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Abstract—Air traffic system generates huge amounts of data,
most of them being only partly exploited. One important issue
is the functional nature of the samples that consist mainly in
curves. Analyzing this kind of highly structured data requires
dedicated tools. Most of the time, the functions considered are
expanded on a truncated Hilbert basis then usual multivariate
statistics tools are applied on them. When additional constraints
are put on the curves, like in applications related to air traffic
where operational considerations are to be taken into account,
this approach is no longer applicable. The present article
surveys some recent results obtained by the authors using a
new framework where curves are represented as regularized
currents. The question of high dimensional data with intrinsic
redundancy is also discussed and a possible extension of the
already obtained results is sketched.

I. INTRODUCTION

The air traffic system outputs huge volumes of data
coming from surveillance systems, like Radar or ADS-B,
and from monitoring and maintenance sources. Although
very different in sampling rates and samples dimensions,
they share in common the fact that almost all the time, data
can be represented as functions.

As an example, clustering aircraft trajectories is a central
problem in Air Traffic Management (ATM). It arises natu-
rally when designing arrival and departure procedures and
when some special constraints are to be considered: noise
exposure, pollutants emission. For this application, one must
first identify the major flows and then assess the statistical
structure of the discrepancy of the real flight paths around
them.

In the en-route phase, clustering is applied in order to
extract mean flight paths, which are further used to optimally
design the airspace elements (sectors and airways). A special
instance of this problem is the automatic generation of safe
and efficient trajectories, but in such a way that the result-
ing flight paths are still manageable by human operators.
Several algorithms can automatically produce conflict free

trajectories but generally fail to issue planning schemes that
may be used by air traffic controller in the event of a system
failure. Clustering may be a solution to this problem using
a two phase procedure: in a first step, a set of flight plans or
intended reference business trajectories is submitted to the
optimizer which outputs a conflict free planning. In a second
step, a clustering algorithms extracts medial lines from this
trajectories set, which form a dynamic route system. If it is
simple enough, a controller may use it in a manual control
context.

Finally, a very important applicative field of trajectory
analysis is related to safety data. This subject covers in
fact many different applications, depending on the data
source. When only radar tracks are used, only a small
subset of the aircraft states can be inferred. However, it
is still possible to get extract valuable information: runway
adherence condition is a worked example of that. On-board
data logging facilities give access to an almost complete
picture of the aircraft state: the main issue when trying
to analyze it is the volume and the internal redundancy of
the samples. Tools dealing with such a situation are yet to
be designed. A work in progress tries to pave the way to
future systems, where almost independent features will be
identified.

In all the above situations, a common denominator is the
need for algorithms that take into account the functional
nature of the samples. After a brief description of previous
related works in general statistics and on the targeted air
traffic application, a new framework based on densities
associated with curve systems will be introduced. It relies
on currents that can be seen as an extension of the delta
distribution. An application to major flows identification will
be presented. In a second part, a lie group modeling will
allow to take into account flows orientations and velocities.
Finally, this work will be further extended to flag manifolds,
that may be viewed as an abstract model for independent
subspaces analysis. While still in early stage of research, it
represents the first attempt to treat the issue of functional



data with values in a structured, high dimensional state
space.

II. PREVIOUS RELATED WORK

The field of functional data is quite recent and active.
The results collected in [1], [2] give a picture of the
multivariate algorithms that have been transposed to the
functional framework.

The most obvious way of dealing with such data is simply
to sample at evenly spaced times and to collect the values
obtained in a finite dimensional vector. This procedure was
used in a study conducted by the Mitre corporation on behalf
of the Federal Aviation Authority (FAA) [3]. Due to the very
high dimension of the vectors considered, clever numerical
workarounds must be found. In the Mitre study, random
projections reduce the dimensionality, then a classical PCA
is performed. The huge computational cost of the required
singular values decomposition is thus alleviated, allowing
use on real recorded traffic over several months.

The most important limitation of the plain sampling
approach is that the shape of the trajectories is no taken
into account when applying the clustering procedure. Fur-
thermore, there is no simple mean to put a constraint on
the mean trajectory produced in each cluster: curvature may
be quite arbitrary even if samples individually comply with
flight dynamics.

Another approach is taken in [4], where an underlying
graph structure is assumed. It is a variation of the original
work described in [5]. It is well adapted to road traffic as
vehicles are bound to follow predetermined road segments.
For air traffic applications, it may be of interest for investi-
gating present situations, using the airways and beacons as a
structure graph, but will mis-classify aircraft following direct
routes which is a quite common situation, and is unable
to work on an unknown airspace organization. This last
limitation prevents its use for airspace redesign applications
or in the context of trajectory based operations. Varying the
similarity measure will put the emphasis on different aspects
of the trajectories [6],without removing the aforementioned
drawbacks

An interesting vector field based algorithm is presented in
[7]. An salient feature is the ability to distinguish between
close trajectories with opposite orientations. It falls within
the frame of landmarks based algorithms, first introduced
for shape analysis by Kendall [8].

Due to the functional nature of trajectories, that are
basically mappings defined on a time interval, some authors
resort to techniques based on times series, as surveyed in [9],
[10]. The algorithms pertaining to this category are based

on sequences, possibly in conjunction with dynamic time
warping [11].

Finally, as mentioned at the beginning of the section, one
can assume that data come from an unknown underlying
stochastic process whose sample paths belong to a given
Hilbert space with countable basis. Using truncated expan-
sions of this basis, functional data revert for implementation
to usual multivariate algorithms. For the same reason, model-
based clustering may be used in the context of functional
data even if no notion of probability density exists in the
original infinite dimensional Hilbert space [12]. A nice
example of a model-based approach working on functional
data is funHDDC [13].

III. CURVE SYSTEMS

When dealing with aircraft trajectories, some specific
characteristics must be taken into account. First of all, flight
paths consist mainly in straight segments connected by arcs
of circles, with transitions that may be assumed smooth
up to at least the second derivative. This last property
comes from the fact that pilot’s actions result in changes
on aerodynamic forces and torques and a straightforward
application of the equations of motion. When dealing with
sampled trajectories, this induces a huge level of redundancy
within the data, the relevant information being concentrated
around the transitions. It is well known from numerical
analysis that it renders covariance and related matrices ill-
conditioned, inducing instabilities in the algorithms. From
a practical standpoint, random pre-conditioners will greatly
improve the situation, but render the interpretation of the
final results difficult. At the same time, it is highly desirable
that trajectories produced by algorithms be of smallest
possible curvature, so that they may represent potential flight
paths.

A second issue comes from the fact that trajectories of
interest are defined as mapping from a time interval [a, b]
to R3 which is not the usual setting for functional data
statistics: most of the work is dedicated to real valued
mappings and not to vector ones. A simple approach will
be to assume independence between coordinates, so that
the problem falls within the standard case. However, even
with this simplifying hypothesis, vertical dimension must be
treated in a special way as both the separation norms and
the aircraft maneuverability are different from those in the
horizontal plane. This issues becomes even more important
when dealing with on-board recorded flight data as the
dimension of the state space may be in the order of several
hundreds, with a strong correlation between coordinates.

Within the frame of functional data statistics, a clever
choice of the hilbert state space may yield a solution to



both problems. As a matter of fact, one can consider Sobolev
spaces of the form:

HL = {f |
∫
‖Lf(x)‖2dx < +∞} (1)

where L is a differential operator with 0 kernel. Taking for
example L = Id + ADxx, with A > 0 a tuning parameter,
allows the acceleration of the curve to be considered. Suit-
able hilbert basis in such a case can be obtained using green
functions of the L∗L operator, with L∗ the adjoint of L,
yielding the so-called spline basis [14]. Such Sobolev spaces
are reproducing kernel hilbert spaces (RKHS), with kernel
the green function, which allows computation saves when
evaluating inner products or distances. This relationship is
exposed in detail in the above reference. The spline basis has
been proved asymptotically optimal under special choices
of L, fully justifying its use when working on truncated
expansion.

When no obvious choice of L can be made or when
the green function cannot be computed, the method is less
straightforward to apply. Furthermore, the nice optimality
property is generally lost when working with general basis:
the truncation threshold may become so high that the method
will no compete with plain sampling. Finally, geometric fea-
tures of curves, like curvature, cannot be easily formulated as
a Sobolev norm, and may not be preserved in the algorithms
outputs.

A different approach is considered in this work, building
upon geometry of shapes [15] and information geometry
[16]. Curves will be modeled as smooth currents [17], then
regularized using a kernel functions. Given a complete set
of trajectories, it will give rise to a density, that may enter
an optimization process. As one of the most important
requirement about flight paths is that they must be as straight
as possible, an entropy criterion was selected. In the next
section, the contributions coming from [16], [18], [19] are
summarized.

IV. THE ENTROPY OF A SYSTEM OF CURVES

Let a set γ1, . . . γN of smooth curves with value in a
bounded open subset Ω of finite dimensional vector space
E be given. If Uk, k = 1 . . . P is a partition of Ω, then one
can construct a density estimator for the curve system as:

dk = λ−1
N∑
i=1

∫ 1

0

1Uk (γi(t)) dt (2)

where the normalizing constant λ is obtained as:

λ =

P∑
k=1

N∑
i=1

∫ 1

0

1Uk (γi(t)) dt (3)

=

N∑
i=1

∫ 1

0

P∑
k=1

1Uk (γi(t)) dt (4)

and since Uk, k = 1 . . . P is a partition:

λ =

N∑
i=1

∫ 1

0

dt = N (5)

Density can be viewed as an empirical probability distri-
bution with the Uk considered as bins in an histogram.
Proceeding the same way as in non-parametric density
estimation [20], a kernel smoother is used in place of the
characteristic functions 1Uk :

d : x 7→
∑N
i=1

∫ 1

0
K (‖x− γi(t)‖) dt∑N

i=1

∫
Ω

∫ 1

0
K (‖x− γi(t)‖) dtdx

(6)

it comes:∫
Ω

K (‖x− γi(t)‖) dx =

∫
R2

K (‖x‖) dx

provided that Ω contains the set:

{x ∈ R2, inf
i=1...N,t∈[0,1]

‖x− γi(t)‖ ≤ A}

where the interval [−A,A] contains the support of K. When
the kernel has unit integral, the expression of the density
simplifies to:

d : x 7→ N−1
N∑
i=1

∫ 1

0

K (‖x− γi(t)‖) dt (7)

A common choice for K is the Epanechnikov function:

K : x 7→
(
1− x2

)
1[−1,1](x)

that is presented here in its un-normalized version. The den-
sity map of one day of traffic over France is considered and
pictured on figure 2: Unfortunately, this simple procedure
suffers a severe flaw: it tends to overemphasis areas when
the aircraft are slow, as they will represent a longer time
occupancy for the same size. A change is made so as to
overcome this issue, yielding:

d̃ : x 7→
∑N
i=1

∫ 1

0
K (‖x− γi(t)‖) ‖γ′i(t)‖dt∑N

i=1 li
(8)

with li the length of curve i. A unit integral kernel is
assumed in the above expression. The resulting density map
is more satisfying, as shown in figure 3: It turns out that
the expression can be interpreted as a sum of regularized



Fig. 1. Traffic over France the 12th February 2013

Fig. 2. Associated density

smooth currents [17], with the curves γi considered as 0-
currents and K the smoothing kernel. Other choices of K
may be more natural in this context: Gaussian kernels will be
a good starting point, but are not compact (this is not in issue
in real-world applications as the truncation error is generally
negligible). Varying the bandwidth of K will change the
amount of smoothing applied to the original curves: very
low ones tend to reproduce accurately the trajectories while
larger ones will spread the density over Ω. All the theoretical
properties of smooth currents apply verbatim to the density
of a curve system. It will be used in a future work to compute
limiting objects.

The density defined that way is obviously positive and
of unit integral: its entropy is thus well defined and can be
computed as:

E(γ1, . . . , γN ) = −
∫

Ω

d̃(x) log
(
d̃(x)

)
dx (9)

Fig. 3. Geometric density for the 12th February 2013

Since the entropy is minimal for concentrated distribu-
tions, it is quite intuitive to figure out that seeking for
a curve system (γ1, . . . , γN ) giving a minimum value for
E(γ1, . . . , γN ) will induce the following properties:

• The images of the curves tend to get close on to another.
• The individual lengths will be minimized: it is a direct

consequence of the fact that the density has a term in
γ′ within the integral that will favor short trajectories.

Using a standard gradient descent algorithm on the en-
tropy produces an optimally concentrated curve system,
suitable for use in an unsupervised clustering algorithm. The
displacement field for trajectory j is oriented at each point
along the normal vector to the trajectory, with norm given
by:∫

Ω

γj(t)− x
‖γj(t)− x‖

∣∣∣∣
N
K ′ (‖γj(t)− x‖) log d̃(x)dx‖γ′j(t)‖

(10)

−
(∫

Ω

K (‖γj(t)− x‖) log d̃(x))dx

)
γ′′j (t)

‖γ′j(t)‖

∣∣∣∣∣
N

(11)

+

(∫
Ω

d̃(x) log(d̃(x))dx

)
γ′′j (t)

‖γ′j(t)‖

∣∣∣∣∣
N

, (12)

where the notation v|N stands for the projection of the
vector v onto the normal vector to the trajectory. An overall
normalizing constant:

1∑N
i=1 li

,

has to put in front of the expression to get the true gradient
of the entropy.



Applying the gradient based algorithm to the traffic sit-
uation studied above, yields after convergence the picture
presented in figure 4.

Fig. 4. Bundling one day of traffic

The clustering procedure was also used in the context of
automated trajectory planners. In the example presented in
figure 5, 30 flights were simulated on the depicted route
system (the figure is a snapshot of the situation, so that
not all aircraft are present). A multi-agent system was
applied in order to solve all conflicts, but with no constraints
put on trajectories: the resulting planning scheme makes
each aircraft move in a free flight fashion, and may not
be controlled by a human ATC controller. Applying the
minimum entropy clustering scheme allows the emergence
of a route system. Since conflicts are introduced by this
procedure, an iterative application of the multi-agent solver
and clustering must be used. After convergence, the conflict-
free planning of figure 6 was obtained.

V. EXTENSION TO TRAJECTORIES IN A LIE GROUP

While satisfactory in terms of traffic flows, the previous
approach suffers from a severe flaw when one considers
flight paths that are very similar in shape but are oriented
in opposite directions. Since the density is insensitive to
direction reversal, flight paths will tend to aggregate while
the correct behavior will be to ensure a sufficient separation
in order to prevent hazardous encounters. Taking aircraft
headings into account in the clustering process is then
mandatory when such situations have to be considered.

Solving this issue is not as straightforward as one may
think at a first glance. It is always possible to add a penalty
term related to the inner product of speed vectors for each
pair of curves, but tuning its relative importance is quite

Fig. 5. Initial flight plan.

Fig. 6. Entropy minimal curve system from the initial flight plan.

difficult and may impair the overall convergence of the
algorithm. A classical workaround that several authors have
used in usual multivariate PCA is to enrich the state space
of the curves. One can consider for example a state vector
of the form: (

γ(t)
γ′(t)

)
. (13)

Instead of using the speed vector to enrich the state, succes-
sive positions may be used:(

γ(t)
γ(t+ τ)

)
. (14)



where the time shift τ has to be chosen to capture instanta-
neous motion of the aircraft. While satisfactory, two points
are not addressed by this formulation:

• Just comparing speed vectors (or couples) using stan-
dard euclidean distance is not scale invariant: if ve-
locities are multiplied by a fixed positive scalar, then
the inner product will scale with the square of this
amount. This is not relevant in most applications as
speed vectors comparison is generally assumed not to
change under translations/rotations/scalings.

• Salient features of the speed vector in an operational
context are magnitude and heading. There are not
treated as independent parameters in the aforemen-
tioned representation.

Keeping the operational requirements in mind, it is more
natural to describe the aircraft state as a centroid position
and attitude. Since only observed trajectories are considered
here, attitude will be described by a unit vector pointing
in the direction of the motion and a positive real number
giving the velocity. From a mathematical point of view, such
a situation may be described by a group action on a reference
vector, chosen here to be:(

0d
e1

)
,

with e1 the first basis vector, and 0d the origin in Rd. It is
equivalent to model the state in 13 as a linear transformation:

0d ⊗ e1 7→ T (t)⊗A(t)(0d ⊗ e1) = γ(t)⊗ γ′(t),

where T (t) is the translation mapping 0d to γ(t) and A(t)
is the composite of a scaling and a rotation mapping e1

to γ′(t). Considering the vector (γ(t), 1) instead of γ(t)
allows a matrix representation of the translation T (t):(

γ(t)
1

)
=

(
Id γ(t)
0 1

)(
0d
1

)
.

From now, all points will be implicitly considered as having
an extra last coordinate with value 1, so that translations are
expressed using matrices. The origin 0d will thus stand for
the vector (0, . . . , 0, 1) in Rd+1. Gathering things yields:(

γ(t)
γ′(t)

)
=

(
T (t) 0

0 A(t)

)(
0d
e1

)
. (15)

The previous expression makes it possible to represent a
trajectory as a mapping from a time interval to the matrix
Lie group G = Rd × Σ × SO(d), where Σ is the group
of multiples of the identity, SO(d) the group of rotations
and Rd the group of translations. Please note that all the
products are direct. The A(t) term in the expression (15)
can be written as an element of Σ ⊗ SO(d). Starting with

the defining property A(t)e1 = γ′(t), one can write A(t) =
‖γ′(t)‖U(t) with U(t) a rotation mapping e1 ∈ Sd−1 to the
unit vector γ′(t)/‖γ′(t)‖ ∈ Sd−1. For arbitrary dimension
d, U(t) is not uniquely defined, as it can be written as a
rotation in the plane P = span(e1, γ

′(t)) and a rotation in
its orthogonal complement P⊥. A common choice is to let
U(t) be the identity in P⊥ which corresponds in fact to a
move along a geodesic (great circle) in Sd−1. This will be
assumed implicitly in the sequel, so that the representation
A(t) = Λ(t)U(t) with Λ(t) = ‖γ′(t)‖Id becomes unique.

The Lie algebra g of G is easily seen to be Rd × R ×
Asym(d) with Asym(d) is the space of skew-symmetric
d × d matrices. An element from g is a triple (u, λ,A)
with an associated matrix form:

M(u, λ,A) =

 0 u
0 0

0

0 λId+A

 . (16)

The exponential mapping from g to G can be obtained in a
straightforward manner using the usual matrix exponential:

exp((u, λ,A)) = exp(M(u, λ,A)).

The matrix representation of g may be used to derive a
metric:

〈(u, λ,A), (v, µ,B)〉g = Tr
(
M(u, λ,A)tM(v, µ,B)

)
.

Using routine matrix computations and the fact that A,B be-
ing skew-symetric have vanishing trace, it can be expressed
as:

〈(u, λ,A), (v, µ,B)〉g = nλµ+ 〈u, v〉+ Tr
(
AtB

)
. (17)

A left invariant metric on the tangent space TgG at g ∈ G
is derived from (17) as:

〈〈X,Y, 〉〉g = 〈g−1X, g−1Y 〉g,
with X,Y ∈ TgG. Please note that G is a matrix group acting
linearly so that the mapping g−1 is well defined from TgG
to g. Using the fact that the metric (17) splits, one can check
that geodesics in the group are given by straight segments
in g: if g1, g2 are two elements from G, then the geodesic
connecting them is:

t ∈ [0, 1] 7→ g1 exp
(
t log

(
g−1

1 g2

))
.

where log is a determination of the matrix logarithm. Finally,
the geodesic length is used to compute the distance d(g1, g2)
between two elements g1, g2 in G. Assuming that the trans-
lation parts of g1, g2 are respectively u1, u2, the rotations
U1, U2 and the scalings exp(λ1), exp(λ2) then:

d(g1, g2)2 = (λ1 − λ2)
2

+ (18)

Tr
(

log
(
U t1U2

)
log
(
U t1U2

)t)
+ ‖u1 − u2‖2.

(19)



An important point to note is that the scaling part of an
element g ∈ G will contribute by its logarithm: this ensures
the scale invariance of the metric as any common scaling
factor will cancel out in the distance computation. The part
related to unit matrices can be interpreted as finding an
optimal sequence of rotations that will make the eigenvectors
coincident and compute the total angular variation needed.
It has to be noted that when dealing with planar curve, the
value obtained that way is exactly the angle between the
speed vectors. Finally, the metric differs from the affine
invariant one in that orientation is explicitly taken into
account.

Based on the above derivation, a flight path γ with state
vector (γ(t), γ′(t)) will be modeled in the sequel as a curve
with values in the Lie group G:

Γ: t ∈ [0, 1] 7→ Γ(t) ∈ G,

with:
Γ(t).(0d, e1) = (γ(t), γ′(t)).

In order to make the Lie group representation amenable to
statistical thinking, it is needed to define probability densities
on the translation, scaling and rotation components that are
invariant under the action of the corresponding factor of G.

VI. DENSITY ESTIMATION ON G

The kernel density estimator presented in the first part of
the paper cannot be used directly as it relies explicitly on a
vector space structure. It has to be adapted for the Lie group
case, so as to ensure invariance by the group action.

Since the Lie group G is a direct product, the three
components can be treated separately.

The translation part is the additive group Rd and its action
is given by a vector translation. As a consequence, its group
structure is identical to the one of Rd considered as a real
vector space: the density estimation on it will not differ from
the one presented in IV. The same estimator will be used,
with either the epanechnihov or the Gaussian kernel.

Concerning the SO(d) component, it well known that an
arbitrary rotation U can be represented as a sequence of
points on spheres of decreasing dimension: the procedure
was already detailed in the section V. Estimating a density
on SO(d) can thus be done using kernels on spheres: it
becomes a classical problem in directional statistics.

A commonly used choice is the von Mises-Fisher (vMF)
distribution on Sd−1 which is denoted M(m,κ) and given
by the following density expression [21]:

KVMF (x;m,κ) = cd(κ) eκm
T x, κ > 0, x ∈ Sd−1, (20)

where

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
(21)

is a normalization constant with Ir(κ) denoting the modified
Bessel function of the first kind at order r. The vMF kernel
function is an unimodal p.d.f. parametrized by the unit
mean-direction vector µ and the concentration parameter
κ . κ is a smoothing parameter that plays the role of
the inverse of the bandwidth parameter as defined in the
linear kernel density estimation. Large values of κ imply
greater a concentration around the mean direction and lead
to undersmoothed estimators whereas small values provide
oversmoothed circular densities [22]. Indeed, if κ = 0,
the vMF kernel function reduces to the uniform circular
distribution on the hypersphere. Note that the vMF kernel
function is by design invariant by the action of SOd.
The VNf density enjoys properties analogous to those of
multivariate Gaussian distribution: a central limit theorem
exists in the context of spheres, with limiting distribution
the VMf.

The vMF distribution may be expressed by means of the
spherical polar coordinates of x ∈ Sd−1 [23].

Given the random vectors Xi, i = 1, . . . , n, in Sd−1, the
estimator of the spherical distribution is given by:

f̂(x) =
1

n

n∑
i=1

KVMF (x;Xi)

=
cd(κ)

n

n∑
i=1

eκX
T
i x, κ > 0, x ∈ Sd−1.

The density estimator on S0d is constructed component-
wise, using the previous expression on each of the spheres
involved in its decomposition.

As for the scaling component of G, the usual kernel
functions such as the Gaussian and the Epanechnikov kernel
functions are not suitable due to a bias introduced in close to
the domain boundary at 0. An asymmetrical kernel function
on R+ such as the log-normal kernel function is a more
convenient choice. Moreover, this p.d.f. is invariant by the
action of the multiplicative group of positive real numbers.
Let R1, . . . , Rn be univariate random variables from a p.d.f.
which has bounded support on [0; +∞[. The radial density
estimator may be defined by means of a sum of log-normal
kernel functions as follows:

ĝ(r) =
1

n

n∑
i=1

KLN (r; lnRi, h), r ≥ 0, h > 0,

where
KLN (x;µ, σ) =

1√
2πσx

e−
(ln x−µ)2

2σ2



is the log-normal kernel function and h is the bandwidth
parameter. The resulting estimate is the sum of bumps de-
fined by log-normal kernels with medians Ri and variances
(eh

2 − 1)eh
2

R2
i . Note that the log-normal (asymmetric)

kernel density estimation is similar to the kernel density
estimation based on a log-transformation of the data with
the Gaussian kernel function: in practice, the estimator IV
is used on the logarithms of the scale components.

VII. UNSUPERVISED ENTROPY CLUSTERING

The derivation of the algorithm used for clustering curves
with value in the Lie group is similar to the vector space
case (10). The kernel has to be replaced with the respective
VMf and Log-normal ones on the rotation and scaling
components. The term ‖γ′(t)‖ in the original expression of
the density, that is required to ensure invariance under re-
parametrization of the curve, has to be changed according
to the metric in G and is replaced by 〈〈γ′(t), γ′(t)〉〉1/2γ(t). The
density at x ∈ G is thus:

dG(x)) =

∑N
i=1

∫ 1

0
K (x, γi(t)) 〈〈γ′i(t), γ′i(t)〉〉

1/2
γi(t)

dt∑N
i=1 li

(22)

where li is the length of the curve in G, that is:

li =

∫ 1

0

〈〈γ′i(t), γ′i(t)〉〉
1/2
γi(t)

dt (23)

The expression of the kernel evaluation K (x, γi(t)) is split
into three terms. In order to ease the writing, a point x in G
will be split into xr, xs, xo components where the exponent
r, s, t stands respectively for translation, scaling and rotation.
Given the fact that K is a product of component-wise
independent kernels it comes:

K (x, γi(t)) = Kt

(
xt, γti (t)

)
Ks (xs, γsi (t))Ko (xo, γoi (t))

where:

Kt(x
t, γti (t)) = ep

(
‖xt − γti (t)‖

)
(24)

Ks(x
s, γsi (t)) =

1

xsσ
√

2π
exp

(
− (log xs − log γsi (t))

2

2σ2

)
(25)

Ko(x
o, γoi (t)) = C(κ) exp

(
κTr

(
xotγoi (t)

))
(26)

with C(κ) the normalizing constant making the kernel of
unit integral. Please note that the expression given here
is valid for arbitrary rotations, but for aircraft trajectory
the heading is the only observable parameter unless on-
board data is downlinked. As a consequence it is enough to
consider it only a standard von-mises distribution on Sd−1:

Ko(x
o, γoi (t)) = C(κ) exp

(
κxotγoi (t)

)

with normalizing constant as given in (21). The entropy of
the system of curves is obtained from the density in G:

E(dG) = −
∫
G
dG(x) log dG(x)dµG(x) (27)

with dµG the left Haar measure. Using again the fact that
G is a direct product group, dµ is easily seen to be a
product measure, with dxt, the usual Lebesgue measure
on the translation part, dxs/xs on the scaling part and the
lebesgue measure dxo on Sd−1 for the rotation part. It turns
out that the 1/xs term in the expression of dxs/xs is already
taken into account in the kernel definition, due to the fact
that it is expressed in logarithmic coordinates. The same is
true for the Von-Mises kernel, so that in the sequel only the
(product) lebesgue measure will appear in the integrals.

Finding the system of curves with minimum entropy
requires a displacement field computation as detailed in [16].
For each curve γi, such a field is a mapping ηi : [0, 1]→ TG
where at each t ∈ [0, 1], ηi(t) ∈ TGγi(t).Compare to the
original situation where only spatial density was considered,
the computation must now be conducted in the tangent
space to G. Even for small problems, the effort needed
becomes prohibitive. The structure of the kernel involved
in the density can help in cutting the overall computations
needed. Since it is a product, and the translation part is
compactly supported, being an epanechnikov kernel, one
can restrict the evaluation to points belonging to its support.
Density computation will thus be made only in tubes around
the trajectories.

Second, for the target application that is to cluster the
flight paths into a route network and is of pure spatial nature,
there is no point in updating the rotation and scaling part
when performing the moves: only the translation part must
change, the other two being computed from the trajectory.
The initial optimization problem in G may thus be greatly
simplified.

Let ε be an admissible variation of curve γi, that is a
smooth mapping from [0, 1] to TG with ε(t) ∈ Tγi(t)G and
ε(0) = ε(1) = 0. We assume furthermore that ε has only a
translation component. The derivative of the entropy E(dG)
the t curve γi is obtained from the first order term when γi
is replaced by γi + ε. First of all, it has to be noted that dG
is a density and thus has unit integral regardless of the curve
system. When computing the derivative of E(dG), the term

−
∫
G
dG(x)

∂γidG(x)

dG(x)
dµG(x) = −

∫
G
∂γidG(x)dµG(x)

will thus vanish. It remains:

−
∫
G
∂γidG(x) log dG(x)dµG(x)



The density dG is a sum on the curves, and only the i-th term
has to be considered. Starting with the expression from (22),
one term in the derivative will come from the denominator.
It computes the same way as in [16] to yield:

γt′′i (t)

〈〈γ′i(t), γ′i(t)〉〉G

∣∣∣∣
N
E(dG) (28)

Please note that the second derivative of γi is considered
only on its translation component, but the first derivative
makes use of the complete expression. As before, the nota-
tion |N stands for the projection onto the normal component
to the curve.

The second term comes from the variation of the numer-
ator. Using the fact that the kernel is a product KtKsKo

and that all individual terms have a unit integral on their
respective components, the expression becomes very similar
to the case of spatial density only and is:

−
(∫
G
K (x, γi(t)) log dG(x)dµG(x)

)
γt′′i (t)

〈〈γ′i(t), γ′i(t)〉〉
1/2
G

∣∣∣∣∣
N

(29)

+

∫
Rd
e(t)Kt′ (xt, γti (t)) log dG(x)〈〈γ′i(t), γ′i(t)〉〉

1/2
G dxt

(30)

with:
e(t) =

γti (t)− xt

‖γti (t)− xt‖

∣∣∣∣
N

VIII. RESULTS

Although the original Lie group formulation can be
simplified in the framework of aircraft trajectories, the
computation cost is still too high to be used in practical
applications. A preprocessing phase was thus applied to the
dataset in order to limit the number of terms used in the
expression of the entropy or its gradient. The information
about a trajectory can be summarized by the horizontal
component of its centroid and its mean heading, yielding
a three dimensional point. Using it within an octree allows
the density computation to be limited not only to spatial
areas close enough to existing trajectories but also to curves
with similar orientation. It becomes possible to save a lot of
useless kernel evaluations in estimating the density on the
rotation part.

The arrivals and departures at Toulouse Blagnac airport
were analyzed. The algorithm performs well as indicated
on Figure 7. Four clusters are identified, with mean lines
represented through a spline smoothing between landmarks.
It is quite remarkable that all density based algorithms were
unable to separate the two clusters located at the right side
of the picture, while the present one clearly show a standard
approach procedure and a short departure one.

Fig. 7. Bundling trajectories at Toulouse airport

For the case of Figure 7, that represents 1784 trajectories,
the computation time is 5 minutes on a XEON 3Ghz machine
and with a pure java implementation.

IX. TOWARD ANALYSIS OF HIGH DIMENSION DATA

When dealing with data coming from quick access
recorder (QARs), the size of the samples arises as a new
issue. It is no longer possible to use the techniques presented
in the previous sections as the estimation of the density will
become prohibitive in terms of computational complexity.
Furthermore, the various components appearing in the sam-
ples may be of very different nature: it is thus required to
perform first a segmentation into homogeneous groups. A
promising approach is the one described in [24] where the
data is represented as point in a flag of invariant subspaces.
It is in some sense a generalization of the classical PCA
decomposition, but with principal subspaces used instead
of vectors: the obvious benefit is that less computation is
needed and that all vectors pertaining to the same subspace
may be considered equivalent. This gives a clue for a
adaptation of the entropy based algorithms to very high
dimensional data:

• Compute the flag decompositions;
• For a sample point, get its distance to each of the

subspaces involved in the flag. Please note that it can
be viewed as a kind of generalized coordinates, the
usual expansion on a orthonormal basis being recovered
by letting the flag by composed only of 1-dimensional
subspaces;

• Use the previous expansion as the input data for an
entropy based algorithm.

This work is still in early research stage, however it seems
to be a very promising way of addressing the issue of QARs
data clustering. Two important points are yet to be solved:

• Find an optimal way to construct the flag of invariant
subspaces;



• Adapt the entropy based algorithm so as to be able to
deal with samples with dimension in the order of 10,
typical of what is provided by the flag expansion.

X. CONCLUSION AND FUTURE WORK

The entropy associated with a system of curves has
proved itself efficient in unsupervised clustering application
where the information coming from geometry is of primary
importance. Extending this setting to the case of Lie group
valued curves adds the ability to take into account features
of the data that are not of spatial nature, like heading or
scale. On several test problems, the clusters produced extract
relevant aeronautical information, yielding one of the first
mathematically sound algorithm able to deal with such data.
The next major step will be the introduction of invariant
subspaces decompositions, that will naturally produce a
summary of very high dimensional samples like produced
by the QARs. It is anticipated to pave the way for a new
generation of algorithms able to operate in this context.
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