J. Ramsay and B. Silverman, Functional Data Analysis, ser. Springer Series in Statistics, 2006.

F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, ser, 2006.

M. Enriquez, Identifying temporally persistent flows in the terminal airspace via spectral clustering, ATM Seminar, p.2013

M. Mahrsi and F. Rossi, Graph-Based Approaches to Clustering Network-Constrained Trajectory Data, Lecture Notes in Computer Science, vol.7765, pp.124-137, 2013.
DOI : 10.1007/978-3-642-37382-4_9

URL : https://hal.archives-ouvertes.fr/hal-00874886

M. Ester, H. Peter-kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, pp.226-231, 1996.

J. Kim and H. S. Mahmassani, Spatial and Temporal Characterization of Travel Patterns in a Traffic Network Using Vehicle Trajectories, papers selected for Poster Sessions at The 21st International Symposium on Transportation and Traffic Theory Kobe, pp.164-184, 2015.
DOI : 10.1016/j.trpro.2015.07.010

D. G. Kendall, Shape manifolds, Procrustean metrics, and complex projective spaces Bulletin of the, pp.81-121, 1984.

T. W. Liao, Clustering of time series data???a survey, Pattern Recognition, vol.38, issue.11, pp.1857-1874, 2005.
DOI : 10.1016/j.patcog.2005.01.025

S. Rani and G. Sikka, Recent Techniques of Clustering of Time Series Data: A Survey, International Journal of Computer Applications, vol.52, issue.15, pp.1-9, 2012.
DOI : 10.5120/8282-1278

W. Meesrikamolkul, V. Niennattrakul, and C. Ratanamahatana, Shape-Based Clustering for Time Series Data, Lecture Notes in Computer Science, vol.7301, pp.530-541
DOI : 10.1007/978-3-642-30217-6_44

A. Delaigle and P. Hall, Defining probability density for a distribution of random functions, The Annals of Statistics, vol.38, issue.2, pp.1171-1193, 2010.
DOI : 10.1214/09-AOS741

C. Bouveyron and J. Jacques, Model-based clustering of time series in group-specific functional subspaces Advances in Data Analysis and Classification, pp.281-300, 2011.

G. Wahba, Spline Models for Observational Data, Society for Industrial and Applied Mathematics, 1990.
DOI : 10.1137/1.9781611970128

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, Journal of the European Mathematical Society, vol.8, pp.1-48, 2006.
DOI : 10.4171/JEMS/37

S. Puechmorel and F. Nicol, Entropy minimizing curves with application to automated flight path design Lecture notes in computer science, Geometric Science of Information, MDPI Entropy, 2015.

P. Griffiths and J. Harris, Principles of Algebraic Geometry, ser Available: https, 2011.

E. Parzen, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics, vol.33, issue.3, pp.1065-1076, 1962.
DOI : 10.1214/aoms/1177704472

K. Mardia and P. Jupp, Directional Statistics, ser, 2009.

E. García-portugués, R. M. Crujeiras, and W. González-manteiga, Kernel density estimation for directional???linear data, Journal of Multivariate Analysis, vol.121, pp.152-175, 2013.
DOI : 10.1016/j.jmva.2013.06.009

K. V. Mardia, Statistics of directional data, Journal of the Royal Statistical Society. Series B (Methodological), vol.37, issue.3, pp.349-393, 1975.