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This paper deals with the modeling and computation of in-service aircraft reliability at the 

preliminary design stage. This problem is crucial for aircraft designers because it enables them to 

evaluate in-service interruption rates, in view of designing the system and of optimizing aircraft 

support. In the context of a sequence of flight cycles, standard reliability methods are not 

computationally conceivable with respect to industrial timing constraints. In this paper, first we 

construct the mathematical framework of in-service aircraft reliability.  Second, we use this model in 
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order to demonstrate recursive formulae linking the probabilities of the main failure events.  Third, 

from these analytic developments, we derive relevent reliability bounds. We use these bounds to 

design an efficient algorithm to estimate operational interruption rate indicators. Finally, we show 

the usefulness of our approach on real-world cases provided by Airbus. 

Keywords: Aircraft reliability, fault trees, reliability modeling, repairable system. 

List of notation 

ADM  Accepted Degraded Mode  

BA  Bound Algorithm 

DM  Degraded Mode 

OI  Operational Interruption 

OR  Operational Reliability 

RDM  Refused Degraded Mode 

NG  No Go dispatch condition on the system 

T  Index of cycle 

S  The (finite) set of all components within the system 

n  Number of components in S 

k  Number of minimal cuts 

i
MC   i

th
 Minimal Cut, ki ≤≤1  

i

TMC    The event that all components of 
i

MC  are failed at the end of cycle T 

p  Number of minimal paths 

jMP    j
th

 Minimal Path, pj ≤≤1  

j

TMP   The event that all components of 
jMP  work at the end of cycle T 

TNG   The event that a No Go dispatch condition occurs during cycle T 
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TxD   The event that component x works at the Departure (beginning) of 

cycle T  

TxF   The event that component x Fails during cycle T 

TADM   The event that the airline Accepts the Degraded Mode for take-off at 

the beginning of cycle T+1 

TRDM   The event that the airline Refuses the Degraded Mode for take-off at 

the beginning of cycle T+1 

E   Complement of event E 

}{EP   Probability of event E 

( )EUB   Upper Bound for }{EP  

( )ELB   Lower Bound for }{EP  

k-out-of-n:F system An n-component system that fails if and only if at least k 

components fail 

 

1.   Introduction 

In-service aircraft reliability relates to aircraft availability and punctuality. It measures 

the frequency of unscheduled service interruptions caused by technical failures and 

associated required maintenance. The different interruption types are:  

• delays at take-off (the aircraft departs later than the scheduled departure 

time), 

•  flight cancellations (the aircraft does not depart at all), 
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•  air diversions (the aircraft has to land at an airport different from its 

destination), 

•  in-flight turn-backs (the aircraft has to return to its departure airport). 

For airlines, these unscheduled service interruptions induce high direct costs related to 

the aircraft: fuel consumption, airport taxes, flight crew accommodation / duty time, 

passenger accommodation, financial compensation, etc. They also induce high indirect 

costs: loss of image, impact on customer loyalty, etc. Thus, in-service aircraft reliability 

is closely monitored by airlines and, therefore, also by aircraft manufacturers. As a 

consequence, in-service aircraft reliability has become a major target for aircraft 

designers. 

At the preliminary design stage, predicting accurate levels of an aircraft future in-service 

reliability is a key issue. This allows optimizing system design for targeted support 

performances. This prediction involves computing system failure probabilities, which 

requires the modeling and analysis of a dynamic process using a fault-tree analysis at 

each flight cycle
1
. Previous methods for computing these failure probabilities include the 

following: Markov processes
2
, Monte-Carlo simulation, dynamic fault trees and multi-

state systems. Because of the explosion of the number of possible states of the system, 

Markov processes
3
 cannot be considered here. On the other hand, Monte-Carlo 

simulation
4,5

 requires too many simulations to obtain sufficient precision. Indeed, in our 

context the interruption rate probability is between 10
-7

 and 10
-4

 per take-off. Despite 

recent progress on dynamic fault trees
6
 and multi-state systems

7
, these two approaches 

cannot be applied because the CPU time required to extract all the minimal sequences is 

unmanageable (there can be up to 1,600 flight cycles during one year of aircraft use). The 

lack of general tractable methods for large-scale dynamic models has yielded analytical 

developments for specific problems
8,9

. However, these results do not apply to our 
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aeronautical reliability problem, which involves a long sequence of flight cycles with 

dynamic dependencies between component states due to maintenance strategies. 

The contribution of the present paper relates to three aspects of in-service aircraft 

reliability: modeling, efficient resolution, and validation. It is organized as follows.  In 

Section 2, we develop the framework of the in-service aircraft reliability problem in the 

context of preliminary design.  Our model describes both the different failure modes of 

an aircraft system during its successive flight and ground phases, and the way airlines 

manage these failures. In Section 3, we derive recursive formulae linking the probabilities 

of the main failure events. This allows us to construct an efficient algorithm that provides 

relevant bounds for operational interruption rate indicators that meets industrial time 

constraints. Section 4 reports computational experiments on a k-out-of-n:F system, on an 

Air Data Inertial Reference System, and on an aircraft refuel system.  These results show 

the efficiency and precision of our approach.  We conclude in Section 5. 

 

2.   Model Formulation 

In this section, we first present the framework of the in-service aircraft reliability 

problem.  Then, we list the input data and the assumptions of the model.  

2.1.   Framework 

In service, an aircraft is subject to a sequence of cycles with each cycle consisting of a 

flight phase, followed by a ground phase (which then precedes the next flight). Here we 

consider an aircraft system made up of a number of various components. During any 

phase, a component failure may occur. Fig. 1 illustrates the main events that may occur in 

a sequence of cycles. 
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Fig. 1. Operational profile 

When a component x fails during cycle T, it may cause the system not to meet the 

dispatch conditions (safety, operability, commercial...), so-called No Go dispatch 

conditions (NG). Formally the occurrence of a NG event is represented by a fault tree, 

which is based solely on the component states (working or failed). In the case of NG 

during cycle T, the airline must repair all the components in a state of failure.  When a 

component x fails without involving NG, then two decisions can be made by the airline. 

Either the airline decides to take off in a so-called Accepted Degraded Mode (ADM), or it 

refuses the degraded mode (RDM), and then repairs the component that has just failed 

during cycle T, and does not repair any previously failed component. Note that if a 

degraded mode is accepted, some minor maintenance tasks configure the component that 

has just failed. Fig. 2 illustrates all of these different scenarios in detail. 

 

Fig. 2. The different possible scenarios during a cycle 
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From the two possible states of any given component x at the departure of cycle T: x 

works ( TxD ) or x is failed ( TxD ), we display in Fig. 3 all the events that may occur 

within cycle T. 

 

Fig. 3. The event tree for component x during cycle T. 

 

2.2.   Input data 

Here is the input data (known quantities) of the in-service aircraft reliability problem: 

• A coherent fault tree of the system.  This fault tree is issued from the system 

architecture by design engineers. 

• { }TT xDxFPr , the probability that component x fails during cycle T, given that 

x works at the beginning of cycle T. This quantity is a direct function of the 

failure rate of component x, which is provided by the component manufacturer. 

• { }TTTT xDxFNGADM ∩∩Pr , the probability of accepting the degraded 

mode, given that x fails during cycle T and that no TNG  (i.e. TNG ) occurs. 

This quantity is a direct function of the pilot behavior and of the airline 
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maintenance strategy.  It is not a function of the component (see Assumption A7 

below). 

Note that, due to TNG event, ADMT (Accepted Degraded Mode) is not the 

complement event of RDMT (Refused Degraded Mode).  However, ADMT and 

RDMT  are conditional complement events, more precisely: 

 { } { }TTTTTTTT xDxFNGRDMxDxFNGADM ∩∩−=∩∩ Pr1Pr . 

• The initial conditions are also given: we know the state or the probability 

{ }1Pr xD of each component x at the beginning of cycle 1. 

2.3.   List of assumptions 

Here, we list the assumptions induced by both the airline maintenance strategy and the 

reliability of aircraft systems.  

A1. Given the states (working or failed) of each component at the beginning of the 

cycle T, the component probabilities of failure are independent.  

More precisely, the conditional probabilities of failure are independent 

while non-conditional probabilities of failure are not. In fact the dependencies 

between failure events are due to the NG event occurrence. 

A2. The probability of having more than one component failure during each cycle 

for the system under study is negligible.  

Indeed, because our reliability study is dedicated to operational 

interruption rate evaluation and due to the fact that we have to deal with highly 

reliable components, the above probability is negligible compared with standard 

targets for operational interruption rates (see also Ref. 10 for detail on this 
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assumption). This fact is also confirmed by operational interruption rate 

estimation throughout airline maintenance data. 

A3. A component x is repaired at cycle T only in the following cases: 

a. NG occurs during cycle T and component x was in failed state at 

the departure of cycle T 

b. Component x fails during cycle T and NG occurs during cycle T. 

c. Component x fails during cycle T, NG does not occur during 

cycle T and the airline refuses the degraded mode for the x 

component. 

 

A4. When a component is repaired during cycle T, it is assumed to be working at the 

departure of cycle T+1. 

A5. In the cases of NG during cycle T, all the equipments failed before or during 

cycle T are repaired.  

A6. The degraded mode acceptance by the airline during cycle T (ADMT) can occur 

when both a component fails and NG does not occur during cycle T. Once a 

degraded mode has been accepted for component x, it remains failed unless NG 

occurs during the following cycles. 

A7. Given that a component has failed during cycle T without inducing NG, we 

assume that ADMT (the degraded mode acceptance event) is independent of both 

x (the component) and T (the cycle). 

Remark that his conditional probability quantity is in practice given by the 

airline maintenance strategy and by the pilot behavior. Note that due to the NG 

coupling effect, the non-conditional probability of the degraded mode 

acceptance depends upon cycle T, but is independent of the failed component. 
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A8. The airline refuses degraded mode during cycle T (RDMT) can occur when both 

a component fails and NG does not occur during cycle T. Once a degraded mode 

has been refused for component x, it is repaired and it is assumed to be working 

at the beginning of cycle T+1. 

A9. Given that a component has failed during cycle T without inducing NG, we 

assume that RDMT (the event that the airline refuses the degraded mode) is 

independent of both x and T. 

The strictly analogous remark of A7 for ADMT applies also here for RDMT. 

A10. The component failure rates are supposed to be different but independent of the 

cycle (constant through the sequence of cycles). 

A11. We assume the following negative dependency property: at the departure of 

cycle T, the probability that both components x and y are in failed state is 

smaller than the individual probability product.  More formally, let 

yxSyx ≠∈ ,, be two components. Then,  

 { } { } { }TTTT yDxDyDxD PrPrPr ×≤∩ .  

As a direct consequence, we have the following general result: Let Sx ∈ and A 

a subset of the remaining components ( SA ⊂ with Ax ∉ ). Then, 

( ) { } ( )








×≤






















∩

∈∈

II
Ay

TT

Ay

TT yDxDyDxD PrPrPr . 

Remark: this negative dependency assumption is also equivalent to: 

 For all pairs of components Syx ∈, ( yx ≠ ):  

 { } { } { }TTTT yDxDyDxD PrPrPr ×≤∩ . 
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The negative dependency property is a consequence of both the maintenance 

strategy (see Fig. 2), and the fact that we deal with highly reliable components 

(see Appendix for a detailed justification). 

3.   From analytic developments to efficient computation 

The objective of this section is to compute at each cycle T estimates of the probabilities 

of the main events displayed on Fig. 2: NG (No Go dispatch condition on the system), 

ADM (Accepted Degraded Mode), and RDM (Refused Degraded Mode), which are in-

service aircraft reliability indicators at the preliminary design stage.  We present our 

methodology for computing these probabilities in four steps. In Subsection 3.1, we 

develop recursive analytical formulae (from cycle T to cycle T+1) for the three main-

event probabilities { }TNGPr , { }TADMPr , and { }TRDMPr . However, these 

formulae rely on two probabilities that are not computationally tractable for real-world 

aeronautical systems. Thus, in Subsection 3.2 we develop astute bounds on probabilities 

related to minimal sets of the NG fault tree. These bounds, in turn, allow us in Subsection 

3.3 to derive a bounding methodology for the above conditional NG event probabilities. 

Finally, we put these results together in Subsection 3.4 to derive an overall iterative 

scheme based on the initial conditions (at cycle T=1) and input data, in order to obtain an 

algorithm, called BA, for computing tight bounds for the three main-event probabilities.  

This algorithm does not rely on dynamic fault-tree analysis, and therefore it meets 

industrial computational time constraints for the systems considered in preliminary 

design. 
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3.1.   Probabilities of the main events: recursive formulae 

In this subsection, assuming that probability { }TxDPr  is given for all components x in 

S, we show how to obtain, from this information, analytic formulae of the main-event 

probabilities: { }TNGPr , { }TADMPr , { }TRDMPr , and consequently { }1Pr +TxD  

for all x in S. The latter probability will enable us to restart the iterative process. 

When a NG occurs during cycle T, a component must have failed during this cycle. 

Therefore, we have: 

( )U
Sx

TTTT xDxFNGNG
∈

∩∩= . 

Because the events { }
SxTxF

∈
are disjoint (see Assumption A2), we obtain: 

{ } { } { } { }∑
∈

××∩=
Sx

TTTTTTT xDxDxFxDxFNGNG PrPrPrPr . (1) 

Similarly, for the second main event TADM , we have:  

 ( )U
Sx

TTTTT xDxFNGADMADM
∈

∩∩∩=  (see Fig. 3). 

This implies 

{ } { } { }( ) { } { }∑
∈

××∩−×∩∩=
Sx

TTTTTTTTTTT xDxDxFxDxFNGxDxFNGADMADM PrPrPr1PrPr

.  (2) 

Again, from Fig. 3, ( )U
Sx

TTTTT xDxFNGRDMRDM
∈

∩∩∩=  and therefore: 

{ } { } { }( ) { } { }∑
∈

××∩−×∩∩=
Sx

TTTTTTTTTTT xDxDxFxDxFNGxDxFNGADMRDM PrPrPr1PrPr

.  (3) 

Finally, in accordance with Fig. 3, we have: 

( ) ( )TTTTTTT xDxFNGADMNGxDxD ∩∩∩∪∩=+1 . 

Hence, the probability of component x not working at the next cycle, T+1, is: 



 

13 

{ } { } ( ){ }
{ } { }( ) { } { }.PrPrPr1Pr

PrPrPr 1

TTTTTTTTTT

TTTT

xDxDxFxDxFNGxDxFNGADM

xDNGxDxD

××∩−×∩∩+

∩−=+

  (4) 

 

Except for { }TT xDNG ∩Pr  and { }TTT xDxFNG ∩Pr , all values involved in the 

above formulae are known from inputs (see Subsection 2.2) and from the given 

probabilities { }
SxTxD

∈
Pr . The next two subsections will address the issue of bounding / 

approximating these two unknown probabilities.  

 

3.2.   Bounds related to minimal set probabilities 

The first step for bounding the two unknown probabilities { }TT xDNG ∩Pr  and 

{ }TTT xDxFNG ∩Pr , is to exhibit, for each minimal cut set 
i

MC  and for each 

minimal path set 
jMP , upper bounds on events 

i

TMC  (all components of 
i

MC  are 

failed at the end of cycle T) and on events 
j

TMP ( all components of 
jMP  work at the 

end of cycle T).  More precisely, we derive two types of recursive bounds. The first type 

is related to minimal cuts.  In Theorem 1 below, we provide bounds on 

{ }TT

i

T xDxFMC ∩Pr  and { }TTT

i

T xDyDyFMC ∩∩∩Pr  for all i, ki ≤≤1 , 

and for all components xySyx ≠∈ ,, . The second type of recursive bounds, given by 

Theorem 2, relates to minimal paths and provides bounds on { }TT

j

T xDxFMP ∩Pr  

and { }TTT

j

T xDyDyFMP ∩∩∩Pr  for all j, pj ≤≤1 , and for all components 

xySyx ≠∈ ,, .  All the upper bounds given by Theorems 1 and 2 can be computed 
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from input data and probabilities { } SxxDT ∈,Pr .  These bounds will be used in 

Subsection 3.3 in order to estimate the two unknown probabilities { }TT xDNG ∩Pr  and  

{ }
TTT xDxFNG ∩Pr . 

 

Theorem 1. 

Consider the i
th

 minimal cut, ki ≤≤1 , and two components Syx ∈,  with yx ≠ . We 

then obtain: 

i)    { }

{ }

{ }












∈≤∩

∏
≠
∈

;,0

,
Pr

Pr

Pr

otherwise

MCxif
xD

yD

xDxFMC i

T

xy
MCy

T

TT

i

T

i

 

ii) 

{ } { } { } { }













∈×
















×
≤∩∩∩

∏
≠≠

∈

.,0

,PrPrPr
Pr

,

otherwise

MCyifxDzDyDyF
xDyDyFMC

i

T

yzxz
MCz

TTT

TTT

i

T i

 

 

Proof. 

Let us consider the event that all components of the minimal cut 
i

MC  are in failed state 

during cycle T. If 
i

MCx ∈ and x has failed during cycle T, following Assumption A2, 

we neglect the event that more than one component fail during one phase, and then, we 

assume that all the other components of this minimal cut have failed before. Thus, we 

have: 
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If we consider the minimal cuts for a cut 
i

MC to occur at T, a component 

i
MCx ∈ must fail during the current cycle (only one according to Assumption A2), and 

the other components have to be lost at the beginning of the cycle T. Thus, this event can 

be rewritten as  

 













∅

∈∩∩
















=∩∩
≠
∈

.,

,

otherwise

MCxifxDxFyD
xDxFMC

i

TT

xy
MCy

T

TT

i

T i

I
 

Let
i

MCx ∈ ,  

{ }

.PrPr

PrPr

















∩
















×
















∩
















=

















∩∩
















=∩∩

≠
∈

≠
∈

≠
∈

T

xy
MCy

TT

xy
MCy

TT

TT

xy
MCy

TTT

i

T

xDyDxDyDxF

xDxFyDxDxFMC

ii

i

II

I

 

The fact that { }TT

xy
MCy

TTT xDxFyDxDxF

i

PrPr =
































∩

≠
∈

I  is due to the probability 

independence of failure (A1). 

We use the inclusion of events 

















⊆∩
















≠
∈

≠
∈

II
xy
MCy

TT

xy
MCy

T
ii

yDxDyD  and the 

overvaluation of their probabilities that can be deduced. Hence, with Assumption A11 

(negative dependency) we obtain: 
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{ } { }

{ } { }.PrPr

PrPrPr

∏
≠
∈

≠
∈

×≤

































×≤∩∩

xy
MCy

TTT

xy
MCy

TTTTT

i

T

i

i

yDxDxF

yDxDxFxDxFMC I
 

Consequently, with the equality  

{ } { } { }TTTT

i

TTT

i

T xDxFxDxFMCxDxFMC ∩×∩=∩∩ PrPrPr , we 

conclude. 

ii) An analogous development of the previous proof is used to demonstrate the second 

overvaluation. 

Let SxMCy i ∈∉ , .  The cut cannot occur and we have: 

 ∅=∩∩∩ TTT

i

T xDyDyFMC . 

Let SxMCy i ∈∈ , .  The cut will occur if all the other components are in a failure 

state at the beginning of the cycle.  Thus, we have: 

 TTT

yzxz
MCz

TTTT

i

T xDyDyFzDxDyDyFMC
i

∩∩∩
















=∩∩∩

≠≠
∈

I
,

 

Hence, if SxMCy i ∈∈ , , 
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{ }

{ } .PrPr

PrPrPr

,

,,

















∩×≤

















∩∩×
















∩∩=∩∩∩

≠≠
∈

≠≠
∈

≠≠
∈

T

yzxz
MCz

TTT

TT

yzxz
MCz

TTT

yzxz
MCz

TTTTT

i

T

xDzDyDyF

xDyDzDxDyDzDyFxDyDyFMC

i

ii

I

II

  

The previous development relies on the fact that  

{ }TTTT

yzxz
MCz

TT yDyFxDyDzDyF
i

PrPr

,

=
















∩∩

≠≠
∈

I  (from the probability 

independence of failures), and on the inclusion of the following events 

T

yzxz
MCz

TT

yz
MCz

TT xDzDxDzDyD
ii

∩
















⊂∩
















∩

≠≠
∈

≠
∈

II
,

 . 

Hence, with Assumption A11 (negative dependency) we conclude: 

{ } { } { } { }T

yzxz
MCz

TTTTTT

i

T xDzDyDyFxDyDyFMC
i

PrPrPrPr

,

×
















×≤∩∩∩ ∏
≠≠

∈

. □ 

 

Theorem 2. 

Consider the j
th

 minimal path, pj ≤≤1 , and two components Syx ∈,  with yx ≠ . 

Then, we have: 

i) { } { }





 ∈

≤∩ ∏
∈

.,Pr

,0

Pr otherwiseyD

MPxif

xDxFMP

j
MPy

T

j

TT

j

T  
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ii)  

 

Proof. 

i) If we consider the minimal paths, we exploit the observation that one component must 

fail during the current cycle in order to prevent all minimal paths from occurring. Again, 

using Assumption A2, the other components necessarily work at the beginning of the 

cycle. Thus, for any component Sx ∈ , we have: 









∩∩














∈∅

=∩∩

∈

.,

,

otherwisexDxFyD

MPxif

xDxFMP
TT

MPy

T

j

TT

j

T

j

I
 

The next development relies on (the remark in) Assumption A11, and on the fact that 

{ }TT

MPy

TTT xDxFyDxDxF
j

PrPr =

























∩

∈

I   (from the probability independence 

of failures, Assumption A1): 

{ }
{ } { } { }











×













×

∈

≤∩∩

∏
∈

.,PrPrPr

,,0

Pr
otherwisexDyDxDxF

MPxif

xDxFMP
T

MPy

TTT

j

TT
j

T

j

 

ii) We use a development analogous to that of the previous proof to demonstrate the 

second overvaluation. 

{ }

{ } { } { } { } { }

















××








×

∈∈

≤

∩∩∩

∏
∈

.,PrPr,PrPrPrmin

,0

Pr

otherwisexDyDyFyDzDyDyF

MPyorMPxif

xDyDyFMP

TTTT

MPz

TTT

jj

TTT

j

T

j
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The event is divided as follows: 









∩∩∩








∈∈∅

=∩∩∩

∈

,

,

otherwisexDyDyFzD

MPyorMPxif

xDyDyFMP
TTT

MPz

T

jj

TTT

j

T

j

I

  

but we cannot apply Assumption A11 to conclude directly. 

On the other hand, with
jMPyx ∉, , we have the following two inclusions: 

,TT

MPz

TTTT

j

T yDyFzDxDyDyFMP
j

∩∩







⊆∩∩∩

∈

I  

.TTTTTT

j

T xDyDyFxDyDyFMP ∩∩⊆∩∩∩  

From the first inclusion, with (the remark in) Assumption A11, we obtain the following 

overvaluation: 

{ } { } { } { }T

MPz

TTTTTT

j

T yDzDyDyFxDyDyFMP
j

PrPrPrPr ×







×≤∩∩∩ ∏

∈

. 

From the second one, we use the inclusion 
TTT xDxDyD ⊂∩ to obtain the following 

overvaluation: 

{ } { } { } { } { }
TTTTTTTTTTT

j

T xDyDyFxDyDxDyDyFxDyDyFMP PrPrPrPrPr ×≤∩×∩≤∩∩∩

We take the minimum of both overvaluations to conclude.             □

  

Remark: For highly reliable systems, the second overvaluation is more efficient than the 

first one.  It corresponds to the following inequality:  

{ } { } { }
T

MPz

TT xDzDyD
j

PrPrPr ≥× ∏
∈

. 
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3.3.   Bounds related to No Go dispatch condition probabilities 

Here, we show how to bound the unknown probabilities { }TT xDNG ∩Pr  and 

{ }
TTT xDxFNG ∩Pr  of Subsection 3.1. More precisely, upper bounds will be derived 

in Theorem 3, using a minimal cut-set decomposition and Theorem 1 (Subsection 3.2). 

Then, using a minimal path-set decomposition and using Theorem 2 (Subsection 3.2), we 

shall derive lower bounds in Theorem 4.  Note that all the bounds on { }TT xDNG ∩Pr  

and { }
TTT xDxFNG ∩Pr  given by Theorems 3 and 4 can be computed from input 

data and the probabilities { } SxxDT ∈,Pr .   

 

Theorem 3. 

For any component Sx ∈ , we have: 

i) { }

{ }

{ } { }∑

∏

=
∈

≠
∈

×≤∩
k

i
MCx

T

xy
MCy

T

TTT i

i

xD

yD

xDxFNG
1

1
Pr

Pr

Pr ,                   (5) 

 where { }


 ∈

=
∈ .0

,1
:1

otherwise

MCxif
i

MCx i  

ii) 

{ } { } { }

{ }

{ } { }













































××≤∩ ∑ ∑

∏

≠
∈ =

∈

≠
≠
∈

xy
Sy

k

i
MCy

T

yz
xz
MCz

T

TTTTT i

i

yD

zD

yDyFxDxDNG
1

1
Pr

Pr

PrPrPr .   

                                                                                                                      (6) 
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Proof.  

i) Let us consider the failure of a component x.  In order to have a NG, at least one 

minimal cut which contains x must occur. Thus, using the general addition theorem 

bound and the fact that U
k

i

i

TT MCNG
1=

= , we have, for any component Sx ∈ : 

{ }

{ }

{ } { } .1Pr

Pr

PrPr

1

1

1

∑

∑

=
∈

=

=

×∩≤

∩≤









∩=∩

k

i
MCxTT

i

T

k

i

TT

i

T

TT

k

i

i

TTTT

ixDxFMC

xDxFMC

xDxFMCxDxFNG U

  

Hence, from Theorem 1, we obtain an upper bound for the NG probability given failure 

of a component Sx ∈ during cycle T: 

{ }

{ }

{ } { } .1
Pr

Pr

Pr
1

∑

∏

=
∈

≠
∈

×≤∩
k

i
MCx

T

xy
MCy

T

TTT i

i

xD

yD

xDxFNG  

Of course, we can also obtain an upper bound for the NG probability using the previous 

overvaluation and Eq. (1). 

ii) Based on formulation (1) of NGT event, an analogous development can be applied to 

the event TT xDNG ∩  to obtain the following overvaluation:  

( )U
xy
Sy

TTTTTT xDNGyDyFxDNG

≠
∈

∩∩∩=∩ . 
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{ } { }

( )

{ }

{ } { }

{ }

{ } { }∑

∏

∑∑

∑

∑

≠
∈

∈

≠
∈

≠
∈ =

≠
∈ =

≠
∈

×























××≤

∩∩∩≤













∩∩∩=

∩∩∩=∩

xy
Sy

MCy
T

yxz
MCz

T

TTT

xy
Sy

k

i

TTT
i
T

xy
Sy

k

i

TTT
i
T

xy
Sy

TTTTTT

i

i

yD

zD

xDyDyF

xDyDyFMC

xDyDyFMC

xDNGyDyFxDNG

,1
Pr

Pr

PrPr

Pr

Pr

PrPr

,

1

1

U

 

with the remarks: 

• { } { }
TTTTTT yDyFxDNGyDyF PrPr =∩∩   

• TTT xDxDyD ⊂∩  , which implies the overvaluation.              

□ 

 

Theorem 4. 

For any component Sx ∈ , we have: 

i) { } { } { }∑ ∏
=

∉
∈

×













−≥∩

p

j
MPx

MPy

TTTT j

j

yDxDxFNG
1

1Pr1Pr                    (7) 
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ii)

{ }
{ } { } { }

{ } { } { } { } { }

{ } { }

.

11

PrPr,PrPrPrmin

PrPrPr

Pr

,

1

∑ ∑
∏

∑

≠
∈

∉

=

∈∈

∈

≠
∈



















××














××










×

−

××≥

∩

xy
Sy

p

MPyx

j

MPxMPy

TTTT

MPz

TTT

xy
Sy

TTTT

TT

i
jj

j

xDyDyFyDzDyDyF

xDyDyDyF

xDNG

    (8) 

 

Proof.  

Let us consider the failure of a component x.  In order to have a NG, all the minimal 

paths not containing x, do not occur at the beginning of the cycle.  

i) If we consider the failure of a component x, to have a NG, Thus, using the general 

addition theorem bound and the fact that I
p

j

j

TT MPNG
1=

= , we have for any 

component Sx ∈ : 

{ }

{ }.Pr1

Pr1

PrPr

1

1

1

∑
=

=

=

∩−≥













∩−=













∩=∩

p

j

TT

j

T

TT

p

j

j

T

TT

p

j

j

TTTT

xDxFMP

xDxFMP

xDxFMPxDxFNG

U

I

 

Hence, from Theorem 2, we obtain an upper bound for the NG probability given failure 

of a component Sx ∈ during cycle T: 
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{ } { } { }.1Pr1Pr
1

∑ ∏
=

∉
∈

×













−≥∩

p

j
MPx

MPy

TTTT j

j

yDxDxFNG  

ii) Based on formulation of NG event from Eq. (1) of the NG event, an analogous 

argument can be applied to the event TT xDNG ∩  to obtain the following 

development:  

TTT

p

MPyx

j

j

TTTTT xDyDyFMPxDyDyFNG

j
T

∩∩∩
















=∩∩∩

∉

=

I
,

1

. 

From the fact that { } { }TTTTT yDyFxDyDyF PrPr =∩  (from the probability of 

independent failures), and using Theorem 2, we derive the following development: 

{ } { }

{ }

{ }

{ } { } { } { }∑ ∑

∑

∑

∑

∑

≠
∈

∉

=

≠
∈

∉

=

≠
∈

∉

=

≠
∈

≠
∈

















∩∩∩−××≥

































∩∩∩
















−∩∩=

















∩∩∩=

∩∩∩=

∩∩∩=∩

xy
Sy

p

MPyx

j

TTT

j

TTTTT

xy
Sy

TTT

p

MPyx

j

j

TTTT

xy
Sy

TTT

p

MPyx

j

j

T

xy
Sy

TTTT

xy
Sy

TTTTTT

j

j

j

xDyDyFMPxDyDyDyF

xDyDyFMPxDyDyF

xDyDyFMP

xDyDyFNG

xDyDyFNGxDNG

,

1

,

1

,

1

PrPrPrPr

PrPr

Pr

Pr

PrPr

U

I

  □ 
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3.4.   The Bound Algorithm (BA) for computing operational interruption rate 

indicators 

In this Subsection, we present recursive formulae for evaluating (lower and upper) 

bounds on probabilities of the three main events: TNG  (a No Go dispatch condition 

occurs during cycle T), TADM  (the airline Accepts the Degraded Mode for take-off at 

the beginning of cycle T+1), and TRDM  (the airline Refuses the Degraded Mode for 

take-off at the beginning of cycle T+1) at each cycle T.   These formulae derive from the 

recursive equation (4) of Subsection 3.1 and from the bounds provided by Theorems 3 

and 4.  These main event probability bounds can easily be computed from the given input 

data (including the given initial conditions at cycle 1, { }1Pr xD , for all component x in 

S.---see Subsection 2.2). From a straightforward application of Bayes rule, we obtain the 

following formulae: 

( ) ( ) { } ( )∑
∈

××∩=
Sx

TTTTTTT xDUBxDxFxDxFNGUBNGUB Pr  

( ) ( ) { } ( )∑
∈

××∩=
Sx

TTTTTTT xDLBxDxFxDxFNGLBNGLB Pr  

( ) { } ( )( ) { } ( )∑
∈

××∩−×∩∩=
Sx

TTTTTTTTTTT xDUBxDxFxDxFNGLBxDxFNGADMADMUB Pr1Pr

 

( ) { } ( )( ) { } ( )∑
∈

××∩−×∩∩=
Sx

TTTTTTTTTTT xDLBxDxFxDxFNGUBxDxFNGADMADMLB Pr1Pr

 

( ) { }( ) ( )( ) { } ( )∑
∈

××∩−×∩∩−=
Sx

TTTTTTTTTTT xDUBxDxFxDxFNGLBxDxFNGADMRDMUB Pr1Pr1

 

( ) { }( ) ( )( ) { } ( )∑
∈

××∩−×∩∩−=
Sx

TTTTTTTTTTT xDLBxDxFxDxFNGUBxDxFNGADMRDMLB Pr1Pr1

where:  
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( )

( )

( ) { }∑

∏

=
∈

≠
∈

×=∩
k

i
MCx

T

xy
MCy

T

TTT i

i

xDLB

yDUB

xDxFNGUB
1

1   

is obtained from inequality (5), and 

 

( ) ( ) { }∑ ∏
=

∉

∈

×−=∩
p

j
MPx

MPy

TTTT j

j

yDUBxDxFNGLB
1

11  

is obtained from inequality (7). 

The above bounds on the three main-event probabilities can be computed from input data, 

because ( )TxDUB , ( )TxDUB , ( )TxDLB , and ( )TxDLB  are easily obtained for all 

component  x in S.  Indeed, for ( )1+TxDUB   and ( )1+TxDLB , we have: 

( ) ( ) ( )
{ } ( )( ) { } ( )TTTTTTTTTT

TTTT

xDUBxDxFxDxFNGLBxDxFNGADM

xDNGLBxDUBxDUB

××∩−×∩∩+

∩−≡+

Pr1Pr

1

and 

( ) ( ) ( )
{ } ( )( ) { } ( ),Pr1Pr

1

TTTTTTTTTT

TTTT

xDLBxDxFxDxFNGUBxDxFNGADM

xDNGUBxDLBxDLB

××∩−×∩∩+

∩−≡+

 

where: 

( ) ( ) { }

( )

( ) { }













































××≤∩ ∑ ∑

∏

≠
∈ =

∈

≠
≠
∈

xy
Sy

k

i
MCy

T

yz
xz
MCz

T

TTTTT i

i

yDLB

zDUB

yDyFxDUBxDNGUB
1

1Pr

 

(using (6)), and 
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( )
{ } ( ) ( )

{ } ( ) ( ) { } ( )

{ } { }

∑∑
∏

∑

≠
∈ =

∉∉

∈

≠
∈



















××














××










×

−

××≥

∩

xy
Sy

p

j

MPxMPy

TTTT

MPz

TTT

xy
Sy

TTTT

TT

jj

j

xDUByDyFyDUBzDUByDyF

xDLByDLByDyF

xDNGLB

1

11

Pr,Prmin

Pr

 

(using (8)).   

Now it remains to consider ( )TxDUB , and ( )TxDLB .  Since 

( ) { } ( )TTT xDUBxDxDLB ≤≤ Pr , and because TxD  is the complement of TxD , we 

have: ( ) ( )TT xDLBxDUB −=1   and ( ) ( )TT xDUBxDLB −=1 . 

 

The above-presented algorithm, that enables us to compute upper and lower bounds for 

the three main events NG, ADM, and RDM at each cycle, will be referred to in the sequel 

as the Bound Algorithm (BA). The complexity of BA for a horizon of T cycles is 

( )( )pc pLmLnT +Ο 2. , where Lc is the maximum length of a minimal cut, and Lp is the 

maximum length of a minimal path.  This complexity largely meets industrial 

computational time constraints for the systems considered in preliminary design.  

Finally, remark that in our in-service aircraft reliability context, only upper bounds are 

crucial in guaranteeing system performance.  Nevertheless, lower bounds can give 

indications on the maximal error of the upper-bound overestimation. 

 

 

4.  Computational experiments 
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In view of its industrial implementation, we have to evaluate the practical relevance of 

our Bound Algorithm (BA). We will compare the performance of BA with that of the 

Markov approach. The Markov approach has the advantage of providing the exact 

solution, allowing us to evaluate the precision of BA and its relative efficiency. Due to 

the excessive CPU time required by the Markov approach, we restrict this comparison to 

a horizon of 100 flight cycles. This horizon is sufficient for industrial validation purposes 

because, in practice, predictions in aircraft reliability generally do not consider horizons 

greater than 100 cycles. 

For each application considered below, we start the process with all components 

working, i.e. { } 1Pr 1 =xD  for all x in S. We implemented both the BA and Markov 

approaches in MATLAB. We perform all computational experiments on a 256 Mb PC 

Pentium III running under Windows 2000 (except for some CPU-intensive runs of the 

Markov approach that are performed on a Sun SF6800 with 900 MHz CPU under Unix 

Solaris 8). 

Let us now report numerical results on following applications: standard k-out-of-n:F  

system examples, a typical Air Data Inertial Reference System (with fictitious data), and 

an aircraft refuel system. 

 

4.1 k-out-of-n:F systems 

In this application, the components of each k-out-of-n:F systems are assumed to be of 

identical independent distributions. The worst-case complexity for k-out-of-n:F systems 

is: O(n
3
.2

n
) for BA, against O(n.4

n
) for the Markov approach. We shall study all pairs 

(k,n) such that 122 ≤≤≤ nk . These values cover a wide range of k-out-of-n aircraft 
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system instances.  We choose { } 4
10Pr

−=TT xDxF  for all component x in S, a typical 

component failure rate in aircraft reliability. 

In the computational experiments that follow, averages are taken over 100 cycles (i.e. 

100...2,1=T ). Table 1 displays the average BA absolute error of the upper bound for 

{ }TNGPr  (probability of a No Go dispatch condition during cycle T). The maximal 

absolute error value of Table 1 is 5.3E-4. This error is not significant because it lies 

completely within the reliability bounds of data uncertainties. The analogous results on 

TADM  and TRDM  are not presented because they derive directly from those on 

TNG , and are even much better in terms of performance (precision).  Our algorithm BA 

requires at most 258 seconds of CPU time, whereas the exact Markov approach needs up 

to 3,000 seconds.  

 

Table 1. Absolute error of the upper bound for k-out-of-n:F systems 

             N =  2 3 4 5 6 7 8 9 10 11 12 

k = 2 1.64E-08 3.08E-06 1.21E-05 2.94E-05 5.72E-05 9.74E-05 1.51E-04 2.21E-04 3.07E-04 4.11E-04 5.33E-04 

k = 3  6.26E-08 3.88E-07 1.30E-06 3.23E-06 6.72E-06 1.24E-05 2.10E-05 3.32E-05 5.00E-05 7.22E-05 

 k = 4  1.64E-09 1.10E-08 4.11E-08 1.15E-07 2.67E-07 5.47E-07 1.02E-06 1.77E-06 2.91E-06 

  k = 5  3.82E-11 2.79E-10 1.15E-09 3.53E-09 8.95E-09 1.99E-08 4.01E-08 7.49E-08 

   k = 6  8.24E-13 6.63E-12 3.00E-11 1.00E-10 2.75E-10 6.59E-10 1.43E-09 

    k = 7  1.68E-14 1.48E-13 7.33E-13 2.65E-12 7.87E-12 2.03E-11 

     k = 8  3.25E-16 3.16E-15 1.70E-14 6.65E-14 2.12E-13 

      k = 9  5.75E-18 6.13E-17 3.57E-16 1.51E-15 

       k = 10  4.17E-19 4.53E-18 2.68E-17 

        k = 11  5.87E-21 6.95E-20 

         k = 12  8.21E-23 
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4.2 Air Data Initial Reference System 

To illustrate the efficiency of our BA algorithm, we consider a typical aircraft avionic 

system. The fault tree in Fig. 4 models it. It is a large system with 7 different types of 

components that correspond to 21 components, with 99 minimal cuts, and 3 minimal 

paths. Again, we choose { } 4
10Pr

−=TT xDxF  for all component x in S. BA requires 

26.84 seconds of CPU time to compute both UB( TNG ) and LB( TNG ) bounds. The 

Markov requires about 51 hours of CPU time. 

 

Fig. 4. Fault tree modeling the No Go dispatch condition on Air Data Inertial Reference System 

 

Table 2 displays the difference between both bounds and the exact Markov results as a 

function of the number of cycles. Obviously, the maximal error is obtained for 100 

cycles. This maximal error of 1.45 % is completely satisfactory for predicting in-service 

aircraft reliability.  

Table 2. Absolute error of the upper and lower bounds for the Air Data Inertial Reference System 

Cycle T 1 2 3 10 30 50 70 100 

{ }TT NGNGUB Pr)( −  
0 1.14E-

09 

3.08E-

09 

3.79E-

08 

3.14E-

07 

7.90E-

07 

1.39E-

06 

2.43E-

06 

{ }TT NGNGLB Pr)( −  
0 -

1.34E-

09 

-

3.87E-

09 

-

5,37E-

08 

-

4,74E-

07 

-

1.23E-

06 

-

2.25E-

06 

-

4.12E-

06 
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4.3 Aircraft refuel system 

We consider a refuel system of an Airbus aircraft.  Fig. 5 displays the associated fault tree 

involving the 15 different components.  Here, we choose { } 5
10Pr

−=TT xDxF  for all 

component x in S, a typical component failure rate in aircraft reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Fault tree modeling the Airbus refuel system 

 

After two weeks of operational use (100 cycles), BA obtained for { }TNGPr  (with 

T=100) the following results: upper bound on the No Go event: )( TNGUB  = 7.3E-5, 

and lower bound on the No Go event: )( TNGLB  = 6.2E-5. Our BA method required 

261 seconds of CPU time, whereas the Markov model needed around 2 hours (and 

yielded { }TNGPr  = 6.5E-5).  Again, due to real-world data uncertainties, this 

approximation is completely satisfactory for predicting in-service aircraft reliability. In 

particular, this Airbus refuel system case shows that BA is a promising method both in 

terms of precision and efficiency when applied to a real aircraft system. 
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5.  Conclusion  

In this paper, we introduced a general mathematical framework for modeling in-service 

aircraft reliability at the preliminary design stage.  Then, we proposed an efficient 

algorithm (BA) to estimate operational interruption rate indicators which meets industrial 

computational time constraints for the systems considered in preliminary design. We 

demonstrated the precision of this method on real aircraft systems.  Note that, all the 

results obtained in this paper can straightforwardly be extended to the aging effect case 

with an “as good as new” maintenance strategy. For the sake of simplicity, we restricted 

our presentation to an elementary set of maintenance tasks: “removal” and “damage 

tolerance”. Current industrial implementation at Airbus does include other types of 

maintenance tasks (planned maintenance, preventive maintenance etc…). 

Future related work will attempt at extending our approach (model and algorithm) to the 

broader problem of aircraft punctuality by computing the probability of operational 

interruption. 
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Appendix A.   Justification of Assumption A11: 

{ } { } { }TTTT yDxDyDxD PrPrPr ×≤∩ . 

We shall show that this assumption is a direct consequence of the following two facts: 

{ } 0Pr >TT xDyD     and   0Pr 1 >
















∩

∈

−U
Sz

TT zFyD ,    (F1) 

and       { }
( ) ( )( )1

1
Pr 1

+
≤∑

∈

−
TNTM

zF
Sz

T ,            (F2) 
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









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∈

TT

TT
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
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
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


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∈

−

∈

−

∈

U

I
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TT

Sz

TT
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zFyD

zFyD
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1

1

Pr

Pr

max: . 

Due to the high reliability of aircraft components, (F1) and (F2) are always verified in 

practice. 

Proof of A11: 

Using facts (F1) and (F2) above, we obtain the following inequalities:  
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{ }
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( )( ) { }

( )( ) { } { }
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TTT
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Then, from this last inequality, A11 is straightforward.   □ 
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