
HAL Id: hal-01294727
https://enac.hal.science/hal-01294727

Submitted on 29 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling the Controller’s Conflict Detection Task Using
Fast Time Simulation

Nicolas Durand, Géraud Granger

To cite this version:
Nicolas Durand, Géraud Granger. Modeling the Controller’s Conflict Detection Task Using Fast Time
Simulation . DASC 2011, 30th Digital Avionics Systems Conference, IEEE/AIAA Oct 2011, Seattle,
United States. �hal-01294727�

https://enac.hal.science/hal-01294727
https://hal.archives-ouvertes.fr

MODELING THE CONTROLLER’S CONFLICT DETECTION TASK USING
FAST TIME SIMULATION

Nicolas Durand, DSNA/DTI/R&D, Toulouse, France
Géraud Granger, Stéria, Toulouse, France

Abstract
This paper shows how the CATS (Complete Air

Traffic Simulator) can model the controller’s conflict
detection task using a sliding time window. Because
of uncertainties, detection is by far the most time
consuming and cognitively challenging aspect of air
traffic control. The processes governing detection
are distinct from resolution actions. Few conflicts
detected lead to a resolution maneuver. Because
future aircraft positions are uncertain, controllers
detect many more conflicts or "potential conflicts"
than actually occur. In this paper, we solve con-
flicts in a real time context and compare different
uncertainty scenarios. We show how uncertainties
impact the number of theoretical potential conflicts
detected and the increase the number of unnecessary
maneuver actions required to keep the traffic safe.
When we deal with realistic uncertainty values,
the majority of calculation time in CATS is used
for calculating maneuvers that will usually not be
transmitted to pilots. This observation reveals the
true nature of the controller’s workload today.

Introduction
Much current research models and estimates the

controller’s workload. Some studies analyse ques-
tionnaires filled by the controllers themselves in
different situations. Others use talking time mea-
surements between controllers and pilots. In experi-
ments, controllers have been fitted out with sensors
to measure their heartbeat or eye movements [1],
[2]. Existing models often divide the controller’s
workload into three specific tasks. The coordination
task is clearly identified as the action of taking into
account new aircraft, establishing contact with the
pilot, and delivering the aircraft to the next sector
with respect to existing rules. The monitoring task
consists in making sure that the aircraft respects the
trajectory defined by the flight plan. Modeling the

monitoring task is not easy because an objective
of trajectory monitoring is conflict detection. The
detection-resolution task is the only task in which
the controller can have a concrete effect on aircraft
trajectory. Most people include conflict detection
as part of the controller’s conflict resolution task.
However, this paper argues that conflict detection
must be conceptualized as a specific task. Because
of uncertainties, detection is by far the most time
consuming and cognitively challenging aspect of air
traffic control. The processes governing detection
are distinct from resolution actions. Few conflicts
detected lead to a resolution maneuver. Because
aircraft future positions are uncertain, controllers
detect many more conflicts or "potential conflicts"
than actually occur. They generally try to avoid
unnecessary maneuvers but they sometimes solve
"fake" conflicts for two reasons: 1) usually ma-
neuvers must be initiated far in advance of the
conflicting zone. By the time a maneuver is decided,
the controller cannot estimate precisely the aircraft’s
future positions; 2) because controllers are dealing
with many aircraft at the same time, they often
need to decide maneuvers that will definitely solve
potential conflicts in order to give them more time
to concentrate on other parts of the traffic. The
controllers’ priority is security rather than efficiency,
they must use learned methods and experience and
usually do not show initiative when solving a con-
flict.

In this paper, we show how the CATS fast time
simulator models both the conflict detection and
resolution task. By using a sliding window over a
day of traffic, we can simulate the controller’s be-
haviour in a real time context and compare different
uncertainty scenarios. We show how uncertainties
impact the number of theoretical potential conflicts
detected and the increase of unnecessary maneuver
actions required to keep the traffic safe. We used the
French upper airspace to compare different scenar-

ios on different days of traffic. The simulations show
many situations where maneuvers are anticipated
and finally not executed because trajectory predic-
tion is updated and potential conflicts disappear as
the conflict zone approaches. When we deal with re-
alistic uncertainty values, the most calculation time
in CATS is used for calculating maneuvers that will
usually not be transmitted to pilots. This observation
reveals the true nature of controller’s workload
today. Many complexity studies have shown that the
number of aircraft in a sector explains most of the
controller’s workload [3]. The monitoring task is
thus very greedy compared to the resolution task
itself because uncertainties create many potential
conflicts and increase the monitoring and detection
work of controllers. Today’s new communication,
navigation and positioning systems can help predict
aircraft future positions accurately. New tools are
tested and installed in countries around the world
to assist controllers who are still responsible for
conflict detection. In order to be effective and gain
the trust of controllers, these tools should never
fail to detect a conflict and must be better than
or as good as controllers. The challenging question
is not how close to trajectory prediction should
aircraft stick in order to build an efficient detection
resolution tool, but how accurate can trajectory pre-
diction be to build tools that could help controllers
in their detection task. The different stakeholders
of the system sometimes have the feeling that Air
Navigation System Providers want to constrain the
trajectories. This paper shows the importance of
better sharing uncertainty information.

In the first section we describe the general frame-
work of the CATS simulator. The second part details
the ERCOS solver that is used to build conflict free
trajectories. The third part focuses on the solver
algorithm. Part four details the experimental results
performed with different uncertainty scenarios. We
show how the controller’s detection task can be
modeled and how future TP improvements could
decrease the controller’s workload in the future.

I. The Complete Air Traffic Simulator
(CATS)
A. General framework

The CAT Simulator was used in many projected
conducted by the French DSNA to study either
centralized control models [4], [5], [6] or Free-
Flight concepts [7], [8], [9].

In this paper, we used real data traffic simulation.
The CAT Simulator takes as input flight plans given
by airlines or pilots before or after regulation. The
simulator uses the BADA (Base of Aircraft DAta)
tabulated model for modeling aircraft performances.
For an aircraft type, it gives a vertical speed and
a ground speed depending on whether the aircraft
is climbing, leveled or descending. The BADA
performance summary tables are derived from the
total energy model of EUROCONTROL.

Aircraft speeds can be modified by a random
value to take into account different factors of uncer-
tainty (aircraft load, winds, etc. . .). These values can
be either computed once at aircraft activation and
remain the same for all the flight, or can be modified
anytime during the flight. Uncertainty modeling for
conflict detection and resolution is introduced in
the next section. We will see how using uncertainty
on trajectory prediction can model the controller’s
conflict detection-resolution task.

Aircraft follow classical routes (from way-point
to way-point). The flight model is simple. An air-
craft first climbs up to its RFL (Requested Flight
Level), then remains leveled until its top of descent,
then descends to its destination.

Aircraft flight is calculated per time step. The
time step is always chosen in order to guarantee
that the simumlator cannot miss any conflict. For
all our simulations, we use a 15s time step.

B. General architecture of the system
We sketch here the general architecture of the

simulator. Each part will be detailed in the following
sections. The system architecture is presented in
figure 1 and 2. The system relies on three main
processes P1, P2, and P3:

• P1 is the traffic simulator.
• P2 is in charge of conflict pair detection,

clustering of pairs, and verification of new
trajectories built by the solver.

Clustering
Conflict detectionTraffic

Simulator
Problem
Solver

P1 P2 P3

Figure 1. General architecture

Pr
ob

le
m

 s
ol

ve
r

C
lu

st
er

 1

C
lu

st
er

 n
Pr

ob
le

m
 s

ol
ve

r

if no new

Conflict pairs

Clustering

clusters

Conflict pair detection

Traffic simulator

New orders

Trajectory prediction

Figure 2. Detailed architecture of the prototype

• P3 is the problem solver.

P1 sends current aircraft positions and flight plans
to process P2. Process P2 builds trajectory forecasts
for Tw minutes, does conflict detection by pairs and
transforms 1-to-1 conflicts in n-aircraft conflicts.
Then, process P3 (the problem solver) solves in
parallel each cluster, as aircraft in each cluster are
independent from aircraft in the other clusters. The
problem solver sends to P2 new orders and P2 builds
new trajectory forecasts based on these orders. Then
P2 once again runs a conflict detection process
to check that modified aircraft trajectories do not
interfere with aircraft in another cluster, or with
new aircraft. If no interference is found, new flight
orders can be sent to P1. If there are interferences,
interfering clusters are joined and the solver is
used again on that (these) cluster(s). The process
is iterated until no interference between clusters
remains, or no new aircraft is concerned by modified
trajectories. The new orders are sent back to the

traffic simulator.
The above process is iterated and all trajectories

are optimized each δ minutes (3 or 5 minutes in
the experiments). However, during the computation
time, aircraft are flying and need to know if they
must change their route or not. δ should be large
enough to compute a solution, send it to the pilot
and leave him enough time to begin the maneuver.
Consequently, for each aircraft, at the beginning of
the current optimization, trajectories are determined
by the previous run of the problem solver and cannot
be changed for the next δ minutes.

C. Conflict detection and clustering
1) Trajectory forecast and 1-to-1 conflict detec-

tion: As described above, the P2 process does
trajectory prediction for Tw minutes. This trajectory
prediction is done again by a simulation on a slightly
modified version of the Air Traffic simulator. But,
as stated above, we assume that there is an er-
ror about the aircraft’s future location because of
ground speed prediction uncertainties1. Climbing
and descending rate uncertainties are larger than
ground speed uncertainties. Because the conflict free
trajectory must be robust regarding these and many
other uncertainties, an aircraft is represented by a
point at the initial time. The point becomes a line
segment in the direction of uncertainty (the speed
direction here, see figure 3). The first point of the
line “flies” at the maximum possible speed, and the
last point at the minimum possible speed.

When changing direction on a beacon, the head-
ing of the line segment’s "fastest point" changes as
described on figure 3.

To check the standard separation at time t, we
compute the distance between the two line segments
modeling the aircraft positions and compare it to
the standard separation at each time step of the
simulation.

In the vertical plane, we use a cylindrical model-
ing (figure 3). Each aircraft has a mean altitude, a
maximal altitude and a minimal altitude. To check
if two aircraft are in conflict, the minimal altitude
of the higher aircraft is compared to the maximal
altitude of the lower aircraft.

1Ground track uncertainties will not be considered, as they
do not increase with time and will be included in the standard
separation

t=0 t=1 t=2 t=3 t=5 t=6t=4

Beacons

Vertical plane

Horizontal plane

Figure 3. Modeling of speed uncertainties.

2) Clustering: After pair detection, P2 clusters
conflicting aircraft. Each equivalence class for the
relation “is in conflict with” becomes a cluster.

For example, if aircraft A and B are in conflict in
the Tw window, and if B is also in conflict with C
in the same time window, then A,B,C is the same
cluster and will be solved globally by the conflict
solver.

The conflict solver sends back to P2 maneuver
orders for solving conflicts. Then P2 computes new
trajectories for all aircraft and checks if new inter-
ferences appear. For example, if the new trajectory
given to aircraft B to solve the conflict with A
and C interferes with cluster D,E and with aircraft
F , then A,B,C,D,E, F will be sent back to the
problem solver as one conflict to solve.

The process will always converge. In the worst
case, P3 will have to solve a very large cluster
including all aircraft present in the next Tw minutes.
However, this technique is usually efficient because
a very large number of clusters can be solved very
quickly in parallel.

Human controller’s do not use any timestep, time
window Tw or update period δ to deal with the
traffic. We will see in the experimental results that
a lot of calculation is done by the simulator but that
only a few maneuvers calculated become effective.
This is due to uncertainties that the simulator has to
take into account. In real life, controllers also have
to deal with uncertainties. Counting the number of
maneuvers that never become effective can give

t=0 t=1 t=2 t=3 t=5 t=6t=4

B0

1B

Beacons

Vertical plane

Horizontal plane

α

Manoeuvre Virtual Beacons

Figure 4. Horizontal maneuver modeling.

a good measure of the impact of uncertainties on
controllers workload.

II. Solver Modeling
A. Maneuver modeling

In the horizontal plane, classical maneuvers given
to aircraft are heading deviation. In the simulator,
10, 20 or 30 degrees deviations will be allowed.
The deviation starts on a virtual beacon created on
the route (see figure 4). This beacon is defined by
the position of the head of the segment at some time
t0. It ends on a second virtual beacon, position of
the head of the segment at time t1. An angle criteria
is defined to find on which beacon the modified and
initial routes should connect.

A maneuver will be determined by:
• t0 which defines the first virtual beacon B0.
• the deviation angle α.
• t1 which defines the second virtual beacon B1.
In the vertical plane, the aircraft trajectory is

divided in 4 periods (figure 5):
• Climbing period. In this period, aircraft can be

leveled at a lower than requested flight level to
solve a conflict. The aircraft climb is stopped
at flight level FL0 and starts again on a virtual
beacon B1 as stated on figure 6. FL0 and B1

are defined by the position of the head of the
uncertainty segment at time t0 and t1.

• Cruising period. When aircraft have reached
their desired flight level, they may be moved

0FL

B0

FL1

B0

B1

B1

B1

l

l

Climbing Cruising End of
Cruising

Descending
period periodperiod

Figure 5. Vertical maneuver modeling.

t=0 t=1 t=2 t=3 t=5 t=6t=4

FL0 B1

Beacons

Vertical plane

Horizontal plane

Vertical Manoeuvre Virtual Beacon

Figure 6. Vertical maneuver during the climbing period.

to the nearest lower level to resolve a con-
flict. Aircraft starts descending when reaching
a virtual beacon B0 and starts climbing at
B1 (α = 0, B0 and B1 are defined by the
position of the head of the uncertainty segment
at time t0 and t1). An example of maneuver is
represented on figure 7.

• End of Cruising period. When aircraft are about
50 nautical miles from beginning their descent
to destination, they may be moved to a lower
level to resolve a conflict. Aircraft start de-
scending on B0 and are leveled at FL1 (α = 0)
(see figure 8). B0 and FL1 are defined by the
position of the head of the uncertainty segment
at time t0 and t1.

• Descending period. During this period no ver-
tical maneuver is possible.

No maneuver will be simultaneously done in the
horizontal and vertical plane. This model has the
great advantage of reducing the size of the problem.

For a conflict involving n aircraft, the dimension
of the search space is 3n. This will allow us to solve

t=0 t=1 t=2 t=3 t=5 t=6t=4

Vertical plane

B0

FL0

B1

Beacons

Horizontal plane

Vertical Manoeuvre Virtual Beacon

Figure 7. Vertical maneuver during the cruising period.

B0

t=0 t=1 t=2 t=3 t=5 t=6t=4

Vertical plane

Beacons

Horizontal plane

FL1

Vertical Manoeuvre Virtual Beacon

Figure 8. Vertical maneuver during the end of cruising period.

very difficult conflicts with many aircraft without
investigating a large solution space.

B. Maneuver decision time
Because of uncertainties, some conflicts that are

detected too early would not actually occur in the
end. Consequently, deciding to move aircraft in such
cases would be useless and could even generate
other conflicts that would not occur if no maneuver
had been decided. This explains why controllers
do not solve conflicts too early. When there is no
uncertainty, the earlier the maneuver is started, the
lower the delay. However, if speed is not strictly
maintained, the earlier the conflict is detected, the
lower the probability it will actually happen. Thus,
a compromise must be reached between the delay
generated and the risk of conflict.

Because of uncertainties, maneuvers should be
started as late as possible while still respecting
aircraft constraints. First, it prevents the system
from deciding unnecessary maneuvers. Second, an

�
�
�

�
�
�

�
�
�

�
�
�

δ 2&0 3δ

t1

keep

t1

Tw
t2

t2

t2

t2

keep

time

20°

30°

Figure 9. The model and real time optimization.

aircraft that is already maneuvering cannot make
another maneuver before resuming its initial speed.
The solver was modeled this way to keep the ma-
neuvers simple to understand and execute. Starting
maneuvers as late as possible increases the number
of maneuverable aircraft.

Duration Tw can be changed, but must be at least
equal to 2× δ. A good evaluation of Tw is difficult.
With a perfect trajectory prediction, the largest Tw
should be chosen. However, this is not true as
soon as uncertainties are included in the model. A
large value of Tw induces a large number of 1-to-1
conflicts, as the size of segments (modeling aircraft
positions) grows quickly with time. Therefore, the
conflict solver can become saturated.

When controllers are not too busy, they try to op-
timize the traffic and wait before giving a maneuver
order that is not necessary. They sometimes prefer
to solve a conflict ahead of time before it occurs in
order to be able to take care of the rest of the traffic.
It is very hard to reproduce this behaviour with an
automatic solver, but we will show in this paper
how the solver calculates many possible maneuvers
that do not become effective but correspond to some
control taskload.

C. A sliding forecast time window model
In order to limit the size of the problem and

to be reactive to uncertainties, only the next Tw
minutes of the flights are considered. Tw represents
the lookahead time also called forecast time window.
The situtation is revised every δ minutes with δ <<
Tw. δ is the time step used in the model to make
the Tw time window slide. This approach ensures
that the problem can be updated every δ minutes :

current aircraft positions are updated which reduces
uncertainties.

In figure 9, at t = 0, the aircraft trajectory cannot
be modified before t = δ because any maneuver
requires advance notice. Any maneuver that would
occur between t = δ and t = 2δ would be kept
as a constraint for the next optimization run (in the
example, no maneuver is decided) because it will
then be to close to the current time. In figure 9, the
maneuver described on the first line resulting from
an optimization at t = 0 (left turn of 30 degrees) is
revised at time t = δ (left turn of 20 degrees) and
then kept at time t = 2δ. The end of the maneuver
can be recalculated until the optimization starting at
t = 3δ.

Pilots should only be given maneuver orders that
will not be modified; if no conflict occurs, no order
will be given. In the example, the pilot will be
notified of the beginning of the speed change at time
δ and the end at time 3δ.

The size of the forecast time window is an
important parameter. If it is too big, the size of
the problem will include a very large number of
variables and the resolution might be more difficult.
If it is too small, the solutions found might be
worse and the total delay induced over the day much
higher. In order to solve conflicts with small speed
adjustments, Tw needs to be large enough.

Figure 10 gives an example of two aircraft flying
at the same level. In this example Tw = 20 minutes
and δ = 4 minutes. The speed uncertainty used
is 5%. At time t = 4 minutes a potential conflict
is detected and the solver calculates a maneuver
(heading change) for one of the aircraft. Because
the maneuver starts late enough, it is not sent to the
aircraft. At time t = 8 minutes, the current positions
of the aircraft are updated and the conflict is still
detected. A new maneuver is calculated (heading
change for the other aircraft), but still not sent to
the aircraft because it starts late enough. At time
t = 12 minutes, ther is a new update and the
solver calculates a new maneuver (shorter than the
previous one) but still late enough to remain an
option. And at t = 16 minutes (see figure 10),
after updating the current position of the aircraft the
conflict has disappeared. This behaviour mimics the
controllers’ conflict detection task. When they are
not too busy, controllers try to avoid unnecessary

manuevers but in dense traffic situations, they might
however give a maneuver that solves immediately a
potential conflict to concentrate on the rest of the
traffic.

III. Solver Algorithm
Classical Evolutionary Computation (CEC) prin-

ciples such as described in the literature [10], [11]
is used in the solver.

A. Fitness function
The cost function used in this part is simply the

sum of the delays over the aircraft population.
Solutions respecting the separation constraints

cannot be built easily. Consequently, we need to
include the separation constraint in the fitness func-
tion.

The fitness function chosen is:

F =
2n− nbman −

∑n
i=1

δi

Tw

1 + nrc
where n is the number of aircraft, nbman the num-
ber of maneuvers, δi the delay resulting from the
maneuver of aircraft i and nrc is the number of
remaining conflicts.

The fitness function increases when the number
of remaining conflicts and the delays decrease. It
takes its values in [0, 2n].

B. Crossover operator
The conflict resolution problem is partially sepa-

rable as defined in [12], [13]. In order to increase
the probability of producing children with a better
fitness than their parents, principles applied in [12]
were used. For each aircraft i of a population ele-
ment, a local fitness Fi value is defined as follows:

Fi =
2−mi − (δi

Tw
)

1 + nrci
where nrci is the number of remaining conflicts
involving aircraft i and mi = 0 if aircraft i has
no maneuver and 1 if it has a maneuver.

Figure 12 presents the crossover operator. First
two population elements are randomly chosen. For
each parent A and B, fitness Ai and Bi of aircraft i
are compared. If Ai < Bi, the children will take
aircraft i of parent A. If Bi < Ai, the children
will take aircraft i of parent B. If Ai = Bi
children randomly choose aircraft Ai or Bi or even
a combination of Ai and Bi.

C. Mutation operator
For each candidate to mutation, the delay of an

aircraft having one of the worst local fitnesses is
modified. If every conflict is solved, an aircraft is
randomly chosen and its parameters changed. In
practice, a number m is randomly chosen in the
interval [1, n2] and we pick up m times an aircraft
to find the most constrained aircraft among these m
trials. The delay of this aircraft is then either locally
optimized or randomly modified with a probability
of 50%. We may be tempted to always locally opti-
mize the delay of the worst aircraft, but this would
make the algorithm become very deterministic and
lead to a premature convergence of the algorithm.

The crossover and mutation operators are more
deterministic during the first generations because
there are many conflicts to solve. They focus on
making feasible solutions. When the solutions with-
out conflicts appear in the population, they become
less deterministic.

Sharing: The problem is highly combinatorial
and may have many local optima. In order to pre-
vent the algorithm from premature convergence, the
sharing process introduced by Yin and Germay [14]
is used. The complexity of this sharing process
has the great advantage to be in n log(n) (instead
of n2 for classical sharing) if n is the size of
the population. The distance used to compare two
population elements p and q is:

D =
∑n

i=1 |δ
p
i − δ

q
i |

n

D. Parameters
In the experiments, the following parameters were

empirically chosen: the size of the population was
set to 100, 20% of the population is crossed, 60% is
muted, the selection uses the stochastic remainder
without replacement. A sharing process is used. As
time to solve a problem is limited, the number of
generations is limited to 500.

IV. Experimental Results
CATS was used on a busy day of traffic (July

17th 2010) in the French airspace. We were only
interested in the upper airspace (above FL195). The
number of flights in this airspace is 8870 for that
specific day. Without any control maneuver, 2305

conflicts are detected (26% of the aircraft popula-
tion). The mean time of flights is 57 minutes and
the mean travelled distance in the french airspace is
394 nautical miles. Different experiments were done
using CATS with different hypotheses.

Tables I give the results of simulations for Tw =
9 minutes and δ =2, 3 or 4 minutes for four
sets of horizontal and vertical uncertainties (ranging
from no uncertainty to 10% horizontally and 30%
vertically). Column 5 gives the number of remaining
conflicts. Column 6 gives the number of maneuvered
aircraft and colum 7 the number of maneuvers sent
to the pilots. Column 8 gives the number of maneu-
vers that were calculated by the solver but not sent
to the pilots because they were supposed to start late
enough to be revised at the next detection resolution
process. Column 9 gives the number of potential
conflicts detected in each scenario and column 10
gives a normalized number of potential conflicts by
deviding the number of potential conflicts by Tw

δ .
This table shows that the number of potential

conflicts detected and the number of maneuvers
not sent to pilots grow with uncertainty and also
with the update frequency. For example, with 2%
and 5% uncertainties, the normalized number of
potential conflicts is multiplied by 1.6, with 5% and
10% uncertainties by 2.5 and with 10% and 30%
uncertainties by 5.

When Tw = 9 minutes and δ = 4 minutes
the solver cannot solve every conflict which means
that Tw needs to be big enough compared to δ
to make the solver become efficient. The number
of remaining conflicts increases with uncertainty.
The fact that the number of maneuvers sent to
pilots increases with δ reflects that updating the
situation is very important. This explains why the
detection resolution process is a permanent task
for controllers. The high number of maneuvers that
are never sent to pilots can also give an idea of
the complexity of the detection task. Indeed, many
potential conflicts disappear after updating aircraft
positions. However, both an automatic solver or a
human controller have to deal with these potential
conflicts. The solver calculates maneuvers starting
late enough to be updated in the future (unsent
maneuvers). Human controllers have to keep the
traffic safe and send as little unnecessary maneuvers
as possible. These experimental results show that

the number of maneuvers sent to pilots is a small
portion of the total number of maneuvers calculated
(for example with Tw = 9 minutes, δ = 2 minutes
and a (5%, 10%) uncertainties, only 30% of the
maneuvers are sent to pilots). This suggests that the
human controllers taskload is probably more dedi-
cated to conflict detection than to conflict resolution.

Table II gives the results of the simulation for
Tw = 12 minutes. The same comments can be made
on this table as on table I. The number of maneuvers
sent to pilots decreases with the update frequency
and increases with uncertainties. For example, with
no uncertainty and δ = 2 minutes, the number of po-
tential conflicts is 10166, the number of maneuvers
sent to pilots is 2095 and the number of maneuvers
unsent is is 6325. When the uncertainty increases to
5% horizontally and 10% vertically the number of
maneuvers sent to pilots doubles (4010), the number
of unsent maneuvers is multiplied by 2.5 (16087)
and the number of potential conflicts is multiplied
by 2.6 (26860). With Tw = 9 min and δ = 2 minutes
the number of maneuvers necessary to solve every
conflict is multiplied by 3 when dealing with 10%
and 30% uncertainty and the number of maneuvers
calculated but not sent is multiplied by almost 4
and the number of potential conflicts is multiplied
by almost 5. This is not surprising because unsent
maneuvers deal with conflicts that might occur
later and are more influenced by uncertainties. This
suggests that uncertainty has a great influence on the
controller’s taskload and that a good Trajectory Pre-
diction tool could probably help controllers to deal
with uncertain conflicts and reduce their detection
monitoring task.

Results also show that uncertainties have a big
influence on the number of maneuvers needed to
solve the conflicts. Controllers are used to saying
that they often have to solve conflicts that might
never happen because of uncertainties. It appears
that an automatic tool would encounter the same
issue. These experiments show how an automatic
solver can model the taskload of human controller.
It first needs to calculate many maneuvers to solve
potential conflicts but tries to only make decisions
that are absolutely necessary.

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

-4000 -2000 0 2000 4000 6000

 0: 4: 0 - Tw=20 mn - Update every 4 mn - Uncertainty 5% - fitness=0.788184

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

-4000 -2000 0 2000 4000 6000

 0: 8: 0 - Tw=20 mn - Update every 4 mn - Uncertainty 5% - fitness=0.822061

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

-4000 -2000 0 2000 4000 6000

 0:12: 0 - Tw=20 mn - Update every 4 mn - Uncertainty 5% - fitness=1.000000

Figure 10. Two aircraft potential conflict at time t=4,8,12
minutes.

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

-4000 -2000 0 2000 4000 6000

 0:16: 0 - Tw=20 mn - Update every 4 mn - Uncertainty 5% - fitness=1.000000

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

-4000 -2000 0 2000 4000 6000

 0:20: 0 - Tw=20 mn - Update every 4 mn - Uncertainty 5% - fitness=1.000000

Figure 11. No more potential conflict at time t=16 and 20
minutes.

aircraft 6

aircraft 5

aircraft 3

aircraft 2

aircraft 1

aircraft 4

1−α α 1−αα

father A father B

A

B

B1

B2

B3

B4

B5

B6

A5 # B5

A1

A2

A3

A4

A5

A6

C C

B

A

B5 # A5

child 1 child 2
A1<<B1

B3<<A3

Figure 12. Crossover operator

Tw δ horiz vert remain maneuvered maneuvers maneuvers pot norm
uncert uncert conflict acft sent not sent confs pot confs

9 2 0 0 0 1925 2395 4208 7620 1693
9 3 0 0 0 2095 2667 1201 4627 1542
9 4 0 0 140 2242 2997 120 3729 1657
9 2 2 5 0 2540 3352 7117 12421 2760
9 3 2 5 0 2916 4056 2079 7730 2577
9 4 2 5 169 3296 5037 112 6284 2793
9 2 5 10 0 3297 4551 10281 18742 4165
9 3 5 10 0 3934 5929 2771 12037 4012
9 4 5 10 273 4448 7510 171 9939 4417
9 2 10 30 0 4657 7181 16064 35484 7885
9 3 10 30 52 5675 10278 3806 24198 8066
9 4 10 30 387 6225 12521 309 19186 8527

TABLE I
Tw = 9 MINUTES:NUMBER OF REMAINING CONFLICTS,NUMBER OF MANEUVERED AIRCRAFT AND GIVEN AND CALCULATED BUT

NOT GIVEN MANEUVERS FOR DIFFERENT δ VALUES AND DIFFERENT UNCERTAINTIES.

Tw δ horiz vert remain maneuvered maneuvers maneuvers pot norm
uncert uncert conflict acft sent not sent confs pot confs

12 2 0 0 0 1756 2095 6325 10166 1694
12 3 0 0 0 1914 2338 2942 6304 1576
12 4 0 0 0 2058 2496 1158 4355 1452
12 2 2 5 0 2384 2924 10887 17200 2867
12 3 2 5 0 2721 3457 5153 10699 2675
12 4 2 5 0 3040 4125 2087 7771 2590
12 2 5 10 0 3127 4010 16087 26860 4477
12 3 5 10 0 3600 4840 7902 17444 4361
12 4 5 10 0 4188 6160 2846 12637 4212
12 2 10 30 0 5047 7809 24634 51917 8653
12 3 10 30 0 5559 9164 11349 37738 9434
12 4 10 30 65 6308 11680 3771 29729 9910

TABLE II
Tw = 12 MINUTES:NUMBER OF REMAINING CONFLICTS,NUMBER OF MANEUVERED AIRCRAFT AND GIVEN AND CALCULATED BUT

NOT GIVEN MANEUVERS FOR DIFFERENT δ VALUES AND DIFFERENT UNCERTAINTIES.

The number of potential conflicts detected and the
number of maneuvers needed to solve them give a
better idea of the conflict detection complexity than
the final number of actions that the controller really
had to take.

V. Conclusion
The CAT Simulator cannot reproduce human con-

trollers’ behaviour because it uses the computer’s
power to detect and build solutions in advance and
validate them when necessary. Human controllers
rely on their expertise and experience on specific
sectors to take the right action at the right moment.
It is very difficult to reproduce the human behaviour.
Researchers studying chess have managed to build
softwares able to beat the best players by using the
computer’s ability to calculate very fast but not by
imitating the players’ way of thinking. However the
amount of calculation necessary to replace the con-
troller’s decision on fast time simulation probably
gives a better idea of the controller’s taskload than
the result of the calculation itself (i.e. the number
of conflicts detected or maneuvers sent to pilots).

In this article we tried to show how the CATS
solver can reproduce some of the controller’s task
that does not appear by simply counting the number
of actions that were taken.

The controller’s permanent detection process is
modeled by a sliding forecast time window that is
updated every δ minutes. The smaller δ is, the more
efficient the solver is.

Uncertainties are costly regarding the number
of potential conflicts and unsent maneuvers that
are detected. The controllers detection taskload is
hard to measure because only a small proportion of
conflicts end up by a maneuver order. The number
of potential conflicts detected and unsent maneuvers
can give a good idea of the extra amount of work
controllers have to deal with because of uncertain-
ties.

In order to complete the work presented in this
paper it would be interesting to correlate the number
of potential conflicts or unsent maneuvers with the
human taskload. This is a difficult task because
it would require defining scenarios on which we
could both have measures of the human taskload
and CATS simulation results. Exising data in France
involve TMA (Terminal Control Area) traffic for

wich CATS is not yet adapted. We look forward
to work on this in the future.

References
[1] P. Averty, S. Athenes, C. Collet, and A. Dittmar, “Evalu-

ating a new index of mental workload in real control sit-
uation using psychophysiological measures,” 21th DASC,
2002.

[2] C. Collet, P. Averty, A. Dittmar, and E. Vernet-Maury,
“Workload in air traffic controllers estimated by auto-
nomic nervous system activation and subjects self esti-
mation,” Psychophysiology, p. 37, 2000.

[3] D. Gianazza and K. Guittet, “Selection and evaluation of
air traffic complexity metrics,” in 25th DASC, 2006.

[4] N. Durand, J.-M. Alliot, and G. Granger, “A statistical
analysis of the influence of vertical and ground speed
errors on conflict probe,” in Proceedings of the 4th
USA/Europe R and D Seminar, 2001.

[5] G. Granger and N. Durand, “A traffic complexity approach
through cluster analysis,” in 5th ATM R and D Seminar,
2003.

[6] G. Granger, N. Durand, and J. Alliot, “Optimal resolution
of en route conflicts,” in 4th ATM R and D Seminar, 2001.

[7] ——, “FACES: a Free flight Autonomous and Coordi-
nated Embarked Solver,” in 2 ST U.S.A/EUROPE ATM R
& D Seminar, December 1998.

[8] ——, “Token allocation strategy for free-flight conflict
solving,” in IJCAI’01, 2001.

[9] N. Durand, J. Alliot, and G. Granger, “Faces: a free
flight autonomous and coordinated embarked solver,” ATC
Quarterly, 1999.

[10] D. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning. Reading MA Addison Wesley,
1989.

[11] Z. Michalewicz, Genetic algorithms + Data Structures =
Evolution Programs. Springer-verlag, 1992.

[12] N. Durand and J.-M. Alliot, “Genetic crossover operator
for partially separable functions,” in Genetic Program-
ming, 1998.

[13] N. Durand, J.-M. Alliot, and J. Noailles, “Automatic
aircraft conflict resolution using genetic algorithms,” in
Proceedings of the Symposium on Applied Computing,
Philadelphia. ACM, 1996.

[14] X. Yin and N. Germay, “A fast genetic algorithm with
sharing scheme using cluster analysis methods in multi-
modal function optimization,” in Proceedings of the Arti-
ficial Neural Nets and Genetic Algorithm International
Conference, Innsbruck Austria, C. R. R.F.Albrecht and
N. Steele, Eds. Springer-Verlag, 1993.

30th Digital Avionics Systems Conference
October 16-20, 2011

	The Complete Air Traffic Simulator (CATS)
	General framework
	General architecture of the system
	Conflict detection and clustering
	Trajectory forecast and 1-to-1 conflict detection
	Clustering

	Solver Modeling
	Maneuver modeling
	Maneuver decision time
	A sliding forecast time window model

	Solver Algorithm
	Fitness function
	Crossover operator
	Mutation operator
	Parameters

	Experimental Results
	Conclusion
	References

