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 
Abstract—Spaceborne gravity gradients are proposed in this paper to provide autonomous orbit determination capabilities for near 

Earth satellites. The gravity gradients contain useful position information which can be extracted by matching the observations with a 

precise gravity model. The extended Kalman filter is investigated as the principal estimator. The stochastic model of orbital motion, the 

measurement equation and the model configuration are discussed for the filter design. An augmented state filter is also developed to deal 

with unknown significant measurement biases. Simulations are conducted to analyze the effects of initial errors, data-sampling periods, 

orbital heights, attitude and gradiometer noise levels, and measurement biases. Results show that the filter performs well with additive 

white noise observation errors. Degraded observability for the along-track position is found for the augmented state filter. Real flight 

data from the GOCE satellite are used to test the algorithm. Radial and cross-track position errors of less than 100 m have been 

achieved.  

 
Index Terms—Autonomous orbit determination; Gravity gradient; Extended Kalman filter; Augmented state filter; GOCE  

 

I. INTRODUCTION 

EOPHYSICAL information, such as the Earth’s gravity and magnetic fields, is of particular interest for fully autonomous or 

GPS-denied navigation [1]. Spaceborne magnetometers which provide magnetic field measurements, for example, have been 

proposed for autonomous spacecraft orbit and attitude determination. By matching the observations with the International 

Geomagnetic Reference Field (IGRF) model, position errors of several kilometers and attitude errors from 0.1 to 5 deg have been 

achieved with simulated and real fight data [2-5]. The gravity gradiometer, which can sense full-tensor or partial-tensor gravity 

gradients, has also been pursued as a means of navigation. The GPS signals might be jammed or spoofed by ground-based or 

space-based attackers [6]. By contrast, the gravity gradient signals could not be interfered easily. In addition, the GPS navigation is 

available to Earth orbits only and is ineffective for exploration missions far from the Earth, such as the Moon or Mars. The gravity 

gradient based navigation does not rely on ground stations or any other satellites and is an ideal choice for autonomous spacecraft 

operation as well as for envisioned future exploration of Earth-like planets. 
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In early researches the gradiometer was considered as a useful aid to the inertial navigation system (INS) [7-9]. Two integration 

methods, gravity disturbance compensation and gravity gradient map matching, were studied. The former made use of gravity 

gradients combined with the velocity information to estimate gravity disturbance forces, whereas the latter utilized a stored map for 

observation data matching and then to estimate the trajectory directly. In 1990, Affleck and Jircitano [10] presented a passive 

navigation system, in which the measured gravity gradients were compared with map values and the differences were processed by 

an optimal filter to correct INS errors. A parametric study was conducted for an airborne INS. Position accuracies of better than 100 

m were demonstrated. Gleason [11] continued the work and developed a fast Fourier transform algorithm to efficiently generate 

constant altitude grids of reference gravity gradients. More recently, Richeson [12] presented a comprehensive discussion on the 

gravity gradient map matching technique for inertial navigation aiding. Monte Carlo simulations of a hypersonic cruise showed 

that sub-meter position errors could be possible with a future grade gradiometer. 

Over the past few decades, gravity models of terrestrial planets, especially the Earth, have been improved dramatically. Derived 

from the combination of satellite geodetic data with high-resolution gravitational information collected from surface gravimetry, 

the new developed Earth Gravitational Model 2008 (EGM2008) is complete to degree 2190 and order 2159 [13]. Meanwhile, 

significant advances in spaceborne gravity gradiometry have occurred due to geophysical activities [14]. The electrostatic gravity 

gradiometer (EGG) implemented on ESA’s gravity field and steady-state ocean circulation explorer (GOCE) achieved a noise 

density level of 0.01 E/√Hz within measurement bandwidth (MBW). A further better accuracy of 10-3 E/√Hz is projected in the 

future using cold atom interferometers [15]. 

The progresses in global gravity field modeling and spaceborne gravity gradiometry provide opportunities for the application of 

gravity gradiometry to spacecraft navigation. Chen [16] introduced an idea of using full-tensor gravity gradients combined with 

precise inertial attitudes to determine position. The system’s observability was explained from geometry and the effects of possible 

sources of errors were analyzed. An eigendecompostion based positioning algorithm using the J2 gravity model was developed. 

Simulation results showed that a mean position error of 421 m could be possible for a spacecraft with a gradiometer having a noise 

level of 0.1 E at 300 km altitude. Sun [17] investigated the use of a least squares searching method which employed a high-degree 

gravity model for map matching. Real flight data from the GOCE satellite were used to test and verify the method and a mean 

positioning error of 620 m was achieved. 

In this study, autonomous orbit determination using gravity gradients within an extended Kalman filter (EKF) is presented. The 

main advantage of the EKF-based orbit determination is that the measurement noise can be reduced through incorporation of the 

orbital motion. Moreover, spacecraft velocity can be output simultaneously. Within the EKF, a 120th degree and order EGM2008 

model is used to calculate gravity gradients and high-precision inertial attitudes are used to remove the contribution of instrumental 

orientation. An augmented state EKF is also developed to deal with significant measurement biases. The algorithms are applied to 
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both simulated data and real GOCE data and effects of several important factors are analyzed. 

The remainder of this paper is organized as follows. Section II introduces the mathematical model of gravity gradients. Section 

III presents the EKF-based orbit determination algorithm, including orbital dynamic modeling, the measurement equation, the 

estimation formulas, and the model configuration. Section IV presents the metrics used for evaluating filter performance. 

Simulation results are given in Section V. The effects of initial errors, data-sampling periods, orbital heights, noise levels, and 

measurement biases are discussed. Section VI describes the GOCE satellite whose flight data have been used to test the algorithm, 

and the orbit determination results are presented. The major finding of this study is concluded in Section VII.  

II. GRAVITY GRADIENT MODELING 

The gravity gradients (or gravitational gradients) are the second-order spatial derivatives of the gravitational potential and form 

a 3 × 3 matrix called the gravity gradient tensor (GGT) 
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The unit of GGT is Eötvös, denoted by the symbol E. One Eötvös equals 10-9 1/s2 in SI units. There are only five independent terms 

in matrix V. The continuity of the gravitational field guarantees that V is symmetric and the Laplace’s equation constrains its trace 

to be zero [18]. 

The expression of GGT depends on the choice of reference system. Expressions of GGT in two different reference systems have 

the following relationship 

 
 Tb b

b a a a

b a
a a b





V C V C

C V C
  (2) 

where the symbols a and b denote the reference frames, the superscript T denotes the transpose operation, and b
aC  is the 

transformation matrix from frame a to b.  

The common reference frame used in most of the Earth gravity models (EGM96, EGM2008, GGM03, etc.) is the Earth-centered 

Earth-fixed (ECEF) frame, one realization of which is the International Terrestrial Reference Frame (ITRF) developed by the 

International Earth Rotation and Reference Systems Service (IERS). The ECEF frame cannot be physically materialized onboard a 

satellite. The gravity gradients can only be measured in the Gradiometer Reference Frame (GRF), which is defined by the three 

orthogonal baselines of a gradiometer. The transformation matrix from ECEF to GRF will be specified in Section III for the 

measurement equation formulation. 

A series of spherical harmonics is used in geodesy to model the gravitational potential 
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where r, ϕ, and λ are the geocentric distance, latitude, and longitude of the position (expressed in ECEF), GM is the geocentric 

gravitational constant, ER  is the reference equatorial radius of the Earth, n and m are the degree and order of the normalized 

coefficients nmC  and ,nmS  and nmP  is the normalized Legendre function. The values of GM as well as the coefficients, nmC  and 

,nmS  are determined from observations such as satellite tracking and surface gravimetry. The gravity gradients can be obtained by 

double differentiation of Eq. (3). The calculation formulas are given in Appendix. 

The spherical harmonic model is usually truncated at a maximum degree for the practical computation. The precision of gravity 

models with respect to GGT truncated at different degrees is shown in Fig. 1, in which the 300th degree and order EGM2008 model 

is used as a benchmark. The reference height is 300 km. It can be seen that the mean GGT error decreases with increase of the 

truncating degree. The effects of tidal variations (solid Earth tide, ocean tide, and pole tide) as well as the third body attraction (Sun 

and Moon) on GGT modeling are insignificant and are not considered. 

Fig. 1.  The precision of EGM2008 gravity models truncated at different degrees. The benchmark is a 300th degree and order version. The reference height is 300 

km.

III. ORBIT DETERMINATION ALGORITHM 

Orbital motion of spacecraft is subject to various random perturbations. The orbit determination problem is to estimate the states 

(position and velocity) of such a stochastic dynamic system from noisy observations, which in this study refers to the gravity 

gradient measurements. The EKF is a suboptimal filter which gives real-time estimates of the orbital states and the error 

covariances based on sequential observations. This section describes the dynamic model and the measurement equation and 

presents details of the estimation algorithm. 
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A. Stochastic Model of Orbital Motion 

The orbital motion is modeled as a nonlinear stochastic dynamic system and is described by the following stochastic differential 

equation 

  , , t

d
tdt

    
     

    

v 0r

f r v wv
  (4) 

where the state vector comprises the position and velocity (r and v) in the ECI frame, f is a 3-dimensional vector function 

representing the accelerations due to the deterministic forces, and tw  represents the remaining unmodeled perturbation 

accelerations and is assumed to be a zero-mean stationary white Gaussian noise. 

The continuous time dynamic model needs to be discretized before being used for the state prediction in the EKF, since the 

measurements are taken at discrete instants. The discretized dynamic equation has the following form 

  1 1 1, ,k k k k kt t   x φ x w   (5) 

where kx  is the orbital state at time ,kt  φ is a 6-dimensional vector function relating states at two adjacent instants, and 1kw  is the 

discrete process noise. The random sequence  kw  is independent and zero-mean Gaussian. The function φ has no explicit 

expression and is only numerically obtained using an ordinary differential equation (ODE) solver. 

The first-order partial derivative of kx  with respect to 1kx  is called the state transition matrix, denoted as  1, .k kt t Φ  

 1,k kt t Φ  can be obtained by numerically integrating the following differential equation from 1kt   to kt  
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with the identity matrix as the initial value 

  1 1 3 3,k kt t  Φ I   (7) 

The covariance matrix of 1kw  is called the process noise matrix, denoted as 1.kQ  1k Q  can be obtained by numerically 

integrating the following differential equation from 1kt   to kt  

    
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  (8) 

with zero initial values. 
twσ  is the standard deviation of .tw  In the orbit determination process, the matrix differential equations, 

i.e., Eq. (6) and Eq. (8), are solved in parallel with the integration of the orbit trajectory.  
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B. Measurement Equation 

A full-tensor gravity gradiometer is considered in this study to provide gravity gradients for orbit determination. The GRF frame 

is assumed to be always aligned with the satellite RSW (radial, transverse, and normal) reference frame. The X-axis is in the flight 

direction and is perpendicular to the radius vector (along-track), the Y-axis is normal to the orbit plane (cross-track), and the Z-axis 

is radially downwards to the Earth (radial). An onboard star tracker is assumed to simultaneously provide high-precision inertial 

attitudes, which are used to compute the transformation matrix from ECI to GRF. In addition, the IERS Conventions [19] defines 

precise models for coordinate transformation from ECI to ECEF. Thus the transformation matrix from ECEF to GRF can be 

determined directly without a prior knowledge of position and velocity 

 g g i
e i eC C C   (9) 

where the symbols i, e and g denote the frames ECI, ECEF, and GRF, respectively. Referring to Eq. (2), the GGT in GRF can be 

obtained by 

 
 Tg e

g e e g
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  (10) 

where eV  is the GGT in ECEF and can be calculated using the formulas in Appendix A. 

The gravity gradients measured by the gradiometer are output as a column vector 
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Thus the measurement equation is expressed as 

    ,k g k k k kk
t   


z V ξ h x ξ   (12)

where kz  is the 6-dimensional measurement vector at time ,kt  h is a 6-dimensional vector function, and kξ  is the observation 

error. The covariance matrix of kξ  is called the measurement noise matrix, denoted as .kR  The measurement equation considering 

biases is further given in Eq. (27). 

The first-order partial derivative of  g k


V  with respect to kx  is called the measurement partial matrix and has the following 

structure 
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Since the expression of gravity gradients does not explicitly contain velocity, the partials of  g k


V  with respect to the velocity are 

always set to be zero ( , k vH 0 ). Let e


V  denote the vector form of .eV  Let eT  denote the partial derivatives of e
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where g
eΠ  is the transformation matrix from e


V  to ,g


V   , , 1, 2,3ijc i j   are the elements of ,g

eC  and eT  comprises the spatial 

derivatives of the gravity gradients. 

The observation error kξ  includes the GGT transformation error t
kξ  and the gradiometer noise n

kξ . The GGT transformation 

error depends on the accuracies of the attitude measurements and the IERS models. From recent geodetic reports, the relative 

accuracy of the IERS Earth orientation model is better than 10-8 [19]. According to the analysis in Chen [16], the corresponding 

GGT transformation error is smaller than 0.1 mE (1 mE = 10-3 E) and can be neglected. By contrast, the effect of attitude errors is 

much more significant. An attitude error of 1 arcsec can cause a GGT transformation error of about 0.01 E at 300 km height. The 

vector-valued GGT transformation error can be written as 
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where 1 2, ,    and 3  are Euler angle errors and kM  is a 6 × 3 mapping matrix. The derivation of Eq. (15) is found in 

Appendix B. Suppose that the Euler angle errors are white Gaussian noises and the noise standard deviation is denoted as .  The 

covariance of t
kξ  can be given by 

 2
t
k

T
k k 

ξ
R M M   (16) 

The gradiometer noise is a function of the accelerometer noise. Take the electrostatic gravity gradiometer for example. Three 

pairs of accelerometers are mounted at the ends of three orthogonal baselines [20]. Specific forces measured by each pair of 

accelerometers are differenced to provide gravity gradients along that direction. Suppose that the six accelerometers are identical 

and the noise standard deviation is denoted as 0.  Since the accelerometer noises are mutually independent, the covariance of the 

gradiometer noise n
kξ  is a diagonal matrix 
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where l is the length of the gradiometer baseline. 02 l  is viewed as the equivalent gradiometer noise level.  

The measurement noise matrix is finally obtained by 

 t n
k k

k  
ξ ξ

R R R   (18) 

C. Extended Kalman Filter 

The extended Kalman filter is a linear minimum mean square error (LMMSE) estimator which is based on linearization of 

nonlinear systems and consists of a recursive calculation of the approximate conditional mean and covariance of the state. The 

linearization of the dynamic and measurement equation is implemented by the Taylor series expansion in which the second- and 

higher-order terms are neglected, yielding a first-order EKF. 

The recursive estimation algorithm of the EKF is given as follows 

  1 1ˆ , ,k k k kt t x φ x   (19) 

    1 1 1 1
ˆ, ,

T

k k k k k k kt t t t    P Φ P Φ Q   (20) 

 T
k k k k k S H P H R   (21) 

 1
k k k k
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where ˆ
kx  and ˆ

kP  are the estimated conditional mean and covariance at kt , kx  is the predicted state to kt  from 1,kt   kP  and kS  

are the state and measurement prediction covariances, and kK  is the filter gain. 

The basic EKF algorithm presented above only deals with the case in which the observation errors are additive white noises. If 

unknown biases are contained in the observations, an augmented state extended Kalman filter (ASEKF) needs to be developed in 

order to estimate the biases. The augmented state vector consists of the orbital states as well as the biases 

 ka
k

k

 
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x
x

B
  (25) 

where a
kx  is the augmented state vector, kB  is a 6-dimensional bias vector. The dynamic evolution of the bias is modeled as a 

random walk 

 1 , 1k k k   BB B w   (26) 

where , 1kBw  is the bias process noise and its covariance BQ  is determined based on the characteristics of the bias. Even for 

estimating constants, a small fictitious process noise has to be used to prevent divergence of the filter. 

The measurement equation for the ASEKF is rewritten as 

    , ,k g k k k k k kk
t    


z V B ξ h x B ξ   (27) 

And the augmented measurement partial matrix becomes 

    , 6 3 6 66 12 6 3

a k
k ka

k
  

      r

z
H H 0 I

x
  (28) 

where the identity matrix 6 6I  represents the partials of kz  with respect to .kB  

The recursive estimation algorithm for the ASEKF can be obtained by replacing kx  in Eqs. (19)-(24) with the augmented vector 

.a
kx  In addition, to balance the matrix ,a

kH  the algorithm uses mE as the unit of gravity gradients.  

D. Model Configuration 

The model configuration of the EKF includes the definition of deterministic forces for orbital motion and the choice of gravity 

models for GGT computation. The deterministic forces determine the accuracy of the orbital dynamic model. Its configuration 

should take into account the computational efficiency as well as the accuracy of the measurement system. For the basic EKF, only 

the central force and the J2 perturbation are considered. The analytical expression of  f  is 



TAES-201500387-R1 10

  

 

 

 

2

2
2

2

2
23

2

2
2

3
1 5sin 1

2

3
, , 1 5sin 1

2

3
1 5sin 3

2

E

E

E

R
J

r

RGM
t J

rr

R
J

r







     
  

 
        

 
       

f r v r   (29) 

where J2 is the second zonal harmonic coefficient. 

For the ASEKF processing model, the gravitational forces up to degree 20 and order 20 are used. The accelerations due to higher 

degree potential coefficients, lunar and solar gravitational attractions, and the non-gravitational forces (atmospheric drag and solar 

radiation pressure) are included into the process noise .tw  The standard deviation of tw  is required to appropriately reflect the 

accuracy of the dynamic model. Numerical simulations have been conducted to evaluate the model accuracy. It is found that 

standard deviations of 0.01 m/s2 and 5 × 10-4 m/s2 can be adopted in the basic EKF and the ASEKF, respectively. The accuracy 

requirement for the state transition matrix evaluation is not stringent. Only the central and J2 terms are considered for both the two 

filters. 

The choice of gravity models for GGT computation depends on the noise level of gradiometers. A 120th degree and order 

EGM2008 model is used in this study. As shown in Fig. 1, the mean GGT error of this model is on the order of 0.001 E, which is 

smaller than the noises of most current gradiometers (ranging from 0.01 E to 10 E). Thus, the GGT model errors can be neglected 

in the filter design. The accuracy requirement for the measurement partial matrix evaluation is also not stringent and only the 

central and J2 terms are considered. 

IV. FILTER PERFORMANCE EVALUATION METRICS 

Several criteria are used to evaluate the performance of the orbit determination filter. The first consideration is the filter accuracy. 

The estimated states can be compared with true values or more accurate values to obtain time-domain error curves, which imply the 

actual accuracy of the filter. The conditional covariance matrix measures the goodness of the estimate in a probabilistic sense and 

represents the predicted accuracy of the filter. In this study, the orbital states are estimated in the ECI frame, whereas the position 

and velocity errors and their predicted variances are expressed in the RSW frame. The total 3-dimensional (3D) position and 

velocities errors are also used to compare the orbit determination accuracy between different simulation cases. 

The filter consistency is another important metric for performance [21]. The consistency consists of two conditions 

  ˆ
k kE  x x 0   (30) 

    ˆˆ ˆk k k k kE     x x x x P   (31) 

Eq. (30) is the unbiasedness requirement. Eq. (31) is the covariance matching requirement, which means that the actual errors 
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should match the filter predicted variances. The consistency is evaluated by the chi-square test. Define the normalized estimation 

error squared (NEES) as 

      1ˆˆ ˆT

k k k k kk   x x P x x   (32) 

Under hypothesis H0 that the EKF is consistent,  k  is chi-square distributed with xn  degrees of freedom 

   2~
xnk    (33) 

where xn  is the dimension of the state vector x. H0 is accepted if  k  does not exceed the upper limit of a probability region 

    2 1
xnk      (34) 

where α is the significance level and is set to 5% in this study. 

Observability can be inferred from the predicted variances of filter. The observability condition guarantees a “steady flow” of 

information about the state components and leads to steady-state errors. The steady-state variances are not unique and are affected 

by many factors, such as data sampling rates and measurement noise levels. The goodness of filter observability can also be 

inferred from the convergence speed of the filter, i.e., the time of convergence to the steady-state errors. 

V. SIMULATION RESULTS AND DISCUSSIONS 

Numerical simulations have been conducted to test the performance of the EKF for GGT-based autonomous orbit determination. 

The basic EKF cases cover a 6-hour data arc starting from October 1, 2014, 12:00:00.0 (UTC), whereas the ASEKF case covers a 

40-hour data arc in order to observe the convergence of the biases. The true orbit ephemerides are generated using a high-precision 

numerical orbit simulator. The Adams-Bashforth-Moulton method for numerical integration, the EGM2008 model truncated at the 

120th degree and order for non-spherical gravitational perturbation, the NRLMSISE-00 model for the atmospheric density, and the 

analytical formulas for the lunar and solar ephemerides are used in the simulator. The true gravity gradients are generated using a 

300th degree and order EGM2008 model. Attitude errors and gradiometer noises at different levels are added to simulate the noisy 

measurements. In addition, constant biases are also simulated for the ASEKF test. 

In the baseline case a nearly circular orbit having a height of 300 km is assumed. The initial osculating orbital elements are listed 

in Table I. The GGT measurements are simulated using a data-sampling period of 30 s. The standard deviations of the Euler angle 

error and the gradiometer noise are 10 arcsec and 0.1 E, respectively. Initial errors of 10 km and 10 m/s are added to each 

component of the ECI position and velocity vectors. The basic EKF algorithm has been implemented for orbit determination. The 

position and velocity errors in the RSW coordinates are plotted in Fig. 2 and Fig. 3, respectively. The solid lines are the actual 

errors and the dotted lines are the corresponding plus and minus 3σ boundaries. As seen from the plots, the filter is consistent: the 

estimation error has a zero mean and the predicted variances match the actual errors. The filter consistency can also be indicated 
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from the chi-square test results. The NEES values at each epoch are shown in Fig. 4. The upper limit of the probability region is 

12.6 for the basic EKF since 6.xn   It is seen that all of the points are inside the region. 

Orbit observability can be seen from the predicted variances of the estimation errors. The position errors decrease from 10 km to 

hundreds of meters level at the first epoch and rapidly (t < 30 min) converge to steady states (1σ variance) of 31.5-32.5 m (radial), 

72.0-95.5 m (along-track), 104-119 m (cross-track), and 142-148 m (3D). The Root Mean Square (RMS) values of the steady-state 

actual position errors are 29.3 m (radial), 74.8 m (along-track), 89.2 m (cross-track), and 120 m (3D). The position error reduction 

at the first epoch is due to the position fixing ability of full-tensor GGTs. The oscillation of the steady-state variances is resulted 

from the combined effects of the satellite rotation motion and the attitude errors. The oscillation frequency is twice that of the 

rotation motion. In addition, the steady-state position error along the radial direction is much smaller than those along the other two 

directions. The reason is that the sensitivity factor for the vertical position is much smaller [16]. The velocity errors converge more 

rapidly (t < 20 min) to steady states (1σ variance) of 0.172-0.178 m/s (radial), 0.206-0.220 m/s (along-track), 0.241-0.246 m/s 

(cross-track), and 0.364-0.373 m/s (3D). The RMS values of the steady-state actual velocity errors are 0.111 m/s (radial), 0.099 m/s 

(along-track), 0.120 m/s (cross-track), and 0.192 m/s (3D). The baseline case demonstrates the feasibility of the EKF for 

autonomous orbit determination from unbiased gravity gradient measurements. The position accuracy is competitive with that of 

traditional ground-based station tracking considering the fast convergence of the filter. 

The position error of the EKF baseline case can also be compared with the results obtained from the eigendecomposition method 

given in Chen [16]. Under the similar simulation conditions, the mean position error of the eigendecomposition method is 421 m, 

which is on the same order of magnitude as the steady-state variance of the 3D position error. However, the EKF performs better 

than the GGT inversion method which used the J2 gravity model to extract position. The improvement of the position accuracy is 

attributed to the incorporation of orbital motion and the use of a higher degree reference gravity model. 

TABLE I 
INITIAL ORBITAL ELEMENTS OF THE REFERENCE ORBIT IN THE BASELINE CASE 

Orbit Element Initial Conditions 

height 300 km 
eccentricity 0 
inclination 60 deg 
right ascension of the ascending node 120 deg 
argument of perigee 0 deg 
true anomaly 80 deg 
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Fig. 2.  Radial, along-track, and cross-track position errors and the corresponding 3σ boundaries for the baseline case. 

   

Fig. 3.  Radial, along-track, and cross-track velocity errors and the corresponding 3σ boundaries for the baseline case. 

  

Fig. 4.  Normalized state estimation error squared (NEES) and the 95% probability region for the baseline case. 
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A. Effects of Initial Errors and Data-Sampling Periods 

Effects of the initial position and velocity errors are tested by comparing the baseline case with another two cases in which larger 

initial errors of [100 km, 100 km, 100 km, 100 m/s, 100 m/s, 100 m/s] and [1000 km, 1000 km, 1000 km, 1 km/s, 1 km/s, 1 km/s] 

are assumed, respectively. The other simulation conditions are set to be the same with the baseline case. The evolution of the total 

3D position errors is depicted in Fig. 5. Increasing the initial errors slows down the convergence speed of the filter. From Fig.5, the 

convergence time is 40 min for the 100 km and 100 m/s case, whereas for the 1000 km and 1 km/s case the convergence time is 80 

min. In these two cases the filter consistency at the transient stage is not good. That is because the large initial errors increase the 

nonlinearity and the corrections at the first few epochs are too small. Nevertheless, the steady-state estimation errors are not 

affected by the initial errors, revealing that the EKF is asymptotically consistent. 

Cases having different data-sampling periods are also simulated. The comparison results are summarized in Table II. It is found 

that increasing the sampling periods degrades the orbit determination accuracy. From Table II, the total position error of the 300-s 

sampling interval case is almost three times that of the 10-s interval case. The reason is that the observation information collected 

over the same time span gets less when using a larger sampling period. In addition, the weight of the orbital motion information in 

the EKF is also reduced, leading to white noise-like estimation errors. An even larger sampling interval of 1000 s has also been 

tested and the EKF filter still converges. It is shown that the navigation ability under the condition of sparse gravity gradient 

measurements can be guaranteed. However, an extremely large sampling period will cause divergence of the filter, since the state 

prediction error is positively correlated with the sampling period and might exceeds the linear correction range of the EKF. 

   

Fig. 5.  Evolution of the total 3D position errors for the EKF with different initial estimation errors. 
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TABLE II 
STEADY-STATE VARIANCES FOR THE EKF WITH DIFFERENT DATA-SAMPLING PERIODS 

Sampling 
Period (s) 

Position Variances (1σ, m) Velocity Variances (1σ, m/s) 

Radial Along-track Cross-track 3D Radial Along-track Cross-track 3D 

10 21.4-21.8 50.0-67.5 71.5-82.5 98.5-103 0.148-0.152 0.185-0.202 0.213-0.220 0.324-0.332 

60 40.0-41.0 90.0-117 130-147 177-184 0.190-0.197 0.218-0.230 0.260-0.265 0.392-0.400 

100 46.8-47.8 106-135 152-170 206-213 0.203-0.210 0.226-0.238 0.275-0.281 0.412-0.422 

300 60.4-61.5 146-179 205-227 276-285 0.233-0.243 0.240-0.251 0.316-0.327 0.464-0.476 

1000 67.2-68.5 188-251 265-295 360-380 0.272-0.295 0.263-0.275 0.390-0.410 0.550-0.572 

 

B. Effects of Orbital Heights 

The spherical shape of the Earth’s gravitational field indicates that the accuracy of the GGT-based orbit determination is highly 

dependent of the height and the eccentricity of the orbit but has little relationship with the other orbital elements, such as inclination, 

true anomaly, etc. Besides the 300 km height case, simulations of circular orbits at heights of 600 km, 1000 km, 2000 km, and 5000 

km have also been conducted. The steady-state variances of estimation errors are summarized in Table III. It is seen that the orbit 

determination accuracy decreases with increasing the orbital height. For the 5000 km case, the steady-state 1σ variance of the total 

3D position error is 458 m, which is about 3 times that of the 300 km case (148 m). This phenomenon is due to the fact that the GGT 

signals and their sensitivity factors with respect to position variation are inversely related to the altitude. Thus the GGT-based orbit 

determination is more suitable for low-Earth orbiting (LEO) satellites. Another phenomenon is that the oscillation of steady-state 

variances becomes weaker at higher altitudes. The reason is that the effects of attitude errors become weaker at higher altitudes. As 

seen from Eq. (55), the GGT transformation errors are positively related to gravity gradients, which decreases with height. The 

filter consistency is not affected by the orbital height. All the NEES values of the four cases in Table III are below the upper limit 

of 12.6. 

TABLE III 
STEADY-STATE VARIANCES FOR THE EKF WITH DIFFERENT ORBITAL HEIGHTS 

Orbital 
Height (km) 

Position Variances (1σ, m) Velocity Variances (1σ, m/s) 

Radial Along-track Cross-track 3D Radial Along-track Cross-track 3D 

600 36.4-37.2 79.0-102 110-125 152-158 0.180-0.185 0.214-0.225 0.246-0.250 0.375-0.383 

1000 43.1-43.8 90.0-111 120-135 167-172 0.190-0.195 0.222-0.235 0.252-0.258 0.390-0.396 

2000 64.0-64.5 122-141 149-164 214-219 0.218-0.221 0.245-0.256 0.271-0.276 0.430-0.434 

5000 164-165.8 284-295 306-315 455-458 0.303-0.305 0.324-0.327 0.342-0.345 0.562-0.564 

 

The effects of dynamic variation of orbital heights are also investigated by assuming an elliptical orbit (eccentricity = 0.26) 

having a perigee height of 300 km and an apogee height of 5000 km. The evolution of the total 3D position errors and the 

corresponding 3σ boundaries are plotted in Fig. 6. The 6-hour simulation covers 2.5 orbital periods. The predicted variances are 

consistent with the actual errors. The varying position errors are mainly due to the varying height of the elliptical orbit. The 

maximum position variance (1σ) at the apogee height and the minimum position variance (1σ) at the perigee height are 448 m and 

145 m, respectively. The values are consistent with those of the circular orbits at the same heights listed in Table III. 
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Fig. 6.  Evolution of the total 3D position errors and the 3σ boundaries for the elliptical orbit. 
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TABLE IV 
STEADY-STATE VARIANCES FOR THE EKF WITH DIFFERENT LEVELS OF ATTITUDE NOISE 

Attitude Noise 
(arcsec) 

Position Variances (1σ, m) Velocity Variances (1σ, m/s) 
Radial Along-track Cross-track 3D Radial Along-track Cross-track 3D 

0.1  0.640-0.649 1.91-2.86 2.86-3.46 4.00-4.24 0.042-0.043 0.061-0.071 0.071-0.076 0.106-0.110 
1 0.640-0.650 9.25-16.5 17.0-20.8 22.8-24.5 0.043-0.046 0.105-0.130 0.132-0.140 0.180-0.191 
10 0.650-0.700 51.5-80.0 96.0-112 123-129 0.070-0.097 0.178-0.195 0.235-0.240 0.305-0.321 
30 0.650-0.850 105-141 195-220 238-251 0.125-0.163 0.200-0.208 0.301-0.315 0.385-0.410 

 
 

TABLE V 
STEADY-STATE VARIANCES FOR THE EKF WITH DIFFERENT LEVELS OF GRADIOMETER NOISE 

Gradiometer 
Noise (E) 

Position Variances (1σ, m) Velocity Variances (1σ, m/s) 
Radial Along-track Cross-track 3D Radial Along-track Cross-track 3D 

0.001  0.640-0.650 9.25-16.5 17.0-20.8 22.8-24.5 0.043-0.046 0.105-0.130 0.132-0.140 0.180-0.191 
0.01 4.83-4.90 12.8-18.4 18.5-22.0 25.9-27.3 0.086-0.087 0.120-0.135 0.136-0.143 0.205-0.211 
0.1 31.3-31.7 57.4-58.5 59.6-60.1 88.7-89.6 0.168-0.169 0.194-0.195 0.199-0.200 0.325-0.326 
1 206-209 292-296 270-272 448-452 0.451-0.453 0.294-0.295 0.357-0.358 0.646-0.648 

 
 

D. Effects of Measurement Biases 

Simulated constant biases have been added to true GGT signals to examine the performance of the ASEKF. The biases assumed 

on the six gravity gradient components are 300 E (bxx), -2500 E (byy), 1500  E (bzz), 420 E (bxy), 900 E (bxz), and -120 E (byz), 

respectively. These significant biases are on the same order of magnitude as the true GGT signals. The initial errors of the bias 

estimation are set to 10 E. The standard deviation of the fictitious process noise is set to 1 mE. As mentioned earlier, the total 

simulation time for the ASEKF has been increased to 40 hours. The other simulation conditions are set to be the same with the 

baseline case. 

The position and velocity estimation errors are depicted in Fig. 7 and Fig. 8, respectively. The solid lines are the actual errors and 

the dotted lines are the corresponding plus and minus 3σ boundaries. Chi-square test has been conducted to evaluate the filter 

consistency. The NEES values at each epoch are shown in Fig. 9. The upper limit of the probability region is 21. All the points are 

inside the region. Out of the 4800 points, only 15 are found outside the region. The radial and cross-track position errors rapidly (t 

< 3 hours) converge to steady states (1σ variance) of 20.0-20.5 m and 30.0-32.0 m, respectively. The along-track position error 

converges quite slowly and the 1σ variance at the last epoch is about 400 m. The RMS values of the steady-state actual position 

errors are 21.5 m (radial), 271 m (along-track), 23.0 m (cross-track), and 273 m (3D). The along-track and cross-track velocity 

errors rapidly (t < 2 hours) converge to steady states (1σ variance) of 0.0198-0.0202 m/s and 0.0355-0.0375 m/s, respectively. The 

radial velocity error converges quite slowly and 1σ variance at the last epoch is about 0.47 m/s. The RMS values of the steady-state 

actual velocity errors are 0.291 m/s (radial), 0.0159 m/s (along-track), 0.0257 m/s (cross-track), and 0.293 m/s (3D). The 

steady-state variances of the radial and cross-track position components are smaller than those in the baseline case due to the more 

accurate orbital dynamic model. In addition, the error curves seem much smoother since the orbit prediction constrains the jumps in 

state estimates. 
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Fig. 7.  Radial, along-track, and cross-track position errors and the corresponding 3σ boundaries for the ASEKF case. 

  

Fig. 8.  Radial, along-track, and cross-track velocity errors and the corresponding 3σ boundaries for the ASEKF case. 

   

Fig. 9.  Normalized state estimation error squared (NEES) as well as the 95% probability region for the ASEKF case. 
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The evolution of the bias estimation errors and the corresponding 3σ boundaries is plotted in Fig. 10. Among the six biases, the 

bxx, byy, bzz, bxy, and byz components rapidly (t < 3 hours) converge to steady states (1σ variance) of less than 11 mE, 11 mE, 13 mE, 

10 mE, and 16 mE, respectively. However, the bxz component converges quite slowly. The 1σ variance at the last epoch is about 

240 mE. The RMS values of the steady-state actual bias errors are 7.52 mE (bxx), 8.74 mE (byy), 7.26 mE (bzz), 6.73 mE (bxy), 158 

mE (bxz), and 11.1 mE (byz). The poor observability of bxz accounts for the large errors in the along-track position estimation. As 

seen from Fig. 7 and Fig. 9, the along-track orbit position error is negatively related to the bxz error, indicating that the ASEKF 

cannot easily distinguish the variations of these two states. This is due to the fact that the along-track position error varies slowly 

during the orbit evolution and its dynamic behavior resembles a bias. To illustrate this, assume a Kepler circular orbital motion with 

an initial error in the true anomaly. The errors of the along-track position as well as the radial velocity both stay constant in the orbit 

prediction, leading to nearly constant errors of the gravity gradient component Vg,xz. In addition, the biasedness exists in the bxz 

estimation, leading to the biasedness in the estimation of along-track position and radial velocity. 

 

Fig. 10.  Evolution of the bias estimation errors and the corresponding 3σ boundaries for the ASEKF case. 
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mHz to 0.1 Hz. Data analysis has shown that the noise density level inside the MBW is approximately 20 mE/√Hz for Vg,xx, Vg,yy, 

Vg,zz and Vg,xz, 350 mE/√Hz for Vg,xy, and 500 mE/√Hz for Vg,yz. The larger noise levels of Vg,xy and Vg,yz are due to the less sensitive 

axes of the accelerometers. Below the MBW the noises increase with 1/f and are superimposed by cyclic distortions [23]. Therefore, 

the biases of GOCE gradiometer are not constant. They are slowly drifting and have small-amplitude oscillations. To cope with the 

time-varying biases, a large process noise is assumed. The standard deviation is set to 20 mE. 

A 40-hour data arc starting from September 8, 2013, 00:00:00.0 (GPS time) are used for the test. The data arc covers about 27 

orbital periods and includes 4800 measurement epochs with a data-sampling period of 30 s. The GOCE Level 1b product 

EGG_NOM_1b which contains raw GGT measurements (EGG_GGT) and gradiometer inertial attitudes (EGG_IAQ) are used as 

inputs. The outliers in the raw GGTs have been detected and removed via polynomial fitting. The standard deviation of the attitude 

errors is set to 2 arcsec [24]. To assess the accuracy of the orbit determination results, the GPS-derived high-precision orbits with 

an accuracy of 2 cm are used as references. The reference values of the GGT biases have also been obtained through comparing the 

actual measurements with GGTs calculated from the 300th degree and order EGM2008 model. 

The ASEKF has been implemented for orbit determination. The initial position and velocity errors are 10 km and 10 m/s. The 

initial bias errors are 10 E. The position and velocity errors are shown in Fig. 11 and Fig. 12, respectively. The chi-square test has 

been conducted to evaluate the filter consistency. The NEES values are shown in Fig. 13. Only 22 points are found outside the 

probability region. Similar to the ASEKF simulation case, the radial and cross-track position errors converge rapidly (t < 4 hours) 

to steady states (1σ variance) of 60-66 m and 55-75 m, respectively. The along-track position error converges slowly and 1σ 

variance at the last epoch is about 900 m. The RMS values of the steady-state actual position errors are 15.6 m (radial), 559 m 

(along-track), 52.2 m (cross-track), and 562 m (3D). The along-track and cross-track velocity errors converge rapidly (t < 5 hours) 

to steady states (1σ variance) of 0.050-0.052 m/s and 0.065-0.080 m/s, respectively, whereas the radial velocity error converges 

slowly with a final 1σ variance value of about 1.05 m/s. The RMS values of the steady-state actual velocity errors are 0.658 m/s 

(radial), 0.0166 m/s (along-track), 0.0587 m/s (cross-track), and 0.662 m/s (3D). The GGT biases have also been estimated along 

with the orbits and the errors are depicted in Fig. 14. The bxx, byy, bzz, bxy, and byz components rapidly (t < 3 hours) converge to 

steady states (1σ variance) of less than 43 mE, 42 mE, 80 mE, 83 mE, and 105 mE, respectively. The bxz component converges very 

slowly with a final 1σ variance value of about 600 mE. The RMS values of the steady-state actual bias errors are 12.3 mE (bxx), 30.7 

mE (byy), 21.4 mE (bzz), 85.5 mE (bxy), 351 mE (bxz), and 101 mE (byz). The use of bias process noise allows successful estimation of 

the varying biases. The reference values as well as the estimated values of byy are plotted in Fig. 15 as an example. It is seen that the 

estimates follow closely the references values and compensate the drift as well as the small periodic fluctuations. Although not 

shown in a figure, the post-fit measurement residuals have been calculated. The statistical standard deviations of the six 

components are 12 mE, 11 mE, 16 mE, 335 mE, 15 mE, and 494 mE, respectively, consistent with the flat noise levels in the MBW. 
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Fig. 11.  Radial, along-track, and cross-track position errors and the corresponding 3σ boundaries for the GOCE case. 

   

Fig. 12.  Radial, along-track, and cross-track velocity errors and the corresponding 3σ boundaries for the GOCE case. 

   

Fig. 13.  Normalized state estimation error squared (NEES) as well as the 95% probability region for the GOCE case. 
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Fig. 14.  Evolution of the bias estimation errors and the corresponding 3σ boundaries for the GOCE case. 

  

Fig. 15.  The estimated and reference values of the byy bias of GOCE. 
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the along-track-radial gravity gradient components worsens the system’s observability and leads to large estimation errors of the 

along-track position and the radial velocity. The along-track position error after 40 hours is about 350m for the real GOCE case. 

Additional calibrations could be helpful to improve the orbit accuracy. Nevertheless, this study demonstrates the feasibility of the 

EKF algorithm for GGT-based orbit determination, which could be used as a backup for near Earth autonomous spacecraft 

operation, or as a primary navigation system for future planetary exploration. 

APPENDIX A. CALCULATION OF GGT IN ECEF 

The computational form of the gravitation potential is given as follows 
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The recursive calculation of nmV  and nmW  is given by 
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where x, y, and z here refer to the three position components in the ECEF frame. The initial values are 

    0,0 , 0,0 0ER
V W

r
    (40) 

The diagonal terms mmV  and mmW  can be first calculated using Eq. (36) and Eq. (37).  By fixing m, the terms nmV  and nmW  (n > m) 

can be subsequently obtained using Eq. (38) and Eq. (39). 

The gravitational force is obtained by differentiation of Eq. (35) and is given by 
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where ea  and er  refer to the gravitational force vector and position vector in the ECEF coordinate frame. The partial derivatives of 

nmV  and nmW  are 
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The gravity gradient tensor can be further obtained by differentiation of Eq. (41) and is given by 
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where V represents GGT and should be distinguished from nmV . The spatial derivatives of V are 
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where i and j refer to the indexes x, y, and z. The second- and third-order partial derivatives of nmV  and nmW  can be derived from 

Eqs. (42)-(47) and are not given here. 

APPENDIX B. DERIVATION OF (15) 

Let g
iC  denote the rotation uncertainty of .g

iC  The resulting GGT transformation error in the matrix form will be 
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The transformation matrix g
iC  can be expressed as a function of three Euler angles 
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where 1,  2 ,  and 3  are the yaw, pitch, and roll angles, respectively. The relationship between g
iC  and the Euler angle errors 

1 2, ,    and 3  can be derived by linearization of Eq. (53) 
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where 1,L  2 ,L  and 3L  are the coefficient matrices. Therefore, the GGT transformation error in the matrix form becomes  
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Thus the vector-valued GGT transformation error can be written as 
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where the 6 × 3 mapping matrix kM  can be directly obtained from Eq. (55). 
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Fig. 1.  The precision of EGM2008 gravity models truncated at different degrees. The benchmark is a 300th degree and order 

version. The reference height is 300 km.

Fig. 2.  Radial, along-track, and cross-track position errors and the corresponding 3σ boundaries for the baseline case. 

Fig. 3.  Radial, along-track, and cross-track velocity errors and the corresponding 3σ boundaries for the baseline case. 

Fig. 4.  Normalized state estimation error squared (NEES) and the 95% probability region for the baseline case.  

Fig. 5.  Evolution of the total 3D position errors for the EKF with different initial estimation errors. 

Fig. 6.  Evolution of the total 3D position errors and the 3σ boundaries for the elliptical orbit. 

Fig. 7.  Radial, along-track, and cross-track position errors and the corresponding 3σ boundaries for the ASEKF case. 

Fig. 8.  Radial, along-track, and cross-track velocity errors and the corresponding 3σ boundaries for the ASEKF case. 

Fig. 9.  Normalized state estimation error squared (NEES) as well as the 95% probability region for the ASEKF case. 

Fig. 10.  Evolution of the bias estimation errors and the corresponding 3σ boundaries for the ASEKF case. 

Fig. 11.  Radial, along-track, and cross-track position errors and the corresponding 3σ boundaries for the GOCE case. 

Fig. 12.  Radial, along-track, and cross-track velocity errors and the corresponding 3σ boundaries for the GOCE case. 

Fig. 13.  Normalized state estimation error squared (NEES) as well as the 95% probability region for the GOCE case. 

Fig. 14.  Evolution of the bias estimation errors and the corresponding 3σ boundaries for the GOCE case. 

Fig. 15.  The estimated and reference values of the byy bias of GOCE. 

 

 

 

 

 

 
 


