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4D Trajectories Complexity Metric Based on Lyapunov Exponents

Daniel delahaye and Stéphane Puechmorel

The ATM system has to cope with an increasing number
of flights, pushing the capacity to its limits. As an example,
the average daily traffic above Europe was 26286 flights/day,
with a peak traffic demand in excess of 31000 flights [11].
Although delays are kept low, it is expected from the same
reference that capacity has to be extended in the future. Basi-
cally, two strategies can be devised : adapt the demand to ca-
pacity (slot-route allocation, collaborative decision making,
. . . ) or adapt the capacity to the demand (Airspace design,
4D trajectory planning, autonomous aircraft, . . . ). The first
approach can be used in the context of current ATM system,
while innovative future designs will mainly follow the second
strategy. Currently, complexity of the traffic is measured only
as an operational capacity : the maximum number of aircraft
that ATC controllers are willing to accept is fixed on a per-
sector basis and complexity is assessed by comparing the
real number of aircraft with the sector capacity. It must
be noted that under some circumstances, controllers will
accept aircraft beyond the capacity threshold while rejecting
traffic at other times although the number of aircraft is well
below the maximum capacity. This simple fact clearly show
that capacity as a crude complexity metric is not enough
by itself to fully account for the controller’s workload. In
order to better quantify the complexity, geometric features
of the traffic have to be included. As previously stated,
depending on the traffic structure, ATC controllers will
perceive differently situations, even if the number of aircraft
present in the sector is the same. Furthermore, exogenous
parameters like the workload history can be influential on
the perceived complexity at a given time (a long period of
heavy load will tend to reduce the efficiency of a controller).
Some reviews of complexity in ATC have been completed,
mainly from the controller’s workload point of view [4], [10],
and have recognized that complexity is related to both the
structure of the traffic and the geometry of the airspace. This
tends to prove that controller’s workload has two facets :

• An intrinsic complexity related to traffic structure.
• A human factor aspect related to the controller itself.

While most complexity metrics tend to capture those effects
within a single aggregate indicator, the purpose of this work
is to design a measure of intrinsic complexity only since it is
the most relevant metric for an highly automated ATC system
(no human factors). The first complexity indicator incorpo-
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rating structural considerations along with the simple number
of aircraft is the “Dynamic Density” of Laudeman et al. from
NASA [9]. The “Dynamic Density” is a weighted sum of the
traffic density (number of aircraft), the number of heading
changes (> 15 degrees), the number of speed changes (>0.02
Mach), the number of altitude changes (>750 ft), the number
of aircraft with 3-D Euclidean distance between 0-25 nautical
miles, the number of conflicts predicted in 25-40 nautical
miles. These factors are summed together using weighting
factors that were determined by showing different traffic
scenarios to several controllers. B.Sridhar from NASA [12],
has developed a model to predict the evolution of such
a metric in the near future. Efforts to define “Dynamic
Density” have identified the importance of a wide range of
potential complexity factors, including structural considera-
tions. However, the instantaneous position and speeds of the
traffic itself does not appear to be enough to describe the
total complexity associated with an airspace. A few previous
studies have attempted to include structural consideration in
complexity metrics, but have done so only to a restricted
degree. For example, the Wyndemere Corporation proposed
a metric that included a term based on the relationship
between aircraft headings and dominant geometric axis in
a sector [7]. The importance of including structural consid-
eration has been explicitly identified in work at Eurocontrol.
In a study to identify complexity factors using judgment
analysis, Airspace Design was identified as the second most
important factor behind traffic volume [8]. Histon, et, al. [5],
[6] investigated how this structure can be used to support
structure-based abstractions that controllers appear to use to
simplify traffic situations. The previous models do not take
into account the intrinsic traffic disorder which is related to
the complexity. The first efforts related with disorder can be
found in [2]. This paper introduces two classes of metrics
which measure the disorder of a traffic pattern.G.Aigoin has
extended and refined the geometrical class by using a cluster
based analysis [1]. All the previous metrics capture only one
feature of the complexity and are not able to produce an
aggregate metric which can capture all the possible situations
(high-low density, how-low convergence, translation organi-
zation, round about organization etc ...). The work presented
in this paper is based on dynamical systems modeling of
the air traffic. A dynamical system describes the evolution
of a given state vector. If such a vector is given by the
position of aircraft ~X = [x, y, z]T , a dynamical system
associates a speed vector ~̇X = [vx, vy, vz]T to each point
in the airspace. The key idea is to find a dynamical system
which models the observed aircraft trajectories. Based on this



dynamical system modeling, a trajectory disorder metric can
be computed.

A. Dynamical System Modeling

The dynamical system used to model aircraft trajectories
is given by the following equation :

~̇X(t) = V ( ~X(t), ω) (1)

where ~X(t) is the state vector of the system ( ~X =
[x(t), y(t), z(t)]T ) and V : C2 vector field depending on
parameters ω, describe systems which integral curves may
fit the observed trajectories.

This equation associates a vector speed ~̇X to a position in
the space coordinate ~X and then synthesis a particular vector
field.

Based on the observations of the aircraft (positions, speed
vectors and times), the dynamical system has to be adjusted
with the minimum error.This fitting is done with a Least
Square Minimization (LMS) method. For each considered
aircraft i, it is supposed that position ~Xi = [xi, yi, zi]T and
speed vector ~Vi = [vxi

, vyi
, vzi

]T are given (radar tracker
data). An error criterion between the dynamical system
model and the observation is computed :

E =
i=N∑
i=1

∥∥∥~Vi − V ( ~Xi(t), ω)
∥∥∥ (2)

where N is number of aircraft.
There are many classical ways of obtaining a class of

parametrized vector fields which fulfill the fitting require-
ment. Among them, vector splines allow a control on the
smoothness of vector fields, which is important in our case
since civil aircraft maneuvers are based on low acceleration
guidance laws.

Computing traffic complexity for a given traffic situation
requires interpolating a vector field given only samples
(positions and speeds of aircraft at a given time). Vector
spline interpolation seeks the minimum of a functional of
the form :

1
2

∫
D

‖L~V ( ~X)‖2d ~X +
1
2

m∑
i=1

‖~V ( ~Xi)− ~Vi‖2 (3)

where ~V is a vector field defined on a domain D ⊂ Rn, L
is an elliptic differential operator controlling smoothness of
the solution and ( ~Xi, ~Vi)i=1...m are the interpolation data [3].
By introducing the adjoint operator LT , optimal vector field
can be shown to be a linear combination of shifted version
of the elementary solution kernel of the differential operator
LTL. A special case is the so-called “div-curl” splines with
the criterion :∫

R2
α‖∇div~V ( ~X)‖2 + β‖∇curl~V ( ~X)‖d ~X (4)

with α, β positive reals controlling the smoothness of the ap-
proximation by focusing on constant divergence or constant
curl.

The metric chosen for complexity computation relies on a
measure of sensitivity to initial conditions of the underlying
dynamical system called Lyapunov exponents. In order to
figure out what Lyapunov exponents are, let consider a point
and look at its evolution when transported by the dynamical
system.

Let ~X be fixed (initial point) and let φ be a point trajectory
of the dynamical system given by :

φ(t, ~X) = ~X +
∫ t

0

~V φ(s, ~X)ds (5)

Assume now that trajectory is disturbed by a small pertur-
bation ~ε, we have :

φ(t, ~X + ~ε) = φ(t, ~X) + D ~Xφ(t, ~X) · ~ε+ o(‖~ε‖) (6)

where D ~Xφ(t, ~X) is the differential of the vector field at ~X
that satisfies :

D ~Xφ(t, ~X)
dt

= D ~X
~V (φ(t, ~X)) ·D ~Xφ(t, ~X) (7)

The Lyapunov exponents are closely related to the singular
values of the matrix D ~Xφ(t, ~X) and can be thought as local
shear values for the dynamical system.

When Lyapunov exponents are high, the trajectory of a
point under the action of the dynamical system is very
sensitive to initial conditions (or parameters on which the
vector field may depend), so that situation in the future
is unpredictable. On the other hand, small values of the
Lyapunov exponents mean that the future is highly pre-
dictable (expected to be comfortable for a controller). So,
the Lyapunov exponent map determines the area where the
underlying dynamical system is organized. It identifies the
places where the relative distances between aircraft do not
change with time (low real value) and the ones where such
distance change a lot (hight real value).

Let us now describe the practical procedure for computing
complexity maps.

First of all, the optimal dynamic div-curl approximation
for the observed trajectories is computed, based on the
defining equations. That step requires a linear system solving.

The second step computes the second derivatives matrix
D ~Xφ at each point of the grid for φ trajectory starting at
~X . This is done by solving the differential equation 7 with
a Runge-Kutta integrator. The complexity value at point ~X
is then obtained by averaging Lyapunov exponents over the
time :

κ( ~X) =
1
n

i=n∑
i=1

‖D ~X
~V (φ(t, ~X))‖2 (8)

The figure 1 shows an example of Lyapunov exponents
map for which full organized miles in trail trajectories
(from south west to north east) cross two random traffic
situations. This figure shows clearly a complexity valley on
the miles in trail direction. This organization may have been
detected even if the miles in trail trajectories would have been
structured on a curve trajectory. That is the strong point of
this metric: Lyapunov exponents are able to identify any
kind of trajectory organization.



Fig. 1. Lyapunov exponents map. On this figure aircraft are shown with
circles with radius equal to the separation norm.
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