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Abstract

This paper presents an analysis of the involvement of the penalty parameter in
exact penalty function methods that yields modifications to the standard outer loop
which decreases the penalty parameter (typically dividing it by a constant). The
procedure presented is based on the simple idea of making explicit the dependence
of the penalty function upon the penalty parameter and is illustrated on a linear
programming problem with the /1 exact penalty function and an active-set approach.
The procedure decreases the penalty parameter, when needed, to the mazimal value
allowing the inner minimization algorithm to leave the current iterate. It moreover
avoids unnecessary calculations in the iteration following the step in which the
penalty parameter is decreased. We report on preliminary computational results
which show that this method can require fewer iterations than the standard way
to update the penalty parameter. This approach permits a better understanding of
the performance of exact penalty methods.

Key words: Exact penalty method, penalty parameter, linear programming, active-set
approach.

Abbreviated title for use as running head: Automatic Decrease of the Penalty Param-
eter.



1 Introduction

Exact penalty functions are used to provide a transformation of a constrained optimization
problem to an unconstrained optimization problem. Indeed, one approach to solving the
constrained problem

i )

subject to fi(z) = 0, 1€ F (1)

where the functions f and {f;}icpur are continuously differentiable and the index sets F
and [ are finite and disjoint, is to construct an exact penalty function. That is, a function
f~ minimized locally by a solution z* to the above constrained problem, provided v > 0 is
suitably chosen. The most popular nondifferentiable exact penalty function is the absolute
value or [y exact penalty function:

Ha)=vf(@) + Y1 fix)] = > min[0, fi(z)], > 0. (2)

1€E el

Let us consider the case where the functions f and {f;};cgur are convex. Under mild
conditions (see [10], page 143), there is a threshold value 4 > 0 such that for any 0 < v < 7,
an unconstrained local minimum of f, is a local minimum for (1). The reader is referred
to [9] for the more general non-convex case.

Coleman and Conn gave further justification for the design of algorithms based on
the optimization of an exact penalty function. In [5], the similarity shown between the
optimality conditions for the exact penalty function and those for problem (1) reinforces
the idea that the two problems are closely related.

We wish to minimize, as a subproblem, the nondifferentiable function f, for a given
penalty parameter value v > 0. Let us denote f'(-;d) the directional derivative of f in
the direction d € IR", defined as

when this limit exists. A point x* is termed a first-order minimizer of the exact penalty
function f, when, for all directions d € IR", we have

fi(xd) > 0.

Note that this directional derivative exists by properties of (2).
Once we find out that one of the two following situations holds, then we decrease ~:

Situation 1: The current iterate is a local optimum of f, which is infeasible with respect
to the original problem.



Situation 2: We have found an infeasible ray with respect to the original problem along
which f, is decreasing.

We decrease v in these cases because we know that for a positive 4 value small enough, a
first-order minimizer of f is in general a Kuhn-Tucker point of the original constrained
problem.

Advantages of the penalty approach are that it does not require a feasible point to begin
and best solutions can be determined when no feasible point exists, best in the sense of:
the [; norm of the infeasibilities is minimized. Fract penalty functions have moreover the
feature of not introducing ill-conditioned Hessian matrices, since the penalty parameter
does not need to be made arbitrarily small to achieve convergence to a solution of the
original problem.

Typically, whenever it is necessary to decrease the penalty parameter v in exact penalty
function methods, rather arbitrary techniques are used. As pointed out by Gamble, Conn
and Pulleyblank in [12], very little theory has been developed in this area. Since one can
consider that v determines the relative weight between the objective function f and the
constraint violations, its value is rather significant.

In this paper we shall introduce modifications to the standard outer loop used in
exact penalty function techniques that typically reduces v by a constant factor, so that
first, we shall avoid doing unnecessary calculations in an iteration following the step in
which we decrease the penalty parameter 4, and secondly, when decreasing v we shall
attempt to do so “wisely”. Indeed, even though, in theory, exact penalty methods allow
to solve the problem in a single iteration for a penalty parameter below the threshold
value, in practice, it can be more efficient to allow steps out of the feasible region, using
a decreasing sequence of penalty parameters starting above the threshold value. Instead
of decreasing v by some arbitrary factor (possibly many times) until some change occurs,
we shall rather, quite easily, determine the mazimal value +' such that a change takes
place. We then decrease the penalty parameter to any value v < 4’ to leave situation 1
or 2 described above.

The theoretical aspects of the modifications to the exact penalty method we present
in this paper will be illustrated for the sake of simplicity on a linear programming prob-
lem with an algorithm using the [; exact penalty function and an active-set approach.
Nevertheless, we may expect these ideas to be exploited analogously in the framework of
more general nonlinear problems. This is due to the fact that the results presented are
a straightforward consequence of the definition of an ezact penalty function and follow
from the simple idea of making explicit the dependence of f, upon the penalty parameter
7 in the unconstrained subproblem: min__p» f,(z).

We first describe, in section 2, a typical algorithm to minimize the [; exact penalty
function for the linear programming problem. In section 3, we then illustrate our method
to decrease the penalty parameter on this algorithm. We discuss, in section 4, the practical
application of our procedure in the light of computational experimentation on a minimum-
cost network flow problem. We finally conclude in section 5.



2 An [; Exact Penalty Function Algorithm for the
Linear Programming Problem

Consider the [ exact penalty function:

f(@) =z + Y ez = b =Y min[0,alz — b,], (3)

i€E i€l
corresponding to the problem:

min clz

celR"
subject to alx = b, i€E (4)
aZT;E > b, 1€,

where ¢ and a;, 1 € E U I, are vectors of IR" and b; € IR, 1 € EUI. The index sets K and
I are finite and disjoint.

Let A(y), or simply A when it is clear from the context which is the current point, be
the index set corresponding to the constraints which are active at y, i.e.

Ay ={i e EUT:alz=b}.
Consider the following function, which is differentiable in a neighbourhood of y € IR":

Oyy(t) =yl + > lalz — b — >~ min[0, alz — byl
IEE\A(y) i€I\A(y)

(Clearly,
(@) = prp(@) + D jaf & — bi| — > min(0, aj = — bi],
€ ENA(y) e InA(y)

and Vo, ,(y) is what Bartels, Conn and Sinclair [3] called the restricted gradient of f., at
y. The restricted gradient, denoted Vi, (y) for simplicity, is the gradient of the restriction
of £, to the space N'(AT(y)), where N'(AT(y)) denotes the null space of the matrix AT (y)
having as its rows the vectors {a;};ca(y). If the columns of a matrix Z form a basis of
N(AT(y)), then ZTV . (y) is the reduced restricted gradient of f, at y.

It can be shown (see for instance [5]) that assuming {a;};c4(s+) are linearly indepen-
dent, the following are necessary and sufficient conditions for * to be a minimizer of f:
there exist scalars {‘Ui}ieA(z*) such that

Condition 1:

Vo, (27) = Z uiai, or equivalently ZTV@W(I*) =0;
1€A(z*)



Condition 2:
(1) —-1< ui <1, forall i € ENA(z¥)

and

(ii) 0<u, <1, forall : € INA(z").

Let us interpret these conditions. We say that a direction d* € IR™ is a direction dropping
activity i alone if a! d' = 0 for all j € A(2*)\ {i}. In the case where condition 1 is satisfied,
one can verify that if ¢* € R" is a direction dropping activity i such that cz;rali+ > 0,
then

(ul + 1)|aTd™| and ui|adei+|

are the directional derivatives of f, at z* in the direction d*, fori € Fandi e I
respectively. In the same way, if d € IR" is a direction dropping activity ¢ such that
ald”™ <0, then
i T 7i~
(—us + 1)]a;d" |

is the directional derivative in the direction d*~ for : € EUI. Thus, the above conditions 1
and 2 are saying that =™ is a minimizer of f, if and only if the reduced restricted gradient
is null and f, is non-decreasing along each of the 2| A(2*)| (< 2n) possible single-dropping
directions—there is one such direction corresponding to each of the multiplier rules of
condition 2.

We now present an iterative algorithm for solving problem (4) via an exact penalty
function method based on the above optimality conditions. At iteration k, we thus want
to solve the unconstrained subproblem min, f x(z), where 4% is the current penalty pa-
rameter value. Let 2* be the current iterate. Define P to be the orthogonal projector onto
the space V(AT (z*)) and P_; to be the orthogonal projector onto the space orthogonal
to the space spanned by {a;};ca(s*)\(;}, Where j € A(z*). These projectors are computed
with a suitable factorization of the matrix of activities, A(z*), updated from one iteration
to another.

The algorithm can be summarized as follows: if the reduced restricted gradient of f. «
at &*, ZTV e x(2¥), is non-null, then

d* = —P(Vgu ("))

is a descent direction for f,
fying condition 1 above by solving a least-squares problem. Note that since the reduced
restricted gradient is zero, the least-squares problem has an exact solution (zero residu-
als). TIf there exists j € A(z*) such that uik < —-1,3€ FEor uik < 0,5 € I, then we
can take d* = P_;(a;) as a dropping descent direction. We can take d* = —P_;(a;) if
there exists j € A(2*) such that uik > 1,7 € FUI. When we find a descent direc-
tion d*, we then determine a step size by solving the univariate piecewise-linear problem:

mingso fox (¥ 4+ ad*), moving from one breakpoint of f,» to the next, in the direction d*.

k. Otherwise, we compute the coefficients {uik}ieA(l.k) satis-



Unless the penalty function is unbounded, the value of f x will start increasing. We then
stop and obtain a new iterate. When we reach an iterate z* which is a minimizer of for
but which is also infeasible, we first perform an iteration of the algorithm with v = 0 to
determine whether z* is a minimizer of f, for v = 4* and for 4 = 0. In such a case, we
establish the infeasibility of the original problem without the need to decrease the penalty
parameter several times to reach this conclusion.

In this context, the situations in the presence of which we decrease the penalty pa-

rameter are:

Situation 1’: The current iterate is infeasible and it is a minimizer of f.x but it is not a
minimizer of f, for v = 0.

Situation 2’: We have found an infeasible ray with respect to the original problem along
which f, is decreasing.

The flow chart of this algorithm, used as the inner algorithm with a standard way to
decrease the penalty parameter, is displayed in figure 1.

Note finally that an easy generalization of a result in linear programming (lemma 5.1
in [2]) that was first proved in the case of linear networks (see [12]) can improve this
algorithm. We however do not develop it here in order to simplify the presentation of our

procedure to decrease the penalty parameter (a version of our procedure in which this
improvement is integrated can be found in [16] and in [17]).

3 Decrease of the Penalty Parameter

We consider a new subproblem each time we are in one of situations 1’ or 27, since we are
required to decrease the value of the penalty parameter ~.

By definition of an exact penalty function, there exists a threshold value % > 0 such
that Kuhn-Tucker points of the original constrained optimization problem (4) are first-
order minimizers of the penalty function f, given by (3), for all v < 7 [11]. As we are
considering the case where f, is convex, we can leave out the “first-order” terminology
and talk simply about minimizers of f,. Thus, we can deduce the following necessary
condition for the current iterate, 2*, to be a Kuhn-Tucker point of our original problem
and the current penalty parameter value, 4*, to be less than or equal to the threshold
value ~:

Condition 0: z* is a minimizer of £, for all v < ~*.

In other words, it a point z* is a solution of our original problem, we know that the
necessary and sufficient conditions 1 and 2 mentioned above for * to be a minimizer of
f~ must hold for all v < 7, for a certain 4 > 0. We shall elaborate an automatic way
to decrease the penalty parameter from examining what can be done when condition 0 is
not satisfied.
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Figure 1: The inner loop algorithm with a standard way to decrease ~



Let us now look into the algorithm outlined in section 2 while emphasizing the de-
pendence of f, on «. Thus, we make explicit the contribution of the original objective
function and that of the penalty terms of f,.

We know we can write the penalty function as

foe) = veTz + f(a),

where )
fl2)=>" laTz — b — Zmin[o,azrx —by].
i€E iel
We decompose ¢., .+ similarly:
Prar(t) = vel 4+ Gon(a), (5)

where

Gor(z) = > afz—b;|— > minf0,a]z - b].
i€\ A(zh) i€ T\A(z*)

We will denote ¢.x(x) simply by ¢(x) for notational ease, whenever no ambiguity is
introduced. So the ‘7 parts correspond to the penalty part of the penalty function.

At each iteration, we modify the algorithm presented in section 2 in the following
manner: instead of computing P(V.x(2*)), we compute both P(c) and P(V$(zF)).
Note that when P(V.x(2*)) is needed, it is readily computed using (5).

From condition 0, it is clear that if z* were a Kuhn-Tucker point of the original
constrained problem, then we must have

P(Vp,(2F)) =0, for ally <~+*

or simply P(c) = 0. This is a consequence of the fact that z* feasible implies P(V. s (2*)) =
7¥P(c). Thus, if in the course of the algorithm we obtain an iterate z* such that

Situation 0’: P(Ve.k(2¥)) = 0 but P(c), or equivalently P(V$(z¥)), is non-null,

then we see immediately that z* cannot be a Kuhn-Tucker point of the original constrained
problem or 4* is above the threshold value.

Situation 0’ implies that if v* is decreased to any 7' < ~*, ¥ will no longer satisfy
condition 1 for f./, since

P(Viy(ah)) = 7'P(e) + P(Vé(ah)) # 0. (6)

Whence —P(Vp.,(z*)) is a straightforward descent direction. This descent direction is
obtained at no extra cost using (6), since P(c) and P(V¢$(z*)) were already computed.
Situation 07 is thus the first situation where an automatic decrease of the penalty param-
eter can take place.

Let us henceforward assume that at every iterate x* satisfying condition 1 the gradients
of the activities are linearly independent. Another modification to the algorithm outlined

7



in section 2 is that, instead of solving only one least-squares problem to obtain the coef-
ficients {u;k}ieA(xk), we solve two such problems to compute {'ui}ieA(xk) and {'&i}ieA(xk),
the coefficients of {a;};c(.+) in the linear combinations of ¢ and V$(zF), respectively, in
terms of the columns of A(z¥). Clearly,

I TR AN
uwk_’yu%—u,

for all 7 € A(z*) and the same matrix factorization is used in solving both least-squares
problems.

By looking how condition 0 is violated in situation 1, the next situation in the presence
of which we have to decrease the penalty parameter, we deduce how 4* might then be
decreased. Situation 1’ occurs when the current iterate, ¥, is infeasible with respect
to the original problem, is a minimizer of f » but is not a minimizer of f, with v = 0.
Assuming we are not in situation 07, i.e. P(c) = P(V(z*)) = 0, it is condition 2 that
must be violated for f., with 4 = 0. That is to say, either there exists : € £ N A(z*) such
that —1 < @' < 1 is violated or there exists 7 € N A(z*) such that 0 < @° < 1 is violated.
Let us suppose, for example, that the violated condition above corresponds to having an
i € EN A(z¥) such that 4° < —1. Thus, decreasing the penalty parameter, we shall hit
a value 7' > 0 such that z* does not satisfy condition 2, for f.,/, any more. Indeed, the
following part of condition 2 part (i):
yub 0t > -1,

is violated for all v < —(@*+1)/u’, where u’ > 0 for all i € EN A(2*) such that @' < —1,
since u/y > —lforallz € £ N A(z¥) as 2* is a minimizer of fyx. Analogously for the
other inequalities in condition 2, we have that z* is not a minimizer of £, for all v < ',
where

o o+ 1 -1
) e

7' = max max = ——, max — —, max — .
ieInA(z*):ai<0  U' ieENA(zk)di<—1 Ut ieA(zR)ai>1 u'

Let i be the index 7 € A(z*) corresponding to the maximum in (7). Thus, we decrease
the penalty parameter to some value v < 4/, and we know without any further calculations
that in the next iteration,

dk+1 = P—io (CLZ'()) or dk+1 = _P—io (aio)

will be a descent direction for f,, for any v < ~'.

The last case in which we decrease the penalty parameter is situation 2’: we obtain an
infeasible ray with respect to the original problem along which f x is decreasing. Let d*
be the current descent direction along which we are doing the line search. The fact that
we are in situation 2’ means that fék(, d*) is negative at each breakpoint, i.e.

fli(a® + ayd®d") <0, 0 < j <m, (8)



where {a;}o<j<m are the step sizes corresponding to the breakpoints encountered along
the search direction. If we decrease the penalty parameter, we shall hit a value 4" such
that for some 1 < jo < m, we have

fL(a* + ajpdh; db) = 0.

Since )
Fo(ak + ajydh; d¥) = o'eTd + ['(a* + ajd*; dY), 9)

the maximal such value of the penalty parameter is given by:
Pk k- d*
7' = max { fla” +a;d5 )} (10)

Note that this value for 4’ is well-defined, non-negative and strictly smaller than v*, since

at least for the last breakpoint, i.e. for j = m,
f’(:pk + a;d*;d*) >0 and 'dF <0,

as the penalty part f is bounded below and (8) holds for j = m.

The value of f’(-; d*) can be readily computed from the known entities {a;}:cpur and
d* (and @ when d* is a direction dropping activity ).

Let jo be the smallest index for which the maximum is attained in (10). Since f,
is convex, the maximum is necessarily attained for j = m, though it might be attained
as well for some j < m. We then set v¥*! = 4/ given by (10). Note that this value is
non-null if we assume the original problem to be feasible and bounded below. Indeed, for
4" =0 in (10), we would have f'(z* + ;,d*;d¥) = 0. But one could then show that d* is a
feasible ray, from any feasible point, such that ¢’d* < 0. This contradicts the hypothesis
that the original problem is bounded.

We then distinguish two possibilities:

a) If jo # 0, then we know by convexity, without any need to solve any new least-
squares problems and to project again, that d* is a descent direction for fyre1, as it was
one for f x. We know moreover, without going through a new line search, that

o = gk 4 ozjodk

will be the next iterate.

b) Otherwise, it means that d* is not a descent direction any more for fyr+r. In the
case where condition 1 was satisfied for z* and fyx, we can straight away verify whether
condition 2 is satisfied for z¥*!(= z*) and f,x+1, as {u'};c4 and {d'};c 4 are already known.
We can thereby find out whether we can drop an activity to get a descent direction. If
condition 1 was not satisfied for 2* and f.x, then we must be in situation 0" and we thus
decrease again the penalty parameter accordingly, as seen before.

Finally note that with the above modification, it is not necessary to actually perform
the iteration with v = 0, since with 4 = 0 we have u; = 4!, whose value is already known
at each iteration.



To summarize, the penalty algorithm using the automatic decrease of the penalty
parameter follows.

Penalty Algorithm

Step 0: [Initialization]
Choose any x! € IR", ¢ > 0 and 4! > 0. Set k « 1.
Step 1: [Inner Loop]
Minimize f.x (see sections 2 and 3).
Step 2: [Update of the Penalty Parameter]
If situation 07, then y**! = 7*(1 — ¢),
gFtt = 2k dF = — [y P(c) + P(V$(2*))], k — k + 1 and go to step 1.
If situation 17, then 4**1 = /(1 — ¢) given by (7),
gFtt = gk @' =4+ P ; (a), k — k+ 1 and go to step 1.
If situation 27, then 4**! = /(1 — ¢€) given by (10).
- If jo # 0, then "' = 2% + o, d*, k «+ k + 1 and go to step 1.
- Otherwise, "' = 2% k « k41 and go to step 1.

Note that “go to step 17 stands for the specific branching, within the inner-loop uncon-
strained minimization of f.x, which is displayed by the flow chart of figure 2.

Theorem 1 (Convergence) Suppose that problem (4) is bounded below and feasible.
Assume moreover that the vectors {a;}icawr) are linearly independent at each iterate zk
encountered in the course of the algorithm.

Then the penalty algorithm converges globally (i.e. from any starting point) in a finite
number of iterations.

Proof: The exactness of the penalty function f, (see [10] theorem 40) together with
the fact that v¥*! < 4*(1—¢), with € > 0, for every k, imply that we need to consider only
a finite number of values of v before reaching a penalty parameter value ¥ > 0 such that
an unconstrained minimizer of f5 corresponds to a minimizer of the original constrained
problem. The proof follows by the finiteness of the unconstrained minimization algorithm
used in step 1 of the penalty algorithm. The algorithm described in section 2 is, for
instance, a specialization of the piecewise-linear minimization algorithm described in [7].
The reader is referred to the finite-step convergence theorem therein. O

Figure 2 gives a flow chart of the algorithm of section 2 when implemented with our
procedure to decrease the penalty parameter. Numbers in parentheses refer to the labels
of the equations within the text. Note that dead + true means that condition 1 is satisfied
at the current iterate.

10
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4 Computational Experimentation

In order to investigate the effect of an automatic decrease of the penalty parameter, we
have considered the minimum-cost network flow problem
T

minxe]Rn ¢z
subject to Az =5 (11)
0<z<u,

where A is the vertex-edge incidence matrix of a directed graph G ¢ is a vector of edge
costs, u is a vector of edge capacities and b is a vector of vertex demands. We assume,
without loss of generality, that G is connected.

Exterior penalty function methods originally developed for nonlinear programming
were first specialized by Conn [6] and Bartels [1] to algorithms for solving linear programs.
Gamble, Conn and Pulleyblank [12] then adapted these algorithms to a combinatorial
one for the minimum-cost network flow problem (11). The basic idea of [12] is to include
penalties in the objective function only for violated upper and lower bound constraints
while explicitly imposing the equality constraints Ax = b, and to exploit the special
structure present in these equality constraints. They thus consider the following penalty
function subproblem

mln.xeﬂ{" f(z) (12)
subject to Az =0,

where the penalty function is defined as

fy(z) =~rele — zn:min((), r;) — Zi:min(o,uj — ;). (13)

=1
In order to make comparisons, we have implemented three methods:

e The first one is the network simplex method. We have implemented a routine which
is a particular implementation of the simplex algorithm specialized to network prob-
lems, along the lines described in [4], [13] and [14]. This routine solves problem (11)
using two phases, one to find a feasible starting point and one to find the solution.

e The second method is the network penalty method of [12]. We have implemented
the network penalty algorithm described in [12] to solve the equivalent problem to
problem (11)

minmemn 'z

subject to Ax 4+ Is=5
0<z<u
0<s<0,

where I denotes the identity matrix, using the immediate (infeasible) starting point
(z,8) = (0,b). The code is an easy conversion of the one written for the simplex
method, using the same data structure. The initial value of the penalty parameter
~ used in that method has been fixed to 1 for all the tests and is divided by 10 after

each infeasible termination.

12



e The third method is similar to the second one, where the automatic decrease of the
penalty parameter described in section 3 has been included. As for the “classic”
network penalty method, we have chosen to set the initial penalty parameter value
to 1. Moreover, the parameter € that arises in the penalty algorithm of section 3 is
set to the relative machine precision value ey ~ 1.39 x 10717,

We should emphasize here that the three codes that we have implemented could not be
considered as “fast” network problem solvers. Our intention was simply to write network
codes in a way that makes possible comparisons on the number of iterations required by
each method.

We have tested the three methods on a set of ten randon test problems. These problems
are the first ten of the set of thirty-five problems tested in [12] and generated by a revised
version of NETGEN [15]. Table 1 reports the characteristics of these ten problems.

Problem | Number of Number of
number variables  constraints
1 1308 200
2 1511 200
3 2000 200
4 2200 200
5 2900 200
6 3174 300
7 4519 300
8 5169 300
9 6075 300
10 6320 300

Table 1: Test problems

All the computations have been performed in double precision, on a DEC VAX 3500,
under VMS, using the standard Fortran Compiler. The numerical results are reported in
tables 2 and 3.

As observed in [12], table 2 shows that the percentage of improvement of the classic
penalty method over the simplex method in terms of number of iterations is important.
It also shows that using an automatic decrease of the penalty parameter can further
improve the performance of the penalty method in terms of number of iterations. On
the other hand, we observe in table 3 that the number of times the penalty parameter
is decreased when using the automatic approach grows considerably. This phenomenon
may be explained as follows. For each test, we have observed that the first time we had to
decrease v, we were in situation 17, that is, we were at an optimal solution for problem (12),
but infeasible for problem (11). This means in our framework that no variable to enter
the basis could be selected because no dual violation, as measured by the reduced cost,
occurred. To force such a violation, we retain, in order to update v, the mazimal value
such that at least one reduced cost generates a dual violation. But this implies such a

13



small change in the reduced cost that the objectice function decreases very slowly and we
do not go farther than the first bound encountered. That is, during the line search, the
method behaves like the simplex method. As this update of v also implies a very slow
decrease of the penalty parameter value, this one needs to be decreased almost at each
iteration and the above situation therefore occurs repeatedly. On the other hand, when
comparing, in table 3, the last value of v produced by both the classic and the automatic
penalty methods, we observe very insignificant differences. As the improvement in terms of
number of iterations (see table 2) is non-negligible, this confirms that it may be profitable
not to decrease the penalty parameter too rapidly and to allow thereby infeasible steps
to be taken during the optimization process.

Problem | Simplex Penalty Percentage of | Penalty Penalty Percentage of
number | method method improvement | method method further
(x1/10) (x1/10) (automatic) improvement
1 806 343 57.4 343 318 7.3
2 863 353 59.1 353 300 15.0
3 892 360 59.6 360 335 6.9
4 890 347 61.0 347 323 6.9
5 925 399 56.9 399 387 3.0
6 1354 597 55.9 597 539 9.7
7 1374 584 57.5 584 546 6.5
8 1559 617 60.4 617 537 13.0
9 1502 618 58.9 618 526 14.9
10 1696 693 59.1 693 605 12.7

Table 2: Number of iterations

Problem Number of Last value of ¥
number decreases of v (x1073)
x1/10 automatic | x1/10 automatic

1 4 318 0.1 0.16
2 4 299 0.1 0.17
3 4 335 0.1 0.18
4 4 322 0.1 0.15
H 4 386 0.1 0.20
6 4 536 0.1 0.15
7 4 545 0.1 0.18
8 4 531 0.1 0.17
9 4 520 0.1 0.20
10 4 603 0.1 0.18

Table 3: Behaviour of v

We have observed similar cpu times for the simplex method and the classic penalty
method. Cpu times for the automatic penalty method were about twice higher. Note
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however that since the implementation of the automatic decrease of the penalty parameter
requires to keep explicit the dependence of several quantities, as the reduced costs for
instance, upon the penalty parameter ~, it doubles the amount of computation. Indeed,
we must perform most of the computations both on the penalty part and the objective
part of each quantity. Our implementation did not attempt to optimize this extra work.

The numerical results reported in tables 2 and 3 were obtained using a total pricing
for the three methods. By total pricing, we mean that the entering variable is chosen as
the one with the largest dual violation (we refer the reader to [12] for more details). The
numerical results displayed in [12] are also based on total-pricing implementations. The
authors in [12] yet noticed that it would be interesting to study the impact of the use
of a partial pricing. In order to address this issue, we have also implemented the three
methods using such a pricing. More precisely, rather than choosing the entering variable
as the one with the most negative reduced cost among all the nonbasic variables, we
select sets of thirty variables taken at regular intervals among the nonbasic variables and
test each variable in the successive sets until a candidate to enter the basis is found. As
mentioned in [12], partial pricing generally increases the number of iterations required but
reduces execution times, which is of particular interest when solving large-scale problems.
The results of table 4 effectively show this increase in the number of iterations, at least
for the simplex and classic penalty methods. However, the number of iterations required
by the automatic penalty method remains quite similar. This is not surprising since, at
almost each iteration, the penalty parameter is decreased by such a small amount that
no more than one nonbasic variable may be a candidate to enter the basis. We remark
moreover that the percentage of improvement of the classic penalty method over the
simplex method in terms of number of iterations is less important when using a partial
pricing than a total pricing. On the other hand, this percentage clearly increases in favour
of the automatic penalty method. The execution times observed are this time in favour
of the simplex method, but once again this must be interpreted with great care.

Problem | Simplex Penalty Percentage of | Penalty Penalty Percentage of
number | method method improvement | method method further
(x1/10) (x1/10) (automatic) improvement
1 1065 595 44.1 595 318 46.6
2 1178 744 36.8 744 300 59.7
3 1297 788 39.2 788 336 57.4
4 1270 888 30.1 888 325 63.4
5 1535 1401 8.7 1401 386 72.4
6 2213 1336 39.6 1336 539 59.7
7 2453 1663 32.2 1663 547 67.1
8 2664 1854 30.4 1854 539 70.9
9 2851 1821 36.1 1821 526 71.1
10 2843 2527 11.1 2527 604 76.1

Table 4: Number of iterations, using partial pricing
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5 Conclusions

We described an alternative way to decrease the penalty parameter in exact penalty
methods based on the idea of performing the unconstrained minimization computations
on both the objective part and the penalty part of f,. The theoretical idea, which aimed
at avoiding decreasing the penalty parameter 4 more than necessary in order to leave the
situation which required a decrease of #, is attractive since, in an algorithm making use of
an updated factorization of the matrix of activities, computing two projections, both using
the same factorization, rather than one should not represent significantly more work. The
same comment applies to the two least-squares problems which have to be solved, as they
differ only by their right-hand sides. Further investigations should address the issue of
exploiting such features in order to optimize the cpu time required by the implementation
of our method.

Computational experimentation on minimum-cost network flow problems reveals im-
provement on the number of iterations required to reach optimality in comparison with
the penalty method of [12], which itself outperformed the network simplex method in
terms of number of iterations. Our numerical experiments also show how important may
be the choice of the penalty parameter, its impact on the number of iterations, and the
viability of non-heuristic choices based on theoretical considerations. Moreover, the para-
metric representation of f,, ¢, and {ui}ieA, spares us most of the calculations in the step
following one in which we decrease . We stress the fact that this applies also to the more
standard method of decreasing v—dividing it by a constant—if it integrates this idea of
parametrizing v. Finally, the idea should be extendable to other exact penalty functions.
The fact that we developed the method based on an active-set approach algorithm makes
the idea also generalizable to piecewise-linear programming, following the lines of [8], and
to nonlinear constraints. Further work could attempt to address moreover second-order
methods on nonlinear objective functions. This will however not be a straightforward
task, as the parametrization of the penalty parameter implies an explicit dependence of
the Hessian upon +.
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