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• delays at take-off (the aircraft departs later than the scheduled departure time),

• flight cancellations (the aircraft does not depart at all),

• air diversions (the aircraft has to land at an airport different from its destination),

• in-flight turn-backs (the aircraft has to return to its departure airport).

For airlines, these unscheduled service interruptions induce high direct costs related to the aircraft: fuel consumption, airport taxes, flight crew accommodation / duty time, passenger accommodation, financial compensation, etc. They also induce high indirect costs: loss of image, impact on customer loyalty, etc. Thus, in-service aircraft reliability is closely monitored by airlines and, therefore, also by aircraft manufacturers. As a consequence, in-service aircraft reliability has become a major target for aircraft designers.

At the preliminary design stage, predicting accurate levels of an aircraft future in-service reliability is a key issue. This allows optimizing system design for targeted support performances. This prediction involves computing system failure probabilities, which requires the modeling and analysis of a dynamic process using a fault-tree analysis at each flight cycle [START_REF] Hugues | ORA, model & tool for operational reliability prediction within Airbus[END_REF] . Previous methods for computing these failure probabilities include the following: Markov processes 2 , Monte-Carlo simulation, dynamic fault trees and multistate systems. Because of the explosion of the number of possible states of the system, Markov processes 3 cannot be considered here. On the other hand, Monte-Carlo simulation [START_REF] Banks | Discrete event system simulation[END_REF][START_REF] Scheeweis | A dynamic fault tree[END_REF] requires too many simulations to obtain sufficient precision. Indeed, in our context the interruption rate probability is between 10 -7 and 10 -4 per take-off. Despite recent progress on dynamic fault trees [START_REF] Cepin | A dynamic fault tree[END_REF] and multi-state systems [START_REF] Ma | An algorithm for reliability analysis of phased-mission systems[END_REF] , these two approaches cannot be applied because the CPU time required to extract all the minimal sequences is unmanageable (there can be up to 1,600 flight cycles during one year of aircraft use). The lack of general tractable methods for large-scale dynamic models has yielded analytical developments for specific problems [START_REF] Amari | A new Approach to solve dynamic fault trees[END_REF][START_REF] Khoda | Probability evaluation of system-failure occurrence based on minimal cutsets[END_REF] . However, these results do not apply to our aeronautical reliability problem, which involves a long sequence of flight cycles with dynamic dependencies between component states due to maintenance strategies.

The contribution of the present paper relates to three aspects of in-service aircraft reliability: modeling, efficient resolution, and validation. It is organized as follows. In Section 2, we develop the framework of the in-service aircraft reliability problem in the context of preliminary design. Our model describes both the different failure modes of an aircraft system during its successive flight and ground phases, and the way airlines manage these failures. In Section 3, we derive recursive formulae linking the probabilities of the main failure events. This allows us to construct an efficient algorithm that provides relevant bounds for operational interruption rate indicators that meets industrial time constraints. Section 4 reports computational experiments on a k-out-of-n:F system, on an Air Data Inertial Reference System, and on an aircraft refuel system. These results show the efficiency and precision of our approach. We conclude in Section 5.

Model Formulation

In this section, we first present the framework of the in-service aircraft reliability problem. Then, we list the input data and the assumptions of the model.

Framework

In service, an aircraft is subject to a sequence of cycles with each cycle consisting of a flight phase, followed by a ground phase (which then precedes the next flight). Here we consider an aircraft system made up of a number of various components. During any phase, a component failure may occur. Fig. 1 illustrates the main events that may occur in a sequence of cycles. 

Input data

Here is the input data (known quantities) of the in-service aircraft reliability problem:

• A coherent fault tree of the system. This fault tree is issued from the system architecture by design engineers.

• { }

T T xD xF Pr

, the probability that component x fails during cycle T, given that x works at the beginning of cycle T. This quantity is a direct function of the failure rate of component x, which is provided by the component manufacturer. Note that, due to T NG event, ADM T (Accepted Degraded Mode) is not the complement event of RDM T (Refused Degraded Mode). However, ADM T and RDM T are conditional complement events, more precisely:

{ } { } T T T T T T T T xD xF NG RDM xD xF NG ADM ∩ ∩ - = ∩ ∩ Pr 1 Pr .
• The initial conditions are also given: we know the state or the probability { } 1 Pr xD of each component x at the beginning of cycle 1.

List of assumptions

Here, we list the assumptions induced by both the airline maintenance strategy and the reliability of aircraft systems. A1. Given the states (working or failed) of each component at the beginning of the cycle T, the component probabilities of failure are independent.

More precisely, the conditional probabilities of failure are independent while non-conditional probabilities of failure are not. In fact the dependencies between failure events are due to the NG event occurrence.

A2. The probability of having more than one component failure during each cycle for the system under study is negligible.

Indeed, because our reliability study is dedicated to operational interruption rate evaluation and due to the fact that we have to deal with highly reliable components, the above probability is negligible compared with standard targets for operational interruption rates (see also Ref. 10 for detail on this assumption). This fact is also confirmed by operational interruption rate estimation throughout airline maintenance data. A7. Given that a component has failed during cycle T without inducing NG, we assume that ADM T (the degraded mode acceptance event) is independent of both x (the component) and T (the cycle).

Remark that his conditional probability quantity is in practice given by the airline maintenance strategy and by the pilot behavior. Note that due to the NG coupling effect, the non-conditional probability of the degraded mode acceptance depends upon cycle T, but is independent of the failed component.

A8. The airline refuses degraded mode during cycle T (RDM T ) can occur when both a component fails and NG does not occur during cycle T. Once a degraded mode has been refused for component x, it is repaired and it is assumed to be working at the beginning of cycle T+1.

A9. Given that a component has failed during cycle T without inducing NG, we assume that RDM T (the event that the airline refuses the degraded mode) is independent of both x and T.

The strictly analogous remark of A7 for ADM T applies also here for RDM T .

A10. The component failure rates are supposed to be different but independent of the cycle (constant through the sequence of cycles). A11. We assume the following negative dependency property: at the departure of cycle T, the probability that both components x and y are in failed state is smaller than the individual probability product.

More formally, let

y x S y x ≠ ∈ , , be two components. Then, { } { } { } T T T T yD xD yD xD Pr Pr Pr × ≤ ∩ .
As a direct consequence, we have the following general result: Let S x ∈ and A a subset of the remaining components (

S A ⊂ with A x ∉ ). Then, ( ) { } ( )       × ≤                   ∩ ∈ ∈ I I A y T T A y T T yD xD yD xD
Pr Pr Pr .

Remark: this negative dependency assumption is also equivalent to:

For all pairs of components

S y x ∈ , ( y x ≠ ): { } { } { } T T T T yD xD yD xD Pr Pr Pr × ≤ ∩ .
The negative dependency property is a consequence of both the maintenance strategy (see Fig. 2), and the fact that we deal with highly reliable components (see Appendix for a detailed justification).

From analytic developments to efficient computation

The objective of this section is to compute at each cycle T estimates of the probabilities of the main events displayed on Fig. 2 . However, these formulae rely on two probabilities that are not computationally tractable for real-world aeronautical systems. Thus, in Subsection 3.2 we develop astute bounds on probabilities related to minimal sets of the NG fault tree. These bounds, in turn, allow us in Subsection 3.3 to derive a bounding methodology for the above conditional NG event probabilities.

Finally, we put these results together in Subsection 3.4 to derive an overall iterative scheme based on the initial conditions (at cycle T=1) and input data, in order to obtain an algorithm, called BA, for computing tight bounds for the three main-event probabilities. This algorithm does not rely on dynamic fault-tree analysis, and therefore it meets industrial computational time constraints for the systems considered in preliminary design.

Probabilities of the main events: recursive formulae

In this subsection, assuming that probability Therefore, we have:

( ) U S x T T T T xD xF NG NG ∈ ∩ ∩ = . Because the events { } S x T xF ∈ are disjoint (see Assumption A2), we obtain: { } { } { } { } ∑ ∈ × × ∩ = S x T T T T T T T xD xD xF xD xF NG NG Pr Pr Pr Pr . (1) 
Similarly, for the second main event T ADM , we have:

( ) U S x T T T T T xD xF NG ADM ADM ∈ ∩ ∩ ∩ = (see Fig. 3). This implies { } { } { } ( ) { } { } ∑ ∈ × × ∩ - × ∩ ∩ = S x T T T T T T T T T T T xD xD xF xD xF NG xD xF NG ADM ADM Pr Pr Pr 1 Pr Pr . ( 2 
)
Again, from Fig. 3,

( ) U S x T T T T T xD xF NG RDM RDM ∈ ∩ ∩ ∩ = and therefore: { } { } { } ( ) { } { } ∑ ∈ × × ∩ - × ∩ ∩ = S x T T T T T T T T T T T xD xD xF xD xF NG xD xF NG ADM RDM Pr Pr Pr 1 Pr Pr . ( 3 
)
Finally, in accordance with Fig. 3, we have:

( ) ( ) T T T T T T T xD xF NG ADM NG xD xD ∩ ∩ ∩ ∪ ∩ = +1 .
Hence, the probability of component x not working at the next cycle, T+1, is: . The next two subsections will address the issue of bounding / approximating these two unknown probabilities.

{ } { } ( ) { } { } { } ( ) { } { }.

Bounds related to minimal set probabilities

The first step for bounding the two unknown probabilities Consider the i th minimal cut,

k i ≤ ≤ 1
, and two components S y x ∈ , with y x ≠ . We then obtain:

i) { } { } { }        ∈ ≤ ∩ ∏ ≠ ∈ ; , 0 , Pr Pr Pr otherwise MC x if xD yD xD xF MC i T x y MC y T T T i T i ii) { } { } { } { }        ∈ ×           × ≤ ∩ ∩ ∩ ∏ ≠ ≠ ∈ . , 0 , Pr Pr Pr Pr , otherwise MC y if xD zD yD yF xD yD yF MC i T y z x z MC z T T T T T T i T i Proof.
Let us consider the event that all components of the minimal cut We use the inclusion of events

       ∅ ∈ ∩ ∩           = ∩ ∩ ≠ ∈ . , , otherwise MC x if xD xF yD xD xF MC i T T x y MC y T T T i T i I Let i MC x ∈ , { } . Pr Pr Pr Pr           ∩           ×           ∩           =           ∩ ∩           = ∩ ∩ ≠ ∈ ≠ ∈ ≠ ∈ T x
          ⊆ ∩           ≠ ∈ ≠ ∈ I I x y MC y T T x y MC y T i i yD xD yD
and the overvaluation of their probabilities that can be deduced. Hence, with Assumption A11 (negative dependency) we obtain: . The cut cannot occur and we have:

{ } { } { } { }. Pr Pr Pr Pr Pr ∏ ≠ ∈ ≠ ∈ × ≤                     × ≤ ∩ ∩
∅ = ∩ ∩ ∩ T T T i T xD yD yF MC . Let S x MC y i ∈ ∈ ,
. The cut will occur if all the other components are in a failure state at the beginning of the cycle. Thus, we have: 

T T T y z x z MC z T T T T i T xD yD yF zD xD yD yF MC i ∩ ∩ ∩           = ∩ ∩ ∩ ≠ ≠ ∈ I , Hence, if S x MC y i ∈ ∈ , , { } { } . Pr Pr Pr Pr Pr , , ,           ∩ × ≤           ∩ ∩ ×           ∩ ∩ = ∩ ∩ ∩ ≠ ≠ ∈ ≠ ≠ ∈ ≠ ≠ ∈ T y z x z MC z T T T T T y z x z MC z T T T y z x z MC z T T T T T i T xD zD
i i ∩           ⊂ ∩           ∩ ≠ ≠ ∈ ≠ ∈ I I , .
Hence, with Assumption A11 (negative dependency) we conclude:

{ } { } { } { } T y z x z MC z T T T T T T i T xD zD yD yF xD yD yF MC i Pr Pr Pr Pr , ×           × ≤ ∩ ∩ ∩ ∏ ≠ ≠ ∈ . □ Theorem 2.
Consider the j th minimal path, 

{ } { } { } { }        ×           × ∈ ≤ ∩ ∩ ∏ ∈ . ,

{ }

{ } { } { } { } { }              × ×         × ∈ ∈ ≤ ∩ ∩ ∩ ∏ ∈ . ,
T T T MP z T T T j j T T T j T j
The event is divided as follows: ,

     ∩ ∩ ∩         ∈ ∈ ∅ = ∩ ∩ ∩ ∈ , ,
T T MP z T T T T j T yD yF zD xD yD yF MP j ∩ ∩         ⊆ ∩ ∩ ∩ ∈ I . T T T T T T j T xD yD yF xD yD yF MP ∩ ⊆ ∩ ∩ ∩
From the first inclusion, with (the remark in) Assumption A11, we obtain the following overvaluation:

{ } { } { } { } T MP z T T T T T T j T yD zD yD yF xD yD yF MP j Pr Pr Pr Pr ×         × ≤ ∩ ∩ ∩ ∏ ∈ .
From the second one, we use the inclusion 

{ } { } { } { } { } T T T T T T T T T T T j T xD yD yF xD yD xD yD yF xD yD yF MP Pr Pr Pr Pr Pr × ≤ ∩ × ∩ ≤ ∩ ∩ ∩
We take the minimum of both overvaluations to conclude. 

where i) Let us consider the failure of a component x. In order to have a NG, at least one minimal cut which contains x must occur. Thus, using the general addition theorem bound and the fact that ( ) 

{ }    ∈ = ∈ . 0 , 1 : 1 otherwise MC x if i MC x i ii) { } { } { } { } { } { }                                 × × ≤ ∩ ∑ ∑ ∏ ≠ ∈ = ∈ ≠ ≠ ∈ x y S y k i MC y T y z x z MC z T T T T T T i i yD zD yD yF xD xD NG
U k i i T T MC NG 1 = = , we have, for any component S x ∈ : { } { } { } { } . 1 Pr Pr Pr Pr 1 1 1 ∑ ∑ = ∈ = = × ∩ ≤ ∩ ≤       ∩ = ∩ k i MC x T T i T k i T T i T T T k i i T T T T i xD xF MC
U x y S y T T T T T T xD NG yD yF xD NG ≠ ∈ ∩ ∩ ∩ = ∩ . { } { } ( ) { } { } { } { } { } { } ∑ ∏ ∑∑ ∑ ∑ ≠ ∈ ∈ ≠ ∈ ≠ ∈ = ≠ ∈ = ≠ ∈ ×                 × × ≤ ∩ ∩ ∩ ≤           ∩ ∩ ∩ = ∩ ∩ ∩ = ∩

For any component

S

x ∈ , we have: 

i) { } { } { } ∑ ∏ = ∉ ∈ ×         - ≥ ∩ p j MP x MP y T T T T j j yD xD xF NG 1 1 Pr 1 Pr (7) ii) { } { } { } { } { } { } { } { } { } { } { } . 1 1 Pr Pr , Pr Pr Pr min Pr Pr Pr Pr , 1 ∑ ∑ ∏ ∑ ≠ ∈ ∉ = ∈ ∈ ∈ ≠ ∈             × ×         × ×         × - × × ≥ ∩
∑ = = = ∩ - ≥           ∩ - =           ∩ = ∩
{ } { } { } . 1 Pr 1 Pr 1 ∑ ∏ = ∉ ∈ ×         - ≥ ∩ p j MP x MP y T T T T j j yD xD xF NG
ii) Based on formulation of NG event from Eq. ( 1) of the NG event, an analogous argument can be applied to the event

T T xD NG ∩
to obtain the following development:

T T T p MP y x j j T T T T T xD yD yF MP xD yD yF NG j T ∩ ∩ ∩           = ∩ ∩ ∩ ∉ = I , 1 . From the fact that { } { } T T T T T yD yF xD yD yF Pr Pr = ∩
(from the probability of independent failures), and using Theorem 2, we derive the following development: 

{ } { } { } { } { } { } { } { } ∑ ∑ ∑ ∑ ∑ ∑ ≠ ∈ ∉ = ≠ ∈ ∉ = ≠ ∈ ∉ = ≠ ∈ ≠ ∈           ∩ ∩ ∩ - × × ≥                       ∩ ∩ ∩           - ∩ ∩ =           ∩ ∩ ∩ = ∩ ∩ ∩ = ∩ ∩ ∩ = ∩
( ) ( ) { } ( ) ∑ ∈ × × ∩ = S x T T T T T T T xD UB xD xF xD xF NG UB NG UB Pr ( ) ( ) { } ( ) ∑ ∈ × × ∩ = S x T T T T T T T xD LB xD xF xD xF NG LB NG LB Pr ( ) { } ( ) ( ) { } ( ) ∑ ∈ × × ∩ - × ∩ ∩ = S x T T T T T T T T T T T xD UB xD xF xD xF NG LB xD xF NG ADM ADM UB Pr 1 Pr ( ) { } ( ) ( ) { } ( ) ∑ ∈ × × ∩ - × ∩ ∩ = S x T T T T T T T T T T T xD LB xD xF xD xF NG UB xD xF NG ADM ADM LB Pr 1 Pr ( ) { } ( ) ( ) ( ) { } ( ) ∑ ∈ × × ∩ - × ∩ ∩ - = S x T T T T T T T T T T T xD UB xD xF xD xF NG LB xD xF NG ADM RDM UB Pr 1 Pr 1 ( ) { } ( ) ( ) ( ) { } ( ) ∑ ∈ × × ∩ - × ∩ ∩ - = S x T T T T T T T T T T T xD LB xD xF xD xF NG UB xD xF NG ADM RDM LB Pr 1 Pr 1 where: ( ) ( ) ( ) { } ∑ ∏ = ∈ ≠ ∈ × = ∩ k i MC x T x y MC y T T T T i i xD LB yD UB xD xF NG UB 1 1
is obtained from inequality (5), and ( )

( ) { } ∑ ∏ = ∉ ∈ × - = ∩ p j MP x MP y T T T T j j yD UB xD xF NG LB 1 1 1
is obtained from inequality (7).

The above bounds on the three main-event probabilities can be computed from input data, The above-presented algorithm, that enables us to compute upper and lower bounds for the three main events NG, ADM, and RDM at each cycle, will be referred to in the sequel as the Bound Algorithm (BA). The complexity of BA for a horizon of T cycles is

( ) ( ) { } ( ) ( ) { }                                 × × ≤ ∩ ∑ ∑ ∏ ≠ ∈ = ∈ ≠ ≠ ∈ x y
( ) { } ( ) ( ) { } ( ) ( ) { } ( ) { } { } ∑∑ ∏ ∑ ≠ ∈ = ∉ ∉ ∈ ≠ ∈             × ×         × ×         × - × × ≥
( ) ( ) p c pL mL n T + Ο 2 .
, where L c is the maximum length of a minimal cut, and L p is the maximum length of a minimal path. This complexity largely meets industrial computational time constraints for the systems considered in preliminary design.

Finally, remark that in our in-service aircraft reliability context, only upper bounds are crucial in guaranteeing system performance. Nevertheless, lower bounds can give indications on the maximal error of the upper-bound overestimation.

Computational experiments

In view of its industrial implementation, we have to evaluate the practical relevance of our Bound Algorithm (BA). We will compare the performance of BA with that of the Markov approach. The Markov approach has the advantage of providing the exact solution, allowing us to evaluate the precision of BA and its relative efficiency. Due to the excessive CPU time required by the Markov approach, we restrict this comparison to a horizon of 100 flight cycles. This horizon is sufficient for industrial validation purposes because, in practice, predictions in aircraft reliability generally do not consider horizons greater than 100 cycles.

For each application considered below, we start the process with all components working, i.e. { } 1 Pr 1 = xD for all x in S. We implemented both the BA and Markov approaches in MATLAB. We perform all computational experiments on a 256 Mb PC Pentium III running under Windows 2000 (except for some CPU-intensive runs of the Markov approach that are performed on a Sun SF6800 with 900 MHz CPU under Unix Solaris 8).

Let us now report numerical results on following applications: standard k-out-of-n:F system examples, a typical Air Data Inertial Reference System (with fictitious data), and an aircraft refuel system.

k-out-of-n:F systems

In this application, the components of each k-out-of-n:F systems are assumed to be of identical independent distributions. The worst-case complexity for k-out-of-n:F systems is: O(n 3 .2 n ) for BA, against O(n.4 n ) for the Markov approach. We shall study all pairs (k,n) such that 

Air Data Initial Reference System

To illustrate the efficiency of our BA algorithm, we consider a typical aircraft avionic system. The fault tree in Fig. 4 

Aircraft refuel system

We consider a refuel system of an Airbus aircraft. ). Again, due to real-world data uncertainties, this approximation is completely satisfactory for predicting in-service aircraft reliability. In particular, this Airbus refuel system case shows that BA is a promising method both in terms of precision and efficiency when applied to a real aircraft system.

Conclusion

In this paper, we introduced a general mathematical framework for modeling in-service aircraft reliability at the preliminary design stage. Then, we proposed an efficient algorithm (BA) to estimate operational interruption rate indicators which meets industrial computational time constraints for the systems considered in preliminary design. We demonstrated the precision of this method on real aircraft systems. Note that, all the results obtained in this paper can straightforwardly be extended to the aging effect case with an "as good as new" maintenance strategy. For the sake of simplicity, we restricted our presentation to an elementary set of maintenance tasks: "removal" and "damage tolerance". Current industrial implementation at Airbus does include other types of maintenance tasks (planned maintenance, preventive maintenance etc…). 

Proof of A11:

Using facts (F1) and (F2) above, we obtain the following inequalities: Pr Pr Pr 

E

  all components of j MP work at the end of cycle T T NG The event that a No Go dispatch condition occurs during cycle T T xD The event that component x works at the Departure (beginning) of cycle T T xF The event that component x Fails during cycle T T ADM The event that the airline Accepts the Degraded Mode for take-off at the beginning of cycle T+1 T RDM The event that the airline Refuses the Degraded Mode for take-off at the beginning of cycle T+1 Complement aircraft reliability relates to aircraft availability and punctuality. It measures the frequency of unscheduled service interruptions caused by technical failures and associated required maintenance. The different interruption types are:

Fig. 1 .

 1 Fig. 1. Operational profile

Fig. 2 .Fig. 3 .

 23 Fig. 2. The different possible scenarios during a cycle

  of accepting the degraded mode, given that x fails during cycle T and that no T NG (i.e. T NG ) occurs. This quantity is a direct function of the pilot behavior and of the airline maintenance strategy. It is not a function of the component (see Assumption A7 below).

  A3. A component x is repaired at cycle T only in the following cases: a. NG occurs during cycle T and component x was in failed state at the departure of cycle T b. Component x fails during cycle T and NG occurs during cycle T. c. Component x fails during cycle T, NG does not occur during cycle T and the airline refuses the degraded mode for the x component. A4. When a component is repaired during cycle T, it is assumed to be working at the departure of cycle T+1. A5. In the cases of NG during cycle T, all the equipments failed before or during cycle T are repaired. A6. The degraded mode acceptance by the airline during cycle T (ADM T ) can occur when both a component fails and NG does not occur during cycle T. Once a degraded mode has been accepted for component x, it remains failed unless NG occurs during the following cycles.

  : NG (No Go dispatch condition on the system), ADM (Accepted Degraded Mode), and RDM (Refused Degraded Mode), which are inservice aircraft reliability indicators at the preliminary design stage. We present our methodology for computing these probabilities in four steps. In Subsection 3.1, we develop recursive analytical formulae (from cycle T to cycle T+1) for the three mainevent probabilities { }

  all components x in S, we show how to obtain, from this information, analytic formulae of the main-event probabilities: x in S. The latter probability will enable us to restart the iterative process.When a NG occurs during cycle T, a component must have failed during this cycle.

  involved in the above formulae are known from inputs (see Subsection 2.2) and from the given probabilities { } S x T xD ∈ Pr

..

  exhibit, for each minimal cut set i MC and for each minimal path set j MP , upper bounds on events i T MC (all components of i MC are failed at the end of cycle T) and on events j T MP ( all components of j MP work at the end of cycle T). More precisely, we derive two types of recursive bounds. The first type is related to minimal cuts.In Theorem 1 below, we provide bounds on The second type of recursive bounds, given by Theorem 2, relates to minimal paths and provides bounds on All the upper bounds given by Theorems 1 and 2 can be computed from input data and probabilities { } S x xD T ∈ , Pr. These bounds will be used in Subsection 3.3 in order to estimate the two unknown probabilities

  i MC are in failed state during cycle T. If i MC x ∈ and x has failed during cycle T, following Assumption A2, we neglect the event that more than one component fail during one phase, and then, we assume that all the other components of this minimal cut have failed before. Thus, we have: If we consider the minimal cuts for a cut i MC to occur at T, a component i MC x ∈ must fail during the current cycle (only one according to Assumption A2), and the other components have to be lost at the beginning of the cycle T. Thus, this event can be rewritten as

  analogous development of the previous proof is used to demonstrate the second overvaluation.

I

  we consider the minimal paths, we exploit the observation that one component must fail during the current cycle in order to prevent all minimal paths from occurring. Again, using Assumption A2, the other components necessarily work at the beginning of the cycle. Thus, for any componentS x ∈ , we have:The next development relies on (the remark in) Assumption A11, and on the fact that probability independence of failures, Assumption A1):

  use a development analogous to that of the previous proof to demonstrate the second overvaluation.

□Remark: 3 . 3 . 1 .

 331 For highly reliable systems, the second overvaluation is more efficient than the first one. It corresponds to the following inequality: Bounds related to No Go dispatch condition probabilities Here, we show how to bound the unknown probabilities More precisely, upper bounds will be derived in Theorem 3, using a minimal cut-set decomposition and Theorem 1 (Subsection 3.2).Then, using a minimal path-set decomposition and using Theorem 2 (Subsection 3.2), we shall derive lower bounds in Theorem 4. Note that all the bounds on

  Theorem 1, we obtain an upper bound for the NG probability given failure of a component S x ∈ during cycle T: course, we can also obtain an upper bound for the NG probability using the previous overvaluation and Eq. (1). ii) Based on formulation (1) of NG T event, an analogous development can be applied to the event T T xD NG ∩ to obtain the following overvaluation:

  Let us consider the failure of a component x. In order to have a NG, all the minimal paths not containing x, do not occur at the beginning of the cycle. i) If we consider the failure of a component x, to have a NG, Thus, using the general addition theorem bound and the fact that I

  Theorem 2, we obtain an upper bound for the NG probability given failure of a component S x ∈ during cycle T:

3 . 4 . 1 Pr

 341 The Bound Algorithm (BA) for computing operational interruption rate indicatorsIn this Subsection, we present recursive formulae for evaluating (lower and upper) bounds on probabilities of the three main events: T NG (a No Go dispatch condition occurs during cycle T), T ADM (the airline Accepts the Degraded Mode for take-off at the beginning of cycle T+1), and T RDM (the airline Refuses the Degraded Mode for take-off at the beginning of cycle T+1) at each cycle T. These formulae derive from the recursive equation (4) of Subsection 3.1 and from the bounds provided by Theorems 3 and 4. These main event probability bounds can easily be computed from the given input data (including the given initial conditions at cycle 1, { } xD , for all component x in S.---see Subsection 2.2). From a straightforward application of Bayes rule, we obtain the following formulae:

.

  These values cover a wide range of k-out-of-n aircraft system instances. We choose for all component x in S, a typical component failure rate in aircraft reliability.In the computational experiments that follow, averages are taken over 100 cycles (i.e.

  models it. It is a large system with 7 different types of components that correspond to 21 components, with 99 minimal cuts, and 3 minimal paths. Again, we choose for all component x in S. BA requires 26.84 seconds of CPU time to compute both UB(

Fig. 4 .

 4 Fig. 4. Fault tree modeling the No Go dispatch condition on Air Data Inertial Reference System

Fig. 5

 5 displays the associated fault tree involving the 15 different components. Here, we choose x in S, a typical component failure rate in aircraft reliability.

Fig. 5 .

 5 Fig. 5. Fault tree modeling the Airbus refuel system

Future.

  related work will attempt at extending our approach (model and algorithm) to the broader problem of aircraft punctuality by computing the probability of operational interruption.We shall show that this assumption is a direct consequence of the following two facts: high reliability of aircraft components, (F1) and (F2) are always verified in practice.

  this last inequality, A11 is straightforward.

□

  

Table 1 .

 1 ). Table1displays the average BA absolute error of the upper bound for No Go dispatch condition during cycle T). The maximal absolute error value of Table1is 5.3E-4. This error is not significant because it lies completely within the reliability bounds of data uncertainties. The analogous results on , and are even much better in terms of performance (precision). Our algorithm BA requires at most 258 seconds of CPU time, whereas the exact Markov approach needs up to 3,000 seconds. Absolute error of the upper bound for k-out-of-n:F systems

		{ } T NG (probability of a T ADM and Pr T RDM are not presented because they derive directly from those on	
	N =	2	3	4	5	6	7	8	9	10	11	12
	k = 2	1.64E-08	3.08E-06	1.21E-05	2.94E-05	5.72E-05	9.74E-05	1.51E-04	2.21E-04	3.07E-04	4.11E-04	5.33E-04
	k = 3		6.26E-08	3.88E-07	1.30E-06	3.23E-06	6.72E-06	1.24E-05	2.10E-05	3.32E-05	5.00E-05	7.22E-05
		k = 4		1.64E-09	1.10E-08	4.11E-08	1.15E-07	2.67E-07	5.47E-07	1.02E-06	1.77E-06	2.91E-06
			k = 5		3.82E-11	2.79E-10	1.15E-09	3.53E-09	8.95E-09	1.99E-08	4.01E-08	7.49E-08
				k = 6		8.24E-13	6.63E-12	3.00E-11	1.00E-10	2.75E-10	6.59E-10	1.43E-09
					k = 7		1.68E-14	1.48E-13	7.33E-13	2.65E-12	7.87E-12	2.03E-11
						k = 8		3.25E-16	3.16E-15	1.70E-14	6.65E-14	2.12E-13
							k = 9		5.75E-18	6.13E-17	3.57E-16	1.51E-15
								k = 10		4.17E-19	4.53E-18	2.68E-17
									k = 11		5.87E-21	6.95E-20
										k = 12		8.21E-23

T NG

Table 2

 2 

displays the difference between both bounds and the exact Markov results as a function of the number of cycles. Obviously, the maximal error is obtained for 100 cycles. This maximal error of 1.45 % is completely satisfactory for predicting in-service aircraft reliability.

Table 2 .

 2 Absolute error of the upper and lower bounds for the Air Data Inertial Reference System

	Cycle T						1	2	3	10	30	50	70	100
	UB	(	T NG	)	-	Pr	{ } T NG	0	1.14E-	3.08E-	3.79E-	3.14E-	7.90E-	1.39E-	2.43E-
											09	09	08	07	07	06	06
	LB	(	T NG	)	-	Pr	{ } T NG	0	-	-	-	-	-	-	-
											1.34E-	3.87E-	5,37E-	4,74E-	1.23E-	2.25E-	4.12E-
											09	09	08	07	06	06	06
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