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ABSTRACT: Today, around 30% of manufactured plastic goods rely on injection moulding. The cooling time can 

represent more than 70% of the injection cycle. In this process, heat transfer during the cooling step has a great 

influence both on the quality of the final parts that are produced, and on the moulding cycle time. In the numerical 

solution of three-dimensional boundary value problems, the matrix size can be so large that it is beyond a computer 

capacity to solve it. To overcome this difficulty, we develop an iterative dual reciprocity boundary element method 

(DRBEM) to solve Poisson’s equation without the need of assembling a matrix. This yields a reduction of the 

computational space dimension from 3D to 2D, avoiding full 3D remeshing. Only the surface of the cooling channels 

needs to be remeshed at each evaluation required by the optimisation algorithm. For more efficiency, DRBEM 

computing results are extracted stored and exploited in order to construct a model with very few degrees of freedom. 

This approach is based on a model reduction technique known as proper orthogonal (POD) or Karhunen-Loève 
decompositions. We introduce in this paper a practical methodology to optimise both the position and the shape of the 

cooling channels in 3D injection moulding processes. First, we propose an implementation of the model reduction in the 

3D transient BEM solver. This reduction permits to reduce considerably the computing time required by each direct 

computation. Secondly, we present an optimisation methodology applied to different injection cooling problems. For 

example, we can minimize the maximal temperature on the cavity surface subject to a temperature uniformity 

constraint. Thirdly, we compare our results obtained by our approach with experimental results to show that our 

optimisation methodology is viable. 

KEYWORDS: BEM, optimisation, model reduction, injection moulding, SQP. 

 

 

1 INTRODUCTION  

Today, around 30 % of manufactured plastic goods rely 

on injection moulding, which is based on the injection of 

a fluid plastic material into a closed mould. The cooling 

time can represent more than 70 % of the injection cycle. 

Moreover, in order to avoid defects in the manufactured 

plastic parts, the temperature in the mould must be 

homogeneous. Thus, the design and the position of the 

cooling channels are crucial elements in the design of the 

mould. In order to decide the position and the shape of 

the cooling channels in the mould, designers commonly 

rely on experience and trial trial-and-error method. This 
manual design process becomes inadequate and 

unpractical for complex problems. As a consequence, 

designers need a more powerful tool integrating the 

cooling analysis, its numerical simulation, and even 

optimisation algorithms into the design process. We 

propose in this paper a practical methodology to 

optimise both the position and the shape of the cooling 

channels in 3D injection moulding processes. 

For the evaluation of the temperature, required both by 

the objective and the constraint functions, we must solve 

3D heat-transfer problems via numerical simulation. 

Several numerical methods such as Finite Element 
Method (FEM) [1] [2] or Boundary Element Method 

(BEM) [3][4] can be used for solving the heat-transfer 

problem. Mathey [5] adopted the Dual Reciprocity 

Boundary Element Method (DRBEM), to calculate the 

transient temperature distributions during the cooling 

process, and to used BEM to solve the heat-transfer 

problems with a Sequential Quadratic Programming 

(SQP) [6] algorithm to improve mould injection cooling. 

She minimizes an objective function that is the weighted 

sum of two criteria. Her first criterion is the average 

temperature at the plastic-part surface. Her second 
criterion is the sum of the temperature variations with 



respect to the average temperature. However, her 

approach is restricted to 2D. 

Our contribution is threefold. First, we address 3D 

mould geometries with a BEM approach reducing the 

dimension of the computation space from 3D to 2D, 

avoiding full 3D remeshing: only the surface of the 

cooling channels needs to be re-meshed at each 

evaluation required by the optimisation algorithm. 

Secondly, we propose a general optimisation models that 

attempts at minimizing the desired overall low 

temperature of the plastic-part surface subject to 
constraints imposing homogeneity of the temperature. 

Thirdly, we use the reduction model [7] to reduce the 

CPU time of the optimisation procedure, and we 

demonstrate that our optimisation methodology is viable 

with encouraging preliminary results on a semi-industrial 

plastic part. 

 

2 3D HEAT TRANSFER PROBLEM 

This section describes the heat-transfer problem that 

must be solved at every temperature evaluation required 

by the optimisation algorithm.  

To solve the heat transfer problem, the following 

boundary conditions must be satisfied : 

 

 

Figure 1: Boundary conditions applied on the mould 
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where !1, !2, and !3 are the mould cavity surface, the 

cooling channel surface, and the mould exterior surface, 

respectively. The value of the instantaneous heat flux q 

from the polymer part to the mould can be calculated by 

performing a transient-part analysis using finite 

difference method. Here, hc represents the heat transfer 

coefficient between the mould and the coolant, and ha 

represents the heat transfer coefficient between the 

mould and the temperature channels Tc. ha represents the 

heat transfer coefficient between the mould and the 

ambient air at a temperature Ta. 

Unsteady heat conduction problems reduce to the 
following Poisson equation: 
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where t denotes time; M is the vector coordinates of a 

current point; a is the diffusivity, and the dot stands for 

the temporal derivative Eq (2) is supplemented with an 

initial condition T(M,t=0) and linear boundary 
conditions. The temperature is approximated within the 

entire domain ", including the boundary ! using a global 

interpolation formula: 
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where fj are known functions in space, #j are unknown 

time-dependent functions, and I and B are respectively 

the number of internal nodes and collocation points 

located on the boundary.  

Following the Dual Reciprocity Method procedure, the 

right-hand side of Eq (2) is approximated by Eq (3). The 

result is multiplied by the Green solution T*. We 
integrated by parts twice. We finally obtain the DRBEM 

integral equation : 
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Where C equal to 1 inside the domain ", and to 0.5 on 
its boundary $. 

 

3 THE REDUCTION MODEL 

We assume that the evolution of a certain vector field is 

known T(x,y,z,t). The main idea of the Karhunen-Loève 

(KL) decomposition is know obtain the most typical or 

characteristic structure %!(x,y,z,t) among these Tp(x,y,z,t). 
This is equivalent to obtain a function %! maximizing # 

defined by :  
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Using a vector notation, Eq (5) takes following matrix 

form :  
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Where the eigenvectors do not depend on time. Let us 

define the following matrix Q containing the discrete 

field history :  
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Now, we can try to use n<N eigenvectors for 

approximating the solution of a problem slightly 



different from the one that was used to 

define
kk x "" 5)( . For this purpose, we need to define 

the following matrix B : 
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4 OVERALL OPTIMIZATION 

METHODOLOGY 

We first present in this section how we formulate our 

problem under a mathematical programming form. In the 

sequel, x will denote the vector of optimisation variables 

(position and shape parameters for the cooling channels). 
Since the output of the heat-transfer problem is a 

function of x, we shall make explicit the dependence of 

the temperature measurements upon the position and 

shape parameters ( ){ }
Sii xTx ": . 

Most practical optimisation problems involve several 

(often contradictory) objective functions. The simplest 

way to proceed in such a multi-criterion context is to 

consider as objective function a weighted sum of the 

various criteria. This involves choosing appropriate 

weighting parameter values. An obvious alternative is to 

use one criterion as objective function while requiring, in 
the constraints, maximal threshold levels for the 

remaining criteria. We choose here the latter approach 

because we do know a threshold level value for the 

maximal temperature variation under which any 

variation is equally acceptable. More precisely, we 

formulate our problem under the form:  
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where f is a real-valued function used to stipulate the 

uniformity-temperature constraint, and g(x) is a general 

vector-valued non-linear function. The complete 

methodology to couple the thermal solver and the 

optimisation algorithm procedure is present in [6] 

The general constraints g(x) & 0 represent any geometry-

related or other industrial constraints, such as: 

• upper/lower-bound constraints on the xi's, 

• keeping the cooling channels within the mould, 

• Technically-forbidden zones where we cannot 

position the cooling channels (for instance due 

to the presence of ejectors), 

• constraints stipulating a minimal distance 

between every pair of cooling channels to avoid 

inter-channels collision. 

 

5 APPLICATION  

In this section, we report computational experiments on 

a 3D plastic part whose features are displayed on Figure 

2 (unit in mm). It is a semi-industrial injection mould 

design for the European project: Eurotooling 21. 

 

Figure 2 : Plastic part dimension 

The history matrix, corresponding to the first injection 

cycle time, is computed using steady DRBEM code. The 

Temperature in a mould, for the next injection cycle 
time, is computed using the reduction model method. 

We use here the l! (max) norm for the objective 

function:  
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Where S is the set of the temperature measurement 

locations. We optimise the cooling channel locations on 

our 3D model. For illustration purposes, we consider 

here 8 cooling channels. We choose for the optimisation 

routine, the Matlab8 optimisation toolbox SQP 
subroutine fmincon [6].  

 

Figure 3 : Initial and optimised position of the cooling 
channels. 

The geometrical optimisation parameters are here the 

coordinates of the end points, P1 and P2 of each cooling 

channel (Figure 3). Since P2 can be expressed in terms of 

the other coordinates and since the channel length (L) is 

constant, the optimisation parameters for locating the ith 
cooling channel are completely determined by P1 = Xi, 

Yi, Zi, i = 1 . . . 8. For our application Zi is fixed and 

therefore our problem involves 16 optimisation 

variables. We use as starting point, a heuristic solution 

provided by an experienced engineer. On average, one 



objective function evaluation requires 14 min of CPU 

time. Since, we compute gradients using finite difference 

approximation, one optimisation iteration involves 4H of 

CPU time (Figure 4). 

 

 

Figure 4 : Optimised position of the cooling channels. 

 

Figure 5 : Temperature profile at the surface of the 
mould cavity before and after optimisation. 

One of the advantages of our optimisation approach is 

that the user-provided initial channel geometry is not 

required to satisfy all constraints. Moreover, the 

optimised geometry is guaranteed to satisfy all 

constraints. We observe on Figure 5 both temperature 

variance and temperature average decrease significantly. 

 

Figure 6 : Temperature history of the first 40 cycles. 

On Figure 6, Curves (a) and (b) give respectively the 

maximum of the temperature in the cavity before and 

after optimisation. Curve (c) represents the average 

temperature at the cavity surface after optimisation.  

The reduction model permit to reduce the CPU of the 

optimisation from 100H to DRBEM alone 7,4H for 

DRBEM + RM.  

 

CONCLUSION AND PROSPECTS 
We introduced a methodology based on the use of 
DRBEM to solve the heat transfer equation during the 

cooling step of the moulding process, for a 3D problem. 

Our preliminary tests on a semi-industrial plastic part 

showed that our approach is viable for optimising the 

design of cooling channels for injection moulding. Our 

modelling and optimisation methodology can easily take 

into account a large range of industrial constraints. 

Various optimisation criteria can be provided by the user 

(either directly as a cost function or within constraints). 

We presently work on more complex 3D moulds with 

more general parameterisations of the cooling channels.  

This optimisation methodology reduction model by a 
factor 30. We used gradient optimisation algorithm, so it 

will be important to study the influence of initials 

conditions.  
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