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Abstract

Plunge milling is a recent and efficient production mean for ma-
chining deep workpieces, notably in aeronautics. This paper focuses
on the minimization of the machining time by optimizing the val-
ues of the cutting parameters. Currently, neither Computer-Aided
Manufacturing (CAM) software nor standard approaches take into
account the tool path geometry and the control laws driving the tool
displacements to propose optimal cutting parameter values, despite
their significant impact. This paper contributes to plunge milling opti-
mization through a Mixed-Integer NonLinear Programming (MINLP)
approach, which enables us to determine optimal cutting parameter
values that evolve along the tool path. It involves both continuous
(cutting speed, feed per tooth) and, in contrast with standard ap-
proaches, integer (number of plunges) optimization variables, as well
as nonlinear constraints. These constraints are related to the Com-
puter Numerical Control (CNC) machine tool and to the cutting tool,
taking into account the control laws. Computational results, validated
on CNC machines and on representative test cases of engine housing,
show that our methodology outperforms standard industrial engineer-
ing know-how approaches by up to 55% in terms of machining time.
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1 Introduction

Several industrial processes, arising for instance in the aeronautical industry,
are based on material removing (milling) that can be performed by several
techniques. For aeronautical workpieces, the quantity of material to be re-
moved often represents a very large proportion of the stock material. The
most efficient milling processes include: high-speed machining [18, 7], inclined
milling with balancing of the transverse cutting forces [9, 15], and plunge mil-
lling [16, 6, 5]. Among them, plunge milling is a recognized highly-efficient
process thanks to its high removal rate due to its distribution of cutting forces
on the tool. More precisely, the radial force that causes chatter is reduced
and the axial cutting force generally compresses the tool on the spindle and
then increases its stiffness. This strategy is less subject to vibration than
the other above-mentioned milling techniques. This is especially crucial for
deep milled workpieces. Plunge milling is essentially used for making vertical
walls (lateral plunge milling), enlarging holes, or slotting [23]. In the case of
lateral plunge milling, the tool moves parallel to the wall to be produced
[22]. The thickness of the wall to be milled determines the radial depth of
cut. When plunge milling is used to enlarge holes, all the teeth of the tool
cut simultaneously, and the radial depth of cut corresponds to the difference
between the radius of the pre-existing hole and that of the tool. In the case of
slotting (also referred to as full-slot plunge milling), the tool is fully engaged
into the material to be milled (see Fig. 1), the cutting width being equal to
the tool diameter [5]. Plunge milling is also called z-axis milling, in three-axis
machining. It is composed of a sequence of cycles which are repeated along a
guide curve provided by a Computer-Aided Manufacturing (CAM) software.
Each cycle includes three phases: plunging, rising, and offset [16]. The tool
removes material during the plunging phase in the z-axis. Then, it retracts
during the rising phase. Finally, it steps over in the x- and/or y-axis during
the offset phase so as to make an overlapping vertical cut at the next cycle
(Fig. 1).

Recent research on plunge milling optimization focuses on geometry tool
selection, tool path generation, cutting parameters, and kinematic capabil-
ities of the machine tools. According to the type of operation (example:
roughing pockets, roughing turbine blades,...), the tool path can be opti-
mized. For example, Ren et al. [17] and Sun et al. [20] study plunge milling
tool-path generation. The former optimize the machining time, while the
latter concentrate on improving the cutting efficiency and increasing the life
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Figure 1: Plunge Milling

time. More recently, Han et al. [10] propose a method for optimizing both the
plunge tool selection and the tool path generation in the case of rough ma-
chining of free-form surface impellers. Remark that in the context of pocket
milling, [1] also optimizes both the tool-path generation and the machine-tool
speed (feed) under cutting-force constraints.

Studies that rely on the cutting parameter optimization to improve the
plunge milling efficiency are relatively rare. These parameters determine the
cutting forces, the power consumption of the spindle, the stability in machin-
ing, and the metal removal rate. Zhuang et al. [22] propose an optimization
of some cutting parameters in the case of lateral plunge milling. They con-
sider constraints on cutting forces, cutting parameters, and stability criteria
and use the frequency domain method defined in [12]. Their objective is to
maximize the metal removal rate by optimizing the radial depth of cut, the
radial offset and the cutting speed. However, in their study, the feed per
tooth is not optimized, its value being kept fixed during the optimization
process. Furthermore, this optimization is performed by a simple heuristic
approach, yielding sub-optimal solutions.

Important factors in machining time include the kinematic capabilities
(jerk, acceleration, and maximum speed) of the Computer Numerical Con-
trol (CNC) machine tool and the associated control laws. Rauch & Hascoet
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present in [16] the impact of these factors, and also an analysis of the perfor-
mances of plunge milling as a function of both the machine-tool kinematics
capabilities and of one specific control law. Despite the relevance of these
factors in machining performances, none of the above approaches optimizes
simultaneously all the major cutting parameters under kinematic constraints.
Moreover, to the authors’ knowledge, no work on cutting parameter optimiza-
tion takes into account the lengths of the tool trajectories.

In this paper, we propose a new methodology for optimizing the cut-
ting parameters in order to minimize the plunge milling time. We consider
the case of full-slot plunge milling, to mill deep workpieces (casings), like
aeronautical pockets. This is the most critical case in terms of cutting forces
acting on the tool, as this is the situation where the cutting forces reach their
maximum values [5]. Furthermore, since the cutting width (and therefore,
the radial depth of cut) is equal to the tool diameter, one can see that in full-
slot plunge milling the main cutting parameters to optimize are the cutting
speed, the feed per tooth, and the radial offset. Note that the methodology
proposed in the present work can straightforwardly be extended to lateral
plunge milling, simply by taking into account the radial depth of cut instead
of the tool diameter to determine the maximum cutting forces acting on the
tool.

In the present study, machining capabilities, geometry tool selection (di-
ameter, length and number of teeth), and tool path trajectories are supposed
to be given (either from manufacturers, from the previously-mentioned meth-
ods, or from commercial software).

The optimization methodology to optimize cutting parameters that we
propose has the following key novelties. It is based on mixed-integer non-
linear programming, where we optimize, among the cutting parameters, the
number of plunges, treated as an integer variable. This is in contrast with
considering, as it is usually done, the radial offset, that is a real number
(and should then be associated to a continuous variable). Thanks to the
optimization of the (integer) number of plunges, we are able to decompose
the problem into a sequence of optimization subproblems, each of which cor-
responds to an elementary tool trajectory. Standard approaches consider a
real-number value for the radial offset that is common to all elementary tra-
jectories, yielding thereby suboptimal solutions (cutting parameters found
are independent of the length of the tool trajectories). This is in contrast to
our approach, where the length of each elementary trajectory is taken into
account. Hence, we can determine specific values of the cutting parameters,
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tailored for each elementary trajectory. Another strength of the methodology
introduced in this paper is the fact that control laws are taken into account
in both time-machining and kinematic constraints in the plunge milling pro-
cess. Indeed control laws have a significant impact on the optimal cutting
parameter values.

We propose a mathematical formulation of the problem based on Mixed-
Integer NonLinear Programming (MINLP) [2]. This permits to take into
account both the continuous optimization variables (cutting speed, feed per
tooth) and the integer optimization variables (number of plunges). More-
over, nonlinear constraints due to both the CNC machine tool and to the
tool characteristics are directly taken into account by this formulation. They
include constraints related to: the maximum acceleration, the maximum jerk
ability, the maximum speed along each axis during the three different phases
of a plunge-milling cycle, the control law behaviour, the maximum power
machining, the maximum cutting forces, and the cutting parameter bounds.
The objective function of the MINLP optimization problem is the machining
time, to be minimized. It is the sum of the total (over all cycles) plunging
time, rising time, and offset time. These times are function of the given tra-
jectories, the cutting parameters and, of course, of the previously-mentioned
constraints. Once the formulation of the MINLP model is established, effi-
cient MINLP solvers can be used to get optimal cutting parameters. The
usefulness of this approach for industrial applications is demonstrated on
representative test cases of engine housing.

This paper is organized as follows. Section 2 describes the plunge milling
context and surveys the different factors that drive the process. These are
related to the tool, the material, the workpiece and the machine-tool. Using
these driving factors, Section 3 presents one of our main contributions: a
formulation of the plunge milling time optimization problem via MINLP. In
Section 4, we first propose the detailed analytical expressions of the objective
and the constraint functions that define the plunge milling time minimization
problem. Then, we report and discuss the results of numerical experiments on
representative engine housing test cases. Finally, Section 5 draws conclusions.
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Nomenclature

- Decision variables:
Vc cutting speed (m/min)
fz feed per tooth (mm/rev/tooth)
ae radial offset (mm)
Np number of plunges

- Input parameters:
L elementary trajectory length (mm)
Lp plunging length (mm)
Lr rising length (mm)
Lo offset length (mm)
T machining time (s)
tp plunging time (s)
tr rising time (s)
to offset time (s)
i label of an axis (i ∈ {x, y, z})
Vf programmed feedrate (m/min)
A(t) acceleration vector at time t (m.s−2)
Amax maximum absolute value of A(t) (m.s−2)
Vs(t) speed vector at time t (m/min) for the Soft control law
Vb(t) speed vector at time t (m/min) for the Brisk control law
V max
s maximum value of Vs(t) (m/min)

V max
b maximum value of Vb(t) (m/min)

Z number of teeth
D tool diameter (mm)
Pmax maximum machining power (kW)
Fmax
t maximum tangential cutting force (N)

Fmax
r maximum radial cutting force (N)

Fmax
a maximum axial cutting force (N)

- Lower and upper bounds:
PM maximum machining power upper bound (kW)
FM
t maximum tangential cutting force upper bound (N)

FM
r maximum radial cutting force upper bound (N)

FM
a maximum axial cutting force upper bound (N)

V M
f maximum axis speed reachable (m/min)

V M
R maximum rapid speed (m/min)

AM maximum axis acceleration reachable (m.s−2)
JM maximum axis jerk (m.s−3)
ame , aMe
fm
z , fM

z

V m
c , V M

c

lower and upper bounds on the decision variables
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2 Plunge milling process

In this section, for given tool path trajectories, we overview the different
factors that drive the plunge milling process. These are related to the tool,
the material, the workpiece and the machine-tool.

More precisely, we describe the cutting parameters, the different phases
of a plunge cycle, the machine-tool kinematic characteristics, the control laws
providing the temporal evolution profiles of speed, acceleration and jerk, and
the cutting forces that act on the tool as well as determine the machining
power. These elements will be used in the next section to formalize the
optimization problem of minimizing the plunge milling time.

2.1 Cutting parameters

The cutting parameters that influence plunge milling are the cutting speed
Vc, the feed per tooth fz, and the radial offset ae. The radial offset ae (Fig. 1)
represents the distance between two successive plunges into the stock and is
therefore directly related to the number of plunges. The cutting parameters
Vc and fz together with the tool parameters (the number of teeth Z and the
tool diameter D) drive the programmed feedrate Vf , which is given by:

Vf =
103VcfzZ

πD
(1)

The cutting parameters Vc, fz and ae, influence the cutting forces during
the machining. Among these three parameters, fz and ae mainly influence
the tool loading, and have the strongest impact on the preponderant cutting
forces [5].

2.2 Plunge milling phases

The plunge milling process involves performing successive plunge cycles into
the material. The three different phases of a cycle are the following (see
Fig. 1). The plunging phase is the phase during which the tool removes
material while going down. It is performed with a targeted machining speed,
or programmed feedrate, noted Vf (depends on the cutting parameters). Dur-
ing the rising phase the tool goes up. This phase is carried out in rapid
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motion. Finally, during the offset phase the tool moves (above the work-
piece), along the trajectory, so as to make an overlapping cut at the next
cycle. This phase is also carried out in rapid motion. All of these three
phases are performed at different lengths (Lp, Lr, Lo, illustrated on Fig. 2).

Figure 2: Lengths, Lp, Lr, Lo, of the different phases of a plunge-milling
cycle

2.3 Kinematic characteristics

The machine-tool capabilities to reach the targeted speed and the rapid speed
depend both on the machine kinematic characteristics and on the control
laws.

The kinematic characteristics are specific to a selected machine and give
constraints on speed, acceleration and jerk. They are characterized by the
following values:

• V M
Ri , the upper bound on the maximum reachable rapid speed on the
i-axis (i ∈ {x, y, z}) during the rising and offset phases

• V M
fi , the upper bound on the maximum reachable programmed feedrate

on the i-axis during the plunging phase

• AM
i , the upper bound on the i-axis for the acceleration A(t) of the

machine at time t
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• JM
i , the upper bound on the i-axis jerk of the machine

2.4 Control laws

The control laws provide the temporal evolution profiles of speed, acceler-
ation, and jerk of each axis i of the machine, subject to the above upper
bounds (kinematic constraints). The programmed feedrate and the rapid
motion speed may be reached more or less rapidly following the control law
temporal profiles. Although our optimization methodology can be applied
in the context of any type of control laws, the tests presented in this paper
use the jerk, acceleration and velocity profiles of the Siemens 840D CNC
controller: they will be named “Brisk” and “Soft” laws in the sequel of the
paper (Fig. 3) [19].

For machining accuracy and workpiece quality reasons, the Soft law is
used in the plunging phase. Using the Soft law, the axis motions are driven
by constant jerk steps (Fig. 3). Then, the acceleration temporal behaviour is
deduced. Finally, the Soft law provides the temporal evolution of the speed
Vs(t) (whose target value is the feedrate Vf ).

During the rising and offset phases, the Brisk law is applied (Fig. 2). Us-
ing the Brisk law, the axis motions are driven by constant acceleration steps
(Fig. 3). Then, the Brisk law provides the temporal evolution of the rapid
speed Vb(t) (whose target value is V M

R ).

The speed profile control laws can be represented by a piecewise polyno-
mial function of time. For the Soft law (plunging phase), the feedrate profile
is described by at most 7 phases (see Fig. 3):

Vs(t) =
7∑

j=1

P j
s (t) (2)

where

P j
s (t) =

{
aj + bjt+ cjt

2 if tj−1 6 t 6 tj (j = 1, .., 7)
0 otherwise

(3)

For each axis i ∈ {x, y, z}, the coefficients aj, bj, cj are computed from AM
i ,

JM
i , Lp and the programmed feedrate Vf , which is a function of Vc, fz, D,

and Z. Note that Vs(t) 6 Vf 6 V M
f .
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Figure 3: Jerk, acceleration and velocity profiles: Brisk and Soft mode

The different time points tj, j = 1, 2, ..., 7, which define the piecewise
polynomial function, represent the different jerk phases of the control law
following each axis i (see Fig. 3). These time points are functions of the
same above parameters. The plunging phase starts at time t0=0 and ends
at time t7. Then, t7 is the total plunging time, and it is noted tp. Remark
that both departure and end times are the same for each axis i, we have:
(t0)i = t0 and (t7)i = t7. Since plunge milling can be an exact stop check
mode [16], it is assumed that the feedrate Vs is zero at t0 and t7. Remark
that when Lp is small, the number of polynomial pieces can be reduced to
five or fewer pieces. For example, phases 2 and 6 (see Fig. 3) may not be
present because the maximum acceleration cannot be reached. In Section 4
a precise formulation of the total plunging time tp, depending of the number
of phases, will be provided, tailored to our case of plunge milling.

The feedrate profile provided by the Brisk law (in the rising and offset
phases) is:
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Vb(t) =
3∑

j=1

P j
b (t), (4)

where

P j
b (t) =

{
dj + ejt if tj−1 6 t 6 tj (j = 1, 2, 3)
0 otherwise

(5)

For each axis i ∈ {x, y, z}, the coefficients dj and ej are function of AM
i ,

Lr (or Lo) and of the rapid speed V M
Ri . Note that Vb(t) 6 V M

Ri .
The different time points tj that define the piecewise linear function rep-

resent the different acceleration phases of the control law following each axis.
The rising (or offset) phase starts at time t0=0, and ends at time t3. Remark
that t3 is equal to tr (respectively, to), i.e. the rising (respectively, offset)
duration. Both departure and end times are the same for each axis i. It is
assumed that the feedrate Vb is zero at times t0 and t3. When Lr (respec-
tively, Lo) is small, the number of linear pieces is reduced to two pieces. In
this case, phase 2 does not exist. In Section 4 a precise formulation of the
durations tr and to, depending of the number of phases, will be provided.

The strong impact of control laws on machining time is illustrated in A.

2.5 Cutting forces and machining power

Beside the importance of kinematic and control law characteristics for com-
puting accurate time machining, cutting forces have to be evaluated for en-
suring tool safe life and to enforce machine power limitation.

The maximum cutting forces acting on the tool are the maximum tan-
gential force Fmax

t , the maximum radial force Fmax
r , and the maximum axial

force Fmax
a . Generally, the tangential force is expressed as the product of a

specific cutting pressure and the instantaneous chip cross-section [4, 9, 13].
Since the cutting pressure and the chip cross-section are both nonlinearly de-
pendant on the cutting parameters, the maximum tangential force Fmax

t can
be expressed as a nonlinear function of Vc, fz, ae: F

max
t (Vc, fz, ae) [4, 5, 23].

The radial force is taken proportional to the tangential force [21], just as the
axial force. Then, the maximum radial and axial forces are again nonlinear
functions of Vc, fz and ae: F

max
r (Vc, fz, ae) and Fmax

a (Vc, fz, ae).
Due to both tool limitations (bending, stiffness, vibrations, wear, ...) and

maximum loading on machine-tool axis, these forces have to be below critical
values: Fmax

t (fz, Vc, ae) 6 FM
t , Fmax

r (fz, Vc, ae) 6 FM
r , Fmax

a (fz, Vc, ae) 6
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FM
a where FM

t , FM
r , FM

a are respectively the upper bounds on the maximum
allowable tangential, radial and axial cutting force. Concerning the maximum
machining power, noted Pmax, it can be approximated by the product of the
maximum tangential force Fmax

t and the cutting speed Vc, that is: Pmax '
Fmax
t Vc. It has to be below an upper bound value, generally given by the

machine tool: Pmax 6 PM .

3 Optimization formulation

In this section, we present our contribution on plunge milling optimization
through a mixed-integer nonlinear programming formulation. The aim is
to propose optimized cutting parameter values that take into account the
lengths of the tool trajectories, the machine-tool performances and limita-
tions (kinematic characteristics, control laws, maximum machining power)
and the tool characteristics. We consider that the machining capabilities
(AM , JM ,V M

f ), the tool characteristics (D, Z, and its length), the length
Lp of the workpiece, and the tool path trajectory lengths are given. Tool
trajectories are defined by successive elementary tool paths such as: straight
lines, arc circles and polynomial curves. In this paper, we decompose the
optimization of the total machining time into independent optimization sub-
problems, each of which corresponds to an elementary tool path. Then, the
global solution is obtained by assembling the solutions (the cutting param-
eter values) of these subproblems. This permits to propose specific optimal
cutting parameter values tailored to each elementary trajectory. Compared
to optimized cutting parameter taking the same values for all elementary
trajectories, this leads to a solution that is more time efficient for machining
the workpiece. Consequently, in this section we present an optimization for-
mulation for an elementary tool path with a given length, L.

We propose a mathematical formulation of the problem at hand under
the form of an optimization problem, and more precisely of a mixed-integer
nonlinear programming (MINLP) problem. Nonlinearities arise from the
underlying physical process. We propose a formulation involving continuous
as well as integer optimization variables. The integer variables come from
the discrete number of plunges and from modeling piecewise-defined functions
due to the control laws that impact the machining time. To address these
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difficulties, we take advantage of recent advances in MINLP [14].
The optimization variables are: the cutting parameters (Vc, fz, ae) and

the number of plunges Np. The number of plunges, Np, is bounded to be
integer-valued (integer number of plunges for the given length of an elemen-
tary trajectory). Moreover, there is a direct relationship between the number
of plunges and the radial offset ae:

Np = L/ae. (6)

Therefore, the optimization variables can in fact be reduced to: Vc, fz, Np

(and ae will be straightforwardly deduced from equation (6) after optimiza-
tion). The first two variables (Vc, fz) are continuous and the last one, Np,
is integer. Remark that common practice [11, 22] optimizes over the three
continuous variables Vc, fz, ae, resulting in a value of Np that is not integer-
valued and must be rounded to the next integer. This leads to an extra
plunge which is likely to be inefficient. This loss of efficiency is summed up
for each elementary trajectory, clearly yielding to a suboptimal solution.
For the sake of simplicity, and because the proposed formulation can easily
be extended, we assume that:

- the characteristics of each axis (x, y, z) are the same: we denote, for
i ∈ {x, y, z}, AM

i = AM , Amax
i = Amax, V M

fi = V M
f and V M

Ri = V M
R ;

- the length, Lr, of the rising phases and that, Lp, of the plunging phases
are equal and these phases involve only the z-axis;

- the length, Lo, of the offset phases is equal to the radial offset ae:
Lo = ae;

- all of these lengths are constant along a given elementary trajectory.

3.1 Objective function

The objective function to be minimized is the machining time which can be
expressed as:

T (Vc, fz, Np) = Np (tp(Vc, fz) + tr + to(Np)) , (7)

where the plunging time, tp, the rising time, tr, and the offset time, to,
functions are described in the next subsections.
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3.1.1 Plunging time, tp

We define the plunging time as

tp(Vc, fz) =


tp1(Vc, fz), if V max

s (Vc, fz) = Vf (Vc, fz) and Amax(Vc, fz) = AM

tp2(Vc, fz), if V max
s (Vc, fz) = Vf (Vc, fz) and Amax(Vc, fz) < AM

tp3(Vc, fz), if V max
s (Vc, fz) < Vf (Vc, fz) and Amax(Vc, fz) = AM

tp4(Vc, fz), if V max
s (Vc, fz) < Vf (Vc, fz) and Amax(Vc, fz) < AM ,

(8)
where:

• V max
s is the maximum speed that can be reached following the Soft

control law. It is a function of the given data: Lp, J
M , AM , D, Z,

and of the optimization variables Vc, fz. Obviously, we always have
0 6 V max

s (Vc, fz) 6 Vf (Vc, fz).

• Vf is a function of the given data, D, Z, and of the optimization vari-
ables Vc, fz.

• Amax is a function of JM and Vf . Obviously, we always have 0 6
Amax(Vc, fz) 6 AM .

Since Lp, J
M , AM , D, Z are given data, the above quantities are only function

of the two optimization variables: Vc, fz. The expression of Vf (Vc, fz) is given
in equation (1). The analytic formulas that enable to compute tp(Vc, fz),
V max
s (Vc, fz), and Amax(Vc, fz) will be provided in section 4 because these

functions depend on the selected control law.

To summarize,

• tp1 represents the plunging time associated with a displacement length
Lp when the maximum feedrate V max

s reaches Vf and the maximum
acceleration Amax reaches AM .

• tp2 represents the plunging time associated with a displacement length
Lp when the maximum feedrate V max

s reaches Vf and the maximum
acceleration Amax is below AM .

• tp3 represents the plunging time associated with a displacement length
Lp when the maximum feedrate V max

s is below Vf and the maximum
acceleration Amax reaches AM .
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• tp4 represents the plunging time associated with a displacement length
Lp when the maximum feedrate V max

s is below Vf and the maximum
acceleration Amax is below AM .

3.1.2 Rising time, tr

The rising time is given by:

tr =

{
tr1, if V max

b = V M
R

tr2, if V max
b < V M

R ,
(9)

where:

• tr1 represents the rising time associated with a displacement length
Lr = Lp, when the (given) rapid speed, V M

R , is reached.

• tr2 is the rising time when V max
b is below V M

R . Both tr1 and tr2 are
independent of the optimization variables.

• V max
b is the maximum speed that can be reached following the Brisk

control law. It is a function of the rising length, Lr, and of the max-
imum acceleration reachable, AM : V max

b = ϕ(AM , Lr), where ϕ is a
function that is known. Since Lr and AM are given data, V max

b does
not depend upon the optimization variables, therefore V max

b = κ, where
κ is a constant in the optimization problem. Note that V max

b is always
below V M

R : 0 6 V max
b = κ 6 V M

R . The analytic formulas that permit
to compute tr, V

max
b , and thereby tr, will be provided in the test cases

presented in Section 4.

3.1.3 Offset time, to

The offset time, to, could also be defined in a piecewise manner, as for the
rising time (equation (9)). However, since the displacement length, Lo =
ae = L/Np, is always sufficiently small due to technological constraints, the
condition V max

b = V M
R is never met. The analytic formulas that enable to

compute to will be provided in Section 4.
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3.2 Constraints

There are two distinct sets of constraints. First, there are disjunctive con-
straints that allow to model the piecewise-defined functions that appear in
the objective function; second, those that model the physics of the system.

3.2.1 Disjunctive constraints

The definition of the objective function involves disjunctions as shown by
equations (8) and (9). More precisely, T is a continuous piecewise-defined
function of the optimization variables Vc, fz, and Np. Optimization software
cannot handle directly problems involving piecewise-defined functions. In or-
der to obtain a proper mathematical programming formulation, i.e. involving
only differentiable functions (without any piecewise-defined functions), we
introduce the following binary variables:

• u1, u2, u3, and u4 for the plunging-time function, tp

• v for the rising-time function, tr

Using these variables, we can rewrite the piecewise-defined equation (9) as:

tr = vtr1 + (1− v)tr2, (10)

provided that the following constraints are taken into account:

v ∈ {0, 1} (11){
0 6 V M

R − κ 6 (1− v)V M
R

V max
b − V M

R < v.
(12)

Indeed, one can easily verify, by enumerating the two possible values for v,
that equation (9) is equivalent to equations (10), (11) and (12).

In an analogous manner, one can show that the piecewise-defined equa-
tion (8) can be rewritten as

tp(Vc, fz) = u1tp1(Vc, fz) + u2tp2(Vc, fz) + u3tp3(Vc, fz) + u4tp4(Vc, fz) (13)

provided that the following constraints are taken into account:

u1, u2, u3, u4 ∈ {0, 1}
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4∑
j=1

uj = 1 (14)



0 6 Vf (Vc, fz)− V max
s (Vc, fz) 6 (1− u1)Vf (Vc, fz)

0 6 AM − Amax(Vc, fz) 6 (1− u1)AM

0 6 Vf (Vc, fz)− V max
s (Vc, fz) 6 (1− u2)Vf (Vc, fz)

Amax(Vc, fz)− AM < (1− u2)
V max
s (Vc, fz)− Vf (Vc, fz) < (1− u3)

0 6 AM − Amax(Vc, fz) 6 (1− u3)AM

V max
s (Vc, fz)− Vf (Vc, fz) < (1− u4)
Amax(Vc, fz)− AM < (1− u4)

(15)

This can easily be verified by enumerating the four possible values for the
vector (u1, u2, u3, u4): (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1).

Finally, using equations (10) and (13), the objective function (7) becomes:

T (Vc, fz, Np) = Np

(
u1tp1(Vc, fz) +u2tp2(Vc, fz) +u3tp3(Vc, fz) +u4tp4(Vc, fz)+

vtr1 + (1− v)tr2 + to(Np)
)
.

Remark that constraints (12) and (15) involve strict inequalities, which
cannot be handled by mathematical programming solvers. Therefore, we
change strict into large inequalities after subtracting a sufficiently small (user-
defined) constant ε from the right-hand-sides:

0 6 Vf (Vc, fz)− V max
s (Vc, fz) 6 (1− u1)Vf (Vc, fz)

0 6 AM − Amax(Vc, fz) 6 (1− u1)AM

0 6 Vf (Vc, fz)− V max
s (Vc, fz) 6 (1− u2)Vf (Vc, fz)

Amax(Vc, fz)− AM ≤ (1− u2)− ε
V max
s (Vc, fz)− Vf (Vc, fz) ≤ (1− u3)− ε

0 6 AM − Amax(Vc, fz) 6 (1− u3)AM

V max
s (Vc, fz)− Vf (Vc, fz) ≤ (1− u4)− ε
Amax(Vc, fz)− AM ≤ (1− u4)− ε

(16)

and {
0 6 V M

R − κ 6 (1− v)V M
R

V max
b − V M

R ≤ v − ε
(17)
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3.2.2 Cutting parameter bounds

Due to material and tool characteristics, cutting parameters have to satisfy
the following lower-bound and upper-bound inequalities:

V m
c 6 Vc 6 V M

c (18)

fm
z 6 fz 6 fM

z (19)

ame 6 ae 6 aMe (20)

where V m
c , V M

c , fm
z , f

M
z , ame , a

M
e are given data (depending upon the material

and the machine features). Remark that the last equation is equivalent to

L

aMe
≤ Np ≤

L

ame
(21)

since Np =
L

ae
.

3.2.3 Machine kinematics

The kinematic characteristics of the machine tool imply the following in-
equalities:

• The programmed feedrate, Vf , has to be smaller than V M
f : Vf (Vc, fz) 6

V M
f .

• The maximum acceleration, Amax, has to be smaller thanAM : Amax(Vc, fz) 6
AM .

3.2.4 Cutting forces

The constraints due to cutting forces are defined as follows:

• The maximum tangential cutting force Fmax
t (Vc, fz, Np) has to be smaller

than a maximum cutting force which is a given value of the tool charac-
teristics. Therefore, this constraint can be written as Fmax

t (Vc, fz, Np) 6
FM
t . In the test cases presented in the next section, the chosen model

for Fmax
t will be specified.

• The maximum radial cutting force Fmax
r (Vc, fz, Np) has to be smaller

than a maximum cutting force which is a given value of the tool char-
acteristics: Fmax

r (Vc, fz, Np) 6 FM
r .

18



• The maximum axial cutting force Fmax
a (Vc, fz, Np) has to be smaller

than a maximum cutting force which is a given value of the tool and
the machine-tool characteristics: Fmax

a (Vc, fz, Np) 6 FM
a .

• The maximum power associated with cutting can be approximated by
Pmax ' Fmax

t (Vc, fz, Np)Vc. The maximum power has to be smaller
than the given maximum machining power PM . Therefore this con-
straint can be written as Pmax(Vc, fz, Np) 6 PM .

3.2.5 MINLP formulation

To summarize, the minimization of time machining can be formalized as the
following MINLP optimization problem:

minimize
u,v,Vc,fz ,Np

T (Vc, fz, Np) = Np

(
u1tp1(Vc, fz) + u2tp2(Vc, fz)

+ u3tp3(Vc, fz) + u4tp4(Vc, fz)

+ vtr1 + (1− v)tr2 + to(Np)
)

(22)

subject to:

uj ∈ {0, 1} 1 6 j 6 4,
4∑

j=1

uj = 1

v ∈ {0, 1}

constraints (16) and (17)

Cutting parameters constraints:
V m
c 6 Vc 6 V M

c

fm
z 6 fz 6 fM

z

L

aMe
6 Np 6

L

ame

(23)

19



Kinematic constraints:

Vf (Vc, fz) 6 V M
f (24)

Amax(Vc, fz) 6 AM (25)

Cutting-force constraints:

Fmax
t (Vc, fz, Np) 6 FM

t (26)

Fmax
r (Vc, fz, Np) 6 FM

r (27)

Fmax
a (Vc, fz, Np) 6 FM

a (28)

Fmax
t (Vc, fz, Np)Vc 6 PM (29)

4 Test cases & Results

In this section, we first derive the analytical expressions of the plunging,
rising, and offset times, as well as the analytical expressions of constraint
functions due to the above-described kinematic characteristics and control
laws. We then introduce a cutting-force model that allows us to express
the maximum cutting forces and the associated machine power constraints.
In the second subsection, we present numerical results obtained when solv-
ing the proposed MINLP optimization problem. Comparisons with physical
experiments performed on real-life machine tools are provided. These exper-
iments are representative of real milled engine housings.

4.1 Analytical expressions of the objective and the
constraint functions

In order to solve our problem using efficient optimization methods, we need
to provide explicit expressions of the objective and the constraint functions
in terms of the three optimization variables (Vc, fz and Np) and of the input
data.

4.1.1 Objective function

For each plunging cycle, the plunging, rising and offset times are derived by
the jerk, acceleration and speed profiles given by the control laws (see Fig. 3).
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We detail next the times involved in the objective function (22).

Plunging time
Recall that tp(Vc, fz) was given by equation (8). In the test cases con-

sidered in this paper, the workpieces are high enough to have the feedrate,
Vf , always attained by V max

s , i.e. V max
s (Vc, fz) = Vf (Vc, fz). Therefore, only

two cases in equation (8) have to be considered: the ones corresponding to
tp1(Vc, fz) and tp2(Vc, fz). Then, equation (13) becomes:

tp(Vc, fz) = u1tp1(Vc, fz) + u2tp2(Vc, fz)

and in the sequel u3 = u4 = 0.
Using the Soft law, we have:

• If Amax(Vc, fz) = AM , i.e., u1 = 1 and u2 = 0 (which corresponds

physically to Vf (Vc, fz) ≥
(AM)2

JM
), then

tp(Vc, fz) = tp1(Vc, fz) = 2

(
AM

JM
+
Vf (Vc, fz)

AM

)
+

1

Vf (Vc, fz)
(Lp − 2Z3(Vc, fz)) (30)

where:
Vf (Vc, fz) is given by equation (1) and:

Z3(Vc, fz) = Z2(Vc, fz) + V2(Vc, fz)

(
AM

JM

)
+

1

2
AM

(
AM

JM

)2

− 1

6
JM

(
AM

JM

)3

(31)

Z2(Vc, fz) =
1

6
AM

(
AM

JM

)3

+
1

2

(AM)2

JM

(
Vf (Vc, fz)

AM
− AM

JM

)
+

1

2
AM

(
Vf (Vc, fz)

AM
− AM

JM

)2

(32)

V2(Vc, fz) =
1

2

(AM)2

JM
+ AM

(
Vf (Vc, fz)

AM
− AM

JM

)
. (33)
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• If Amax(Vc, fz) < AM , i.e., u1 = 0 and u2 = 1 (which corresponds

physically to Vf (Vc, fz) <
(AM)2

JM
), then

tp(Vc, fz) = tp2(Vc, fz) = 2

(
Amax(Vc, fz)

JM
+

Vf (Vc, fz)

Amax(Vc, fz)

)
+
Lp − 2Z3(Vc, fz)

Vf (Vc, fz)
(34)

where:

Amax(Vc, fz) =
√
JMVf (Vc, fz) (35)

Z3(Vc, fz) = Z2(Vc, fz) + V2(Vc, fz)

(
Amax(Vc, fz)

JM

)
+

1

2
Amax(Vc, fz)

(
Amax(Vc, fz)

JM

)2

−1

6
JM

(
Amax(Vc, fz)

JM

)3

(36)

Z2(Vc, fz) =
1

6
Amax(Vc, fz)

(
Amax(Vc, fz)

JM

)3

+
1

2

(
(Amax(Vc, fz))

2

JM

)(
Vf (Vc, fz)

Amax(Vc, fz)
− Amax(Vc, fz)

JM

)
+

1

2
Amax(Vc, fz)

(
Vf (Vc, fz)

Amax(Vc, fz)
− Amax(Vc, fz)

JM

)2

(37)

V2(Vc, fz) =
1

2

(
(Amax(Vc, fz))

2

JM

)
+ Amax(Vc, fz)

(
Vf (Vc, fz)

Amax(Vc, fz)
− Amax(Vc, fz)

JM

)
. (38)

Rising time
Recall that tr was given by equation (9). In most CNC machine tools

actually used in industry, the rapid speed V M
R is so high that in practice it

can rarely be attained. Therefore, only one case has to be considered: the
one corresponding to tr2. Then equation (10) becomes:

tr = tr2

and v = 0 in our tests. Using the Brisk law, we get:

tr = tr2 = 2

√
Lr

AM
. (39)
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Offset time
Recall that (see subsection 3.1.3) the rapid speed V M

R cannot be reached
during the offset phase. Since the Brisk law is applied again, we obtain the

same formula as for the rising phase, by replacing the length Lr with
L

Np

:

to(Np) = 2

√
L

NpAM
(40)

4.1.2 Constraint functions

There are two groups of constraints that remain to be made explicit.

Kinematics
Using equations (1) and (35), the kinematic constraints (24) and (25) are

obtained as follows:

103VcfzZ

πD
≤ V M

f√
JM

103VcfzZ

πD
≤ AM

Cutting forces
There are several mechanistic models for cutting forces in the literature,

as for example [4, 5, 23]. All of these models are relevant to our optimiza-
tion problem. For validating our methodology, we use the mechanistic model
of [4], which is applied on the material Al356 alloy, plunge milled with a
Sandvik tool referenced as R210-025A20-09M. This model gives the analyti-
cal formulas of cutting forces to be used in constraints (26), (27), and (28).
Based on this model, we propose the following expressions of the maximal
cutting forces:
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Fmax
t (Vc, fz, Np) = Fmax

t (fz, Np) = 325.17(cos(10◦)fz)
−0.418 L

Np

fz (41)

Fmax
r (Vc, fz, Np) = Fmax

r (fz, Np) = 202.85(cos(10◦)fz)
−0.418 L

Np

fz (42)

Fmax
a (Vc, fz, Np) = Fmax

a (fz, Np) = 130.33(cos(10◦)fz)
−0.682 L

Np

fz (43)

Remark that these forces do not depend upon Vc, contrary for example to
the model proposed by Danis et al. [5] to plunge milling magnesium alloys.
However, this is without loss of generality for our optimization methodology.

Finally, the maximal machining power constraint (29) is straightforwardly
obtained:

325.17(cos(10◦)fz)
−0.418 L

Np

fzVc 6 PM (44)

4.2 Numerical results

All machining times reported throughout this section correspond to simu-
lated machining times, computed following equations (30), (34), (39) and
(40). In order to ensure consistency with real machining times, we perform
some actual tests (physical experiments) on the CNC machine tool DMU85
Monoblock with a Siemens 840D CNC controller. We observe that the dif-
ference between simulated and real machining times always remains below
6%. As it will be seen later, this is much lower than the gains obtained with
our optimization methodology. This thereby validates the physical models
on which our optimization formulation relies. Numerical tests are carried
out using the same material, A356 alloy, and the same plunge milling tool
(Sandvik R210-Q25A20-09 M) as in [4].

The optimization problem we presented belongs to a class of problems
(NP hard) known to be very difficult to solve, as it is nonlinear and involves
both continuous and integer variables. The optimization model we propose is
implemented in AMPL modeling language [8], and the optimization problem
is solved using the state-of-the-art solver COUENNE [2] for Mixed-Integer
Nonlinear Problems (MINLP). The default setting is used. In order to be able
to use such an efficient global optimization solver, we replace equations (41),
(42), and (43) with a rational-function model that fits very accurately these
equations on the relevant definition domain.
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Tests with the above optimization software were performed on a 2.66 GHz
Intel Xeon (octo core) processor with 32 GB of RAM and Linux Operating
System. To give a rough idea, one complete run of the optimization (on one
test problem) involves between 0.23 and 0.56 seconds of CPU time. Recall
that one run involves one elementary trajectory. Therefore, a complete man-
ufacturing of one workpiece will require to sum up this computing time over
all elementary trajectories.

We present below eight test cases, each of which is followed by the results
obtained after optimization. These tests are performed varying tool charac-
teristics, the machine power and kinematics, the cutting-force constraints as
well as the workpiece characteristics (the main variations are emphasized in
bold characters in the tables below). These tests give an overview of real
cases that can be met in practice on milled engine housings. In all tests, we
keep constant: the tool diameter (D), the length of the elementary trajectory
(L), the maximum machine power upper bound (PM) and the lower and up-
per bounds of the decision variables. These values are displayed in Table 1.
The maximum machine power is set at a large value so as to improve the
range of possible values for the cutting parameters. The optimization results
are compared with a standard industrial setting (SIS), based on engineering
know-how in such a way to satisfy the constraints on cutting parameters,
kinematics and cutting forces, while ensuring good machining time perfor-
mance. More precisely, the following procedure is applied. The values of
Vc, fz, and ae are chosen as high as possible so as to fulfill the constraints.
The three values are defined sequentially by using a trial-and-error approach.
First, ae is taken close to the upper bound aMe , then the value of fz is deduced
from the cutting force model, and finally, the value of Vc follows from the
other constraints. The number of plunges, Np, is simply obtained by round-
ing above the ratio L/ae. This is in contrast with the MINLP approach
which computes optimal values for Vc, fz, Np, where Np is constrained to be
integer. The value of ae is then simply deduced from (6).

We use the above-mentioned DMU85 machine and two other (more per-
forming) machines, presented in [16].

For the sake of simplicity, among the three cutting-force constraints (26)-
(28), only the first one (equation (26)) is taken into account (and we observed
a posteriori that the two other constraints are not violated at the solution
found).

We next present the results for the eight test cases. For each approach
(SIS and MINLP) we report: the values of the variables, Vc, fz, Np and ae;
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Table 1: Values of the parameters that are kept constant throughout the
tests

parameter D L PM V m
c V M

c

units mm mm kW m/min m/min

value 25 200 20 200 1250

parameter fm
z fM

z ame aMe
units mm/rev/tooth mm/rev/tooth mm mm

value 0.05 1 0.5 8

the three plunging-phase times, tp, tr and to; the total machining time, T , for
one elementary trajectory. Finally the last column of the tables reports the
relative gain of MINLP over SIS total machining time.

The first test (Table 2) considers the standard CNC machine tool DMU85
Monoblock with a high value of FM

t so that the tool load is not much con-
strained.

Table 2: Test 1: input data
parameter Lp AM JM V M

R V M
f FM

t

units mm m/s2 m/s3 m/min m/min N
value 75 6 40 40 40 900

Table 3 displays the results obtained after optimization compared with the
standard industrial setting (SIS) procedure described above. One observes
that for one given elementary trajectory, the optimization results are better,
but close to the one obtained by SIS. Note that the SIS solution provides a
non-integer value of L/ae = 26.67 which was then rounded up to 27 in order
to obtain a feasible number of plunges.

The second test (Table 4) considers the same machine as for Test 1, but
Test 2 involves a lower value of FM

t so as to reduce the bending and/or
the vibrations of the tool. The input value for FM

t is chosen taking into
account the relation between the deflection of the tool, the cutting forces
and experience of practitioners.
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Table 3: Test 1: optimization results
Vc fz Np ae tp tr to T gain

units m/min mm/rev/tooth mm s s s s %

SIS 1250 0.194 27 7.50 0.85 0.22 0.071 30.80

MINLP 1250 0.198 27 7.41 0.83 0.22 0.070 30.45 1.1

Table 4: Test 2: input data
parameter Lp AM JM V M

R V M
f FM

t

value 75 6 40 40 40 600

The MINLP solution of Table 5 increases the number of plunges with
respect to the SIS solution (going from 27 to 39) and thereby decreases the
radial offset (ae) from 7.5 down to 5.13. Moreover, the feed per tooth, fz,
increases from 0.087 to 0.182 and the cutting speed, Vc, remains constant.
Thus, the optimized process allows one to perform more plunges at a higher
speed. The gain in terms of machining time is above 15%. Here, one al-
ready observes the benefit of the optimization which yields an interesting
yet unpredictable result that is substantially different from the engineering
know-how SIS methodology.

Table 5: Test 2: optimization results
Vc fz Np ae tp tr to T gain

SIS 1250 0.087 27 7.50 1.70 0.22 0.071 53.96
MINLP 1250 0.182 39 5.13 0.89 0.22 0.058 45.69 15.3

Test 3 (Table 6) involves a higher workpiece (higher value of Lp), all other
conditions remaining as for Test 2.

Table 6: Test 3: input data
parameter Lp AM JM V M

R V M
f FM

t

value 100 6 40 40 40 600

The optimization results of Table 7 show that the gain in machining time
grows further with a higher workpiece.
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Table 7: Test 3: optimization results
Vc fz Np ae tp tr to T gain

SIS 1250 0.087 27 7.50 2.25 0.26 0.071 69.52
MINLP 1250 0.197 41 4.88 1.07 0.26 0.057 57.02 18.0

Let us now consider, in Test 4 (Table 8), an even higher workpiece. The
length of the tool being increased, its stiffness thereby reduces and, as a
consequence, one must set a stricter cutting-force constraint (lower FM

t ) in
order to avoid bending and/or vibration of the tool.

Table 8: Test 4: input data
parameter Lp AM JM V M

R V M
f FM

t

value 125 6 40 40 40 500

As shown in Table 9, the gain obtained by the MINLP solution (over SIS)
for Test 4 is substantial: the optimized process yields a very large number of
plunges (Np = 91, as opposed to 27 for SIS) at a very high programmed fee-
drate, Vf = 31.826 m/min (from equation 1). The gain in terms of machining
time is 41.8%.

Table 9: Test 4: optimization results
Vc fz Np ae tp tr to T gain

SIS 1250 0.054 27 7.50 4.43 0.29 0.071 129.21
MINLP 1250 1.00 91 2.20 0.50 0.29 0.038 75.20 41.8

Test 5 (Table 10) involves a high-performance machine, featuring a higher
(compared with the previous tests) maximum axis acceleration reachable,
AM . The other parameter values are the same as those of Test 2.

The optimization results (Table 11) show, when compared with those of
Test 2, an even higher gain (17.2% as compared with 15.3%).

Test 6 (Table 12) differs from Test 5 only in the value of the maximum
axis jerk reachable, JM , which is much increased. The other parameter values
are the same as those of Test 2.
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Table 10: Test 5: input data
parameter Lp AM JM V M

R V M
f FM

t

value 75 10 40 40 40 600

Table 11: Test 5: optimization results
Vc fz Np ae tp tr to T gain

SIS 1250 0.087 27 7.50 1.70 0.17 0.055 52.17
MINLP 1250 0.190 40 5.00 0.86 0.17 0.045 43.17 17.2

Table 12: Test 6: input data
parameter Lp AM JM V M

R V M
f FM

t

value 75 10 100 40 40 600

Table 13 reveals a further improvement in machining time, T . To sum-
marize, when considering only the MINLP solutions of Tests 2, 5 and 6, one
remarks that increasing either AM or JM yields gains in machining times,
more plunges and higher feedrates.

Table 13: Test 6: optimization results
Vc fz Np ae tp tr to T gain

SIS 1250 0.087 27 7.50 1.68 0.17 0.055 51.39
MINLP 1250 0.212 43 4.65 0.75 0.17 0.043 41.37 19.5

Recall that from Test 3 to Test 4, we increased Lp and therefore decreased
FM
t to take stiffness into account. Test 7 (Table 14) comes back to the main

settings of Test 4 together with the high-performance machine of Tests 5 and
6.

As shown on Table 15, the gain with respect to the engineering know-how
SIS methodology is striking: 52.7%. When comparing the MINLP solutions
obtained for Tests 4 and 7 (that differs with respect to the performance of
the machine), the gain goes from 41.8% to 52.7%. Thus, higher workpieces
(and corresponding tool-stiffness constraints) conduct to better results.
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Table 14: Test 7: input data
parameter Lp AM JM V M

R V M
f FM

t

value 125 10 100 40 40 500

Table 15: Test 7: optimization results
Vc fz Np ae tp tr to T gain

SIS 1250 0.054 27 7.50 4.40 0.22 0.055 126.41
MINLP 1250 1.00 91 2.20 0.40 0.22 0.030 59.79 52.7

Test 8 (Table 16) considers an even more performing machine tool: we
use the characteristics of a parallel kinematic machine presented in [16] for
plunge milling. Its maximum acceleration value is AM=15 m.s−2 and V M

f =50
m/min.

Table 16: Test 8: input data
parameter Lp AM JM V M

R V M
f FM

t

value 125 15 100 50 50 500

Table 17 displays a gain that continues to grow: 55.6%. When comparing
the optimization solutions obtained for Tests 4, 7 and 8 (in order of increasing
performance of the machine tool used), the gains are 41.8%, 52.7% and 55.6%.

Table 17: Test 8: optimization results
Vc fz Np ae tp tr to T gain

SIS 1250 0.054 27 7.50 4.40 0.18 0.044 125.03
MINLP 1250 1.00 91 2.20 0.40 0.18 0.024 55.56 55.6

5 Conclusions

We propose a mathematical formulation of the cutting-parameter optimiza-
tion in plunge milling, taking into account the lengths of the tool trajecto-
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ries, control laws and cutting forces. This formulation takes the form of an
MINLP problem whose optimization variables include the (integer) number
of plunges.

The advantages of our approach over traditional machining optimization
is twofold. First, our method provides a specific set of cutting parameters
tailored to each elementary trajectory, which, together, constitute the tool
trajectory. Second, for each elementary trajectory, our formulation yields
equidistant plunges that are optimal with respect to all the cutting parame-
ters. This is in contrast with standard machining optimization that uses only
continuous variables. Indeed, such standard approaches not only consider a
same set of cutting parameters over the whole trajectory, but moreover ad-
just a posteriori the number of plunges, while keeping fixed the values of
the other cutting parameters, which is necessarily suboptimal. This loss of
efficiency is then summed up over all the elementary trajectories.

We present and discuss computational results, obtained through the use
of modern general-purpose MINLP software, validated on CNC machines.
The tests proposed cover a wide range of input parameter values (work-
piece and tool characteristics, machine performances, and tool and machine
constraints). Our results emphasize the fact that optimal values of the cut-
ting parameters are very sensitive to the various constraints (cutting-force
constraints and maximal machining power) and are difficult to predict by
standard approaches. The more performing machine one uses, the better
results our optimization methodology yields. Gains as high as 55% for high-
performance machine tools are obtained when compared with standard in-
dustrial setting based on engineering know-how.

Future research will extend this work by optimizing moreover both the
tool choice and the associated tool-path trajectory. Moreover, one could
focus on attempting to search for cutting-parameter values that are robust
with respect to uncertainty in input data.

A Impact of control laws on machining time

In this appendix, we show the strong impact of control laws on machining
time, especially when high speeds are used. This is illustrated in different
test cases by comparing real machining time and simulated machining time
provided by CAM software that does not take into account the control laws.

For illustrating our purpose, we have performed plunge milling tests on a
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DMU50 evolution 5-axis NC machine (with a Siemens 840D CNC controller),
for which the machining times have been recorded. In commercial CAM
software, the kinematic machine-tool characteristics can be considered, but
generally the control law profiles cannot be taken into account. To compare
real machining times with simulation times, two CAM software (CATIA V5
and Delcam) have been used. The tests have been performed (Table 18)
on different workpieces with the following kinematic characteristics: for i ∈
{x, y, z}, V M

Ri = V M
R = 50 m.min−1, V M

fi = V M
f = 24 m.min−1, JM

i =
JM = 40 m.s−3, AM

i = AM = 4.9 m.s−2. For the first workpiece, Catia
V5 simulates the machining time equal to 91 s, compared to 235 s of real
time machining. For the second workpiece tested, Delcam has provided a
simulation time of 86 s against 213.6 s of machining time. In these two
examples, CAM software decreases the actual machining time by about 60%.
Table 18 presents all the results of the time differences for various workpieces
and programmed feedrates. Errors are in the range [49%, 61%] for both
CAM software. Nevertheless, depending on the machine characteristics (V M

R ,
V M
f , AM , JM), these errors vary significantly. These test results show the

criticity of the control laws for the computation of simulated machining times.
Therefore, velocity profiles provided by control laws will be integrated into
our optimization model.

Catia V5 (s) Delcam (s) Time machining (s) errors
Test1 91 235 61%
Test2 86 213.6 60%
Test3 95 186 49%
Test4 87 158 45%
Test5 82 174.7 53%

Table 18: Comparison of machining time simulated by two CAM software
and real time machining for different test cases
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