12 Maximum of the CAF excluding the 

correct alignment of the GPS L1 C/A code 1 as a 

function of the Doppler frequency, for integration 

times of 1, 2, 4, 10 and 20 ms, respectively 

 

This can be intuitively explained looking at the 

spectrum of L1 C/A codes. Since the C/A codes 

are periodic with a period of 1 ms, their spectrum 

is discrete and the spectral lines are spaced by 

1 kHz (Spilker 1996, pp. 57-120), as illustrated in 

Fig. 13 (left) which zooms around 0 Hz, and 

where the height of each line depends on the code. 

The product of two L1 C/A codes is another L1 

C/A code of the same period (Spilker 1996, pp. 

57-120) therefore its spectrum is similar. A C/A 

code with a carrier Doppler has a spectrum almost 

similar to the one of a C/A code except that it is 

shifted, as illustrated Fig. 13 (right). Therefore, the 

product of a received C/A code with a carrier 

Doppler by a local C/A code will have a spectrum 

as shown in Fig. 13 (bottom). Such signal is then 

integrated; the transfer function of the integration 

is a sinc function as illustrated in Fig. 13 (bottom). 

Therefore, considering first an integration time of 

1 ms, if the incoming signal has no Doppler, we 

have the spectrum shown in Fig. 14 (top left), 

where it can be seen that only the line at 0 Hz is 

kept after the integration. If the incoming signal 

has a Doppler of 500 Hz, we have the spectrum 

shown in Fig. 14 (middle left), and all the 

spectrum lines will be attenuated but conserved. If 

the incoming signal has a Doppler of 1000 Hz, we 

have the spectrum shown inFig. 14 (bottom left), 

and again only the line at 0 Hz is kept after the 

integration. 

Now, if we consider an integration time of 

4 ms, the width of the sinc in the transfer function 

will be four times smaller. If the incoming signal 

has a Doppler that is a multiple of 1 kHz, see Fig. 

14 (top and bottom right), only the line at 0 Hz is 

kept after the integration, which gives exactly the 

same result as with an integration of 1 ms. This 

explains why the correlation value is the same for 

Doppler that are multiple of 1 kHz whatever the 

integration time is. But now, with a Doppler that is 

a multiple of        
 

    
, all the spectrum lines 

will be cancelled as shown in Fig. 14 (middle 

right). This explains the nulls that appear in Fig. 

12 when the integration time is increased. Note 

that these nulls can also be found analytically 

using (17), given in the Appendix. Finally, for 

other Doppler shifts all the spectrum lines will be 

attenuated and conserved, but the attenuation is 

much more compared to an integration time of 

1 ms, which explains the lower CAF values. 

 

f (kHz)
1 20

1 20
T T

f (kHz)

f (kHz)
1 20

 
Fig. 13 Spectrum of a C/A code without carrier 

Doppler (left), spectrum of a C/A code with a 

carrier Doppler (right), transfer function of an 

integration of duration   ms (bottom) 
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Fig. 14 Spectrum of a C/A code shifted by a 

Doppler frequency of 0 Hz (top), 500 Hz (middle) 

and 1 kHz (bottom), and transfer function using 

1 ms of integration time (left) and using 4 ms of 

integration time (right) 

 

These observations are completed with the 

distributions of the CAF presented in Fig. 15. For 

example, with an integration time of 1 ms, 90 % of 

the values are below −26.35 dB, as already shown 

in Fig. 11, whereas with an integration time of 

20 ms, 90 % of the values are below −44.56 dB 

(more than 18 dB). In conclusion, the use of a 

coherent integration time longer than the code 

period is much better in terms of cross-correlation 

protection. 

 

 
Fig. 15 Cumulative distribution of the CAF 

excluding the correct alignment of L1 C/A code 1, 

for different coherent integration times, and a 

search space of [–10; 10] kHz 
 

 

 

Galileo E1 OS 

The same study is now presented for the Galileo 

E1 OS signal. In this case, only the first 3 Doppler 

frequency ranges are considered. Indeed, because 

of the higher number of codes and number of code 

delays, to be exhaustive the quantiles should be 

computed on several tens of billions of points for a 

Doppler range of [−50; 50] kHz, which is not 

possible due to Matlab memory limits (using 

Matlab R2014a version). 

Unlike GPS L1 C/A codes, for Galileo E1 OS 

codes, when not considering Doppler frequency, 

the number of possible autocorrelation or cross-

correlation values is not limited to 4 values. 

However, thanks to their longer lengths, 4 ms 

instead of 1 ms, the maximum autocorrelation 

value excluding the correct alignment of Galileo 

E1 codes is −25.39 dB without Doppler, which is 

lower than the maximum of –23.94 dB with the 

GPS L1 C/A codes. Nonetheless, with a Doppler 

up to 10 kHz, the maximum can be up to 

−23.45 dB. 

Fig. 16 shows the values for some probabilities 

of occurrence for the different frequency bands 

and for the data and pilot codes. It can be observed 

that the autocorrelation properties of the Galileo 

E1 OS codes assigned to the data component are 

equivalent to those of the codes assigned to the 

pilot component in terms of distribution, and that 

the autocorrelation without any Doppler has 

indeed a multitude of different levels. It can also 

be observed that there is a global improvement of 

2 to 8 dB compared to the GPS L1 codes, thanks 

to a code length that is four times longer. 
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Fig. 16 Level of CAF values excluding the correct 

alignment according to the selected quantiles and 

for different frequency bands, considering the 100 

Galileo E1 OS codes and an integration time of 

4 ms. Galileo E1 OS data codes (top), Galileo E1 

OS pilot codes (bottom) 

 

Obviously, in the case of the Galileo E1 OS 

signals, and more generally for the modernized 

GNSS signals, bit sign transitions can occur at 

each spreading code period whereas for GPS L1 

C/A signals, 19 spreading code periods are free of 

bit transitions (Foucras 2015). In this study, it is 

assumed that there is no bit sign transition. 

The maximum of the CAF is shown in Fig. 17 

for the band [−5; 5] kHz and different integration 

times. It can be seen that the values on the 

multiples of 250 Hz are the same whatever is the 

integration time, which was expected given the 

4 ms period of the primary codes. 

 

 
Fig. 17 Maximum of the CAF excluding the 

correct alignment of the Galileo E1 OS data code 

1 as function of the Doppler frequency, for 

integration times of 4, 8, 12, 16 and 20 ms, 

respectively 

 

Concluding this section on the autocorrelation, 

we present Table 1, which allows us to compare 

the autocorrelation values for the presented 

quantiles. When comparing the GPS L1 C/A and 

Galileo E1 OS code isolations, it can be observed 

that Galileo E1 OS codes have better correlation 

performance for an integration time equal to the 

spreading code period, with an improvement 

between 4 and 6 dB. Even if we compare both 

code families with the same integration time of 

4 ms, the maximum is at least 2 dB lower for 

Galileo E1 OS codes. However, for a coherent 

integration time of 20 ms, which corresponds to 20 

L1 C/A code periods or 5 Galileo E1 OS code 

periods, the lowest quantiles (90 % and 95 %) are 

lower for GPS L1 C/A. But things are different for 

the other quantiles (99 % and above) for which 

Galileo E1 codes perform better by at least 3 dB. 

This can be understood looking at Fig. 12 and Fig. 

17, where we can see that there are more high 

lobes with the Galileo E1 OS signal, but the local 

maxima are still below the local maxima of the 

GPS L1 C/A signal. Note that only the first 6 

Galileo E1 OS data codes have been used due to 

memory constraints. It is important to note that 

these results do not take into account the square 

sub-carrier modulation of BOC modulation. 
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Table 1 Levels of CAF values in dB according to 

the distribution considering [–10; 10] kHz as range 

for the Doppler frequency. For the integration time 

of 20 ms, only the first 6 Galileo E1 OS data codes 

have been used due to memory constraints. 
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1
 O

S
 

90 % −26.3 −30.3 −32.5 −44.6 −38.4 

95 % −25.1 −27.1 −37.4 −37.7 −35.7 

99 % −23.5 −24.2 −29.5 −29.0 −32.3 

99.9 % −21.7 −22.7 −27.7 −24.7 −29.6 

99.99 % −20.6 −21.1 −25.5 −21.3 −26.6 

99.999 % −19.9 −21.1 −25.5 −21.3 −26.6 

99.9999 % −19.4 −21.1 −24.7 −21.1 −25.7 

Max −19.2 −21.1 −23.4 −21.1 −24.7 

 

Cross-correlation 

In this section, we present statistics related to the 

values of the CAF for the cross-correlation for the 

GPS L1 C/A and Galileo E1 OS codes. As it will 

be shown, the results are relatively similar to those 

of the autocorrelation. 

 

GPS L1 C/A 

In presence of Doppler, the cross-correlation is 

similar to the autocorrelation, i.e. for an 

integration time of 1 ms, the maximum cross-

correlation value can be up to −19.1 dB, as shown 

in Fig. 18. The statistics for a Doppler range of 

[−10; 10] kHz are provided in Table 2. For longer 

integration times, a behavior similar to the one 

shown in Fig. 12 will be observed, and the 

maximum is obtained for a Doppler that is a 

multiple of 1 kHz.  

Van Diggelen (2009, p.219) states regarding 

detection problem due to cross-correlations that 

“both the code delay and the frequency offset of 

the incorrect (strong) satellite would have to be in 

the same search zone as the intended (weak) 

satellite”. However, this statement is not correct, 

because as demonstrated in the Appendix, what 

matters is the difference between the received and 

local frequencies For example, let us consider a 

receiver with a frequency search space of 

±500 Hz, which receives two GPS L1 C/A signals, 

one weak with a Doppler of 300 Hz (PRN 1) and 

one strong with a Doppler of 4100 Hz (PRN 2). 

When the receiver will search PRN 1 and compute 

the correlation with a local Doppler of 100 Hz, 

there will be a high cross-correlation with the 

incoming PRN 2 signal, because the difference 

between its frequency and the local one is 4 kHz, 

which is a multiple of 1 kHz. 

 
Fig. 18 Distribution of the maximum of the cross-

correlation function per GPS L1 C/A codes couple 

considering [−10; 10] kHz as range for the 

Doppler frequency 

 

Galileo E1 OS 

For Galileo E1 OS signals, two kinds of cross-

correlation should be considered. The first one 

deals with the correlation between the data and 

pilot codes assigned to the same satellite.  

 
Fig. 19 Level of CAF values according to the 

selected quantiles and for different frequency 

bands, considering the 50 Galileo E1 OS code 

data/pilot couples of each satellite and an 

integration time of 4 ms 

 

Fig. 19 presents the statistical description of this 

cross-correlation. With Doppler frequency in the 
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range [−10; 10] kHz, the worst isolation is 

−23.62 dB. 

 

The second Galileo cross-correlation 

corresponds to the correlation between 2 codes 

from two different satellites, Data and Data, Pilot 

and Pilot, Data and Pilot. Table 2 allows us to 

compare the maximum of each cross-correlation. 

The best isolation is for a code couple assigned to 

the same satellite. Indeed, they are chosen as 

orthogonal as possible to not interfere for the 

correlation of the local component with the 

received Galileo E1 OS signal. 

 

Table 2 Levels of CAF values in dB according to 

the distribution considering [−10; 10] kHz as 

range for the Doppler frequency. Blank elements 

for Galileo E1 OS in the table were not computed 

due to the high number of combinations. 

 

GPS 
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(1 ms) 

Galileo E1 OS (4 ms) 
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sa
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90 % −26.2 

 

95 % −24.9 

99 % −23.5 

99.9 % −21.6 

99.99 % −20.5 

99.999 % −19.8 

99.9999 % −19.3 

Max −19.1 −22.8 −22.6 −23.0 −23.6 

 

Conclusion 

We have presented various results regarding the 

correlations of the GPS L1 C/A and Galileo E1 OS 

codes. Some results are relatively well-known by 

people working in the GNSS field but have been 

clarified, while some of them are less known. 

In a first part, we have studied the validity of 

some approximations generally used. First, it was 

shown that the discrete summations done in GNSS 

receivers due to the sampling can be approximated 

by a continuous integration, as intuitively 

expected. The second point was about the classical 

correlator output expression, which considers the 

code and the Doppler frequency as independent. 

The region of validity of this expression has been 

clarified, and it is not only around the main peak 

as it is often thought, but also for relatively low 

Doppler frequencies, such as one or two hundreds 

of hertz with the GPS L1 C/A signal, when the 

theoretical code correlation is not extremely low, 

e.g. near −24 dB. 

In a second part, we have provided a statistical 

description of the autocorrelation and cross-

correlation for GPS L1 C/A and Galileo E1 OS 

codes, considering different carrier frequency 

bands. For example, it has been shown that 

Galileo E1 OS codes have a lower cross-

correlation than the GPS L1 C/A codes for any 

Doppler frequency between −10 and 10 kHz 

considering an integration time of one code 

period, namely −23.44 dB against −19.18 dB. 

When considering all potential Doppler 

frequencies, comparing to no Doppler frequency 

the isolation is degraded by a maximum of about 

2 dB and 4.75 dB for Galileo E1 OS and GPS L1 

C/A respectively. The same trends were shown for 

the cross-correlation. For GPS L1 C/A, the 

isolation is ensured to be at the minimum –

19.08 dB for any Doppler frequency between –10 

and 10 kHz, which is 2 dB lower than the classical 

value given in the literature which is only valid for 

frequencies that are multiple of 1 kHz. For Galileo 

E1 OS, the isolation between data and pilot codes 

affected to the same satellite is −22.82 dB, which 

is 2.34 dB higher than any couple of Galileo E1 

OS codes. We have also highlighted the 

significant impact of the coherent integration time, 

and shown that having a coherent integration time 

longer than the code period provides much better 

correlation performance. We have also shown that 

even the satellites which are outside the frequency 

search space impact the correlation result, since 

what matters is the difference between the 

frequencies, and not the frequencies themselves. 

This study could be extended in many ways. 

First, other GNSS signals could be considered. 

Then, it could be extended by considering 

different sampling frequencies, since the sampling 
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frequency also changes the code correlation 

properties. Finally, in the same way, the impact of 

the code Doppler could be studied, especially with 

signals having a chipping rate of 10.23 MHz or 

having pilot channels which enable long coherent 

integration. 
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Appendix: Computation of the continuous-time 

CAF 

This appendix shows how to compute numerically 

the continuous-time expression given by (4). A 

PRN code is a succession of chips of duration   , 

whose value can be 1 or −1, that repeats each   

chips; thus the duration of one code period is 

      . A PRN code is illustrated in Fig. 20, 

and can be defined as 

      ∑ ∑   [ ]               
   

 
     

 (12) 

where   indicates the PRN number,   [ ] is the 

PRN sequence, and                   is a 

boxcar function with      the unit step function. 

Then, the product of a PRN code of   chips 

with another PRN code of   chips shifted by    

chips is another code. If    is a multiple of the 

chip duration   , the resulting code is composed of 

  chips of duration   , i.e. we can write 

                            
    (13) 
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       )  

where             . If    is not a multiple of 

the chip duration   , the resulting code would be 

composed of    chips, alternatively of duration 

   and      . 

Considering a delay that is a multiple of the 

chip duration, for a coherent integration over a 

time       , i.e. there are   code periods during 

the integration, the cross ambiguity function is 

given as 
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Fig. 20 Illustration of a PRN code 

 

The remaining integral is the cross ambiguity 

function for a coherent integration over one code 

period, and is given as 

∫        
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Therefore, the magnitude of the cross ambiguity 

function is 
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which can be computed numerically exactly. In 

the same way, it is possible to numerically 

compute the cross ambiguity function when the 

delay between the codes is not a multiple of one 

chip. 

From (14) and (15), it can be seen that the 

magnitude of the CAF does not depend on the 

starting point of the integration. Therefore, 

performing a non-coherent integration, i.e. 

averaging the magnitude or the magnitude squared 

of consecutive CAF results, will give the same 

result as the magnitude of one CAF result. 

Consequently, the distribution of the CAF 

magnitude does not change with non-coherent 

integrations. 
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