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Trajectory Optimization for Differential Flat
Systems

Kahina Louadj1,2 , Benjamas Panomruttanarug3, Alexandre Carlos Brandão Ramos4, Felix Mora-Camino 1

Abstract—The purpose of this communication is to investigate
the applicability of Variational Calculus to the optimization of
the operation of differentially flat systems. After introducing
characteristic properties of differentially flat systems, the ap-
plicability of variational calculus to the optimization of flat
output trajectories is displayed. Two illustrative examples are
also presented.

Index Terms—Differential flatness, Variational Calculus, Tra-
jectory optimization.

I. INTRODUCTION

IN the last decade a large interest has risen for new
non linear control approaches such as non linear inverse

control [1,2,3], backstepping control [4] and differential flat
control [2]. These control law design approaches present
strong similarities. Many dynamical systems have been found
to be differentially flat and flat outputs trajectory control has
been in general performed using non linear inverse control,
called in that case differential flat control. This approach
assumes that a flat outputs reference trajectory is already
available. However, this is not the case in many situations.
So the problem of designing an optimal flat outputs trajectory
should be considered.
In this paper it is showed that variational calculus and more
specially Euler Equation can provide a solution to this prob-
lem without having to consider the intricacies associated with
the application of the Minimum Principle of Pontryaguine
or the Hamilton-Jacobi-Bellman equations. Two illustrative
examples are deployed.

II. DIFFERENTIAL FLAT OUTPUT AND CONTROL

Consider a general non-linear dynamic continuous system
given by:

Ẋ = f(X,U) (1)

Y = h(X) (2)

where X ∈ Rn is the state vector, U ∈ Rm is the control
vector, Y ∈ Rm, f is a smooth vector field of X and U
and h is a smooth vector field of X.
It is supposed here that each input has an independent effect
on the state dynamics:

rank[∂f/∂u, ...., ∂f/∂um] = m (3)
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A. Relative Degrees of Outputs in Nonlinear Systems

According to [1] the system (1)-(2) is said to have with
respect to each independent output Yi, a relative degree ri if
the output dynamics can be written as:

Y
(r1+1)
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.

.

.

Y
(rm+1)
m

 =


b1(X,U)

.

.

.
bm(X,U)

 (4)

with

Y
(s)
i = ajs(X) s = 0, ..., rj , j = 1, ...,m (5)

and
∂bj(X,U)/∂U 6= 0 j = 1, ...,m (6)

The output dynamics (4)-(5) can be rewritten globally as:

Z = A(X) (7)

and
Z̃ = B(X,U) (8)

where
Z = (Y1....Y

(r1)
1 ....Ym....Y

(rm)
m )′ (9)

and
Z̃ = (Y

(r1+1)
1 , ...., Y (rm+1)

m )′ (10)

Here

A(X) =


a1(X)
.
.
.

am(X)

 (11)

with

aj(X) =


aj0(X)

.

.

.
aj,rj (X)

 j = 1, ...,m (12)

The relative degrees obey (see [2]) to the condition:
m∑
i=1

(ri + 1) ≤ n, i = 1, ...,m (13)

When the strict equality holds, vector Z̃ can be adopted as a
new state vector for system (1), otherwise internal dynamics
must be considered.
From (8), while B(X,U) is inversible with respect to U, an
output feedback control law such as:

U(X) = B−1u (X)Z̃ (14)

can be adopted.
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B. Differential Flat System

Now suppose that Y ∈ Rm is a differential flat output for
system (1), then from [3] the state and the input vectors can
be written as:

X = η(Z) (15)

U = ξ(Z, Z̃) (16)

where Z, Z̃ are given respectively by (9) and (10). Here
η(.) is a function of Yj and its derivatives up to order rj ,
and ξ(.) is a function of Zj and its derivatives up to order
rj+1, for j = 1 to m where the rj are integers.
It appears of interest to introduce here three new definitions.
The differential flat system is said output observable if:

rank([∂η/∂Z]) = n (17)

The differential flat system is said full flat differential if:
m∑
i=1

ri = n−m (18)

The differential flat system (1) is said output controllable if:

det([∂ξ/∂Z̃]) 6= 0 (19)

In that case too, it is easy to derive a control law of order rj+1

with respect to output j by considering an output dynamics
such as:

Z̃ = C(Z, V ) (20)

where V ∈ Rm is an independent input, since then:

U = ξ(Z,C(Z, V )) (21)

C. Flatness and Internal Dynamics

It appears from relations (7) and (8) that a sufficient
condition for system (1) to be differentially flat output
observable and output controllable with respect to Y given
by (2) is that A is invertible with respect to X and that B
is invertible with respect to U .
A necessary condition for the invertibility of A is:

m∑
i=1

ri = n−m (22)

while (3) is a necessary condition for the invertibility of B
with respect to U . In that case it is possible to define function
η and ξ by:

X = A−1(Z) = η(Y , Ẏ , ..., Y (p)) (23)

and

U = B−1u (A−1(Z))(Z) = ξ(Y , Ẏ , ..., Y (p+1)) (24)

Here:
p = max rj , j = 1 to m (25)

Then, a sufficient condition for differential flatness of Z is
that Z is a state vector for system (1), i.e. there are no internal
dynamics in this case.

III. OPTIMAL CONTROL OF DIFFERENTIALLY FLAT
SYSTEMS

Here the system (1), (2) is assumed to the differentially
flat with respect to Y , so that relation (23) and (24 ) hold.

A. Formulation of the Considered Optimal Control Problems

Here can be considered optimization criteria over a given
span of time [0, T ] such as:

min(X,U(t))F (X(T )) +

T∫
0

g(X,U(t))dt (26)

or when the focus is on the trajectory developed by the
differentially flat outputs:

min(Y ,U(t))F (Y (T )) +

T∫
0

g(Y , U(t))dt (27)

Let us consider vector Z given by (24), in both cases, using
relation (23) and (24) the optimization criteria can be written
under the form:

minZF (Z(T )) +

T∫
0

ψ(Z, Z̃)dt (28)

where Z(T ) must satisfy partial constraints at time 0 and T,
determined from the initial and final constraints on the state
or the outputs.

B. Variational Calculus Solution

Consider that the optimal control problem built from
relation (26) or (27) with (1) and (2) does not consider
explicitly the state equation. Since it can be rewritten :

Z̃ = CŻ (29)

where C a 0-1 matrix with a single 1, by row. Here is
introduced an auxiliary function ϕ given by:

ϕ(Z, Z̃) = Ψ(Z, Z̃) + λt(CŻ − Z̃). (30)

Then, problem (28) terms out to be a classical variational
calculus problem to which Euler’s equation will provide
necessary optimality conditions. Here the Euler equations are
given by:

∂ϕ

∂Z
− d

dt
(
∂ϕ

∂Z̃
) = 0 (31)

and
∂ϕ

∂Z̃
− d

dt
(
∂ϕ

∂ ˙̃Z
) = 0 (32)

Let Z∗ be the solution satisfying (31), (32) with the initial
and final constraints. Then the solution of the original
problem will be:

X∗ = η(Z∗) such U∗ = ξ(Z∗, Z̃
∗
) (33)

IV. EXAMPLES

A. Example 1

Consider the optimization problem

Minu

T∫
0

u2dt (34)

with the linear state equations:{
ẋ1 = x2,
ẋ2 = u,

y = x1 (35)
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with the limit conditions

x1(0) = 0, x1(T ) = 1, x2(0) = 0, x2(T ) = 0 (36)

From (35) it is clear that y is a differentially flat output with:

u = ÿ (37)

and

x1 = y, x2 = ẏ (38)

and introducing

Z1 = x1 and Z2 = Ż1, (39)

the optimal control problem can be rewritten as:

Min

T∫
0

Ż2
2dt (40)

with

Ż1 − Z2 = 0 (41)

then introducing the auxiliary function:

ϕ = Ż2
2 + λ(Ż1 − Z2) (42)

where λ is a parameter, the Euler equations are such that:

∂ϕ

∂Z1
− d

dt
(
∂ϕ

∂Ż1

) = 0 (43)

∂ϕ

∂Z2
− d

dt
(
∂ϕ

∂Ż2

) = 0 (44)

From (43), we get:

−λ̇ = 0⇒ λ = cst (45)

From (44), we get:

−λ− Z̈2 = 0⇒ Z̈2 = −1/2λ = cst = c (46)

Then,

Ż2 = c0 + ct ⇒ Z2 = c1 + c0t+ 1/2ct2 (47)

From (41), we obtain:

Z1 = c2 + c1t+ 1/2c0t
2 + 1/6ct3 (48)

The constants c, c0, c1 are determined by the limit
constraints (36):

c2 = 0, c1 = 0, c =
−6

T 3
, c0 =

3

T 2
(49)

The optimal solution is such as:

y∗ = x∗1 =
3

2T 2
t− 1

T 3
t2 (50)

with

u∗ =
3

T 3
− 6

T 3
t (51)

B. Example 2

Consider the optimization problem

Minu

T∫
0

u2dt (52)

with the nonlinear state equations:{
ẋ1 = x22,
ẋ2 = u,

y = x1 (53)

with the limit conditions

x1(0) = 0, x1(T ) = 1, x2(0) = 0, x2(T ) = 0 (54)

From (53) it is clear that y is a differentially flat output with:

u ==
1

2
√
ẏ
.ÿ (55)

and
x1 = y, x2 =

√
ẏ (56)

and introducing

Z1 = x1, Z2 = x2, (57)

the optimal control problem can be rewritten as:

Min

T∫
0

Ż2
2dt (58)

with
Ż1 − Z2

2 = 0 (59)

then introducing the auxiliary function:

ϕ = Ż2
2 + λ(Ż1 − Z2

2 ) (60)

where λ is a parameter, the Euler-Lagrange equations are
such that:

∂ϕ

∂Z1
− d

dt
(
∂ϕ

∂Ż1

) = 0 (61)

∂ϕ

∂Z2
− d

dt
(
∂ϕ

∂Ż2

) = 0 (62)

From (61), we get:

−λ̇ = 0⇒ λ = cst (63)

From (62), we get:

−2λZ2 − 2Z̈2 = 0⇒ λZ2 + Z̈2 = 0. (64)

When supposing that λ is negative, it appears that the
resulting solution cannot satisfy limit conditions (54), then,
here is considered a solution of (64) when λ is taken positive:

Z2 = αe(jt
√
λ) + βe(−jt

√
λ) (65)

and the optimal solution is given by:

y∗ = x∗1 =
1

2Tπ
sin(

4π

T
t) (66)

with
u∗ =

4π

T
3
2

cos(
2π

T
t) (67)
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V. CONCLUSION

From the above examples it appears that it is worth to
consider the differential flatness property when it exists to
solve trajectory optimization problems. In both cases, the
optimal solutions have been found analytically, however in
other cases, a numerical solution should be pursued. This line
on research will be pursued considering input constraints in
the optimization problem.
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