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Abstract An innovative orbit determination method which makes use of gravity gradients for Low-Earth-Orbit 

satellites is proposed. The measurement principle of gravity gradiometry is briefly reviewed and the sources of error 

are analyzed. An adaptive hybrid least squares batch filter based on linearization of the orbital equation and 

unscented transformation of the measurement equation is developed to estimate the orbital states and the 

measurement biases. The algorithm is tested with real flight data from the European Space Agency’s Gravity field 

and steady-state Ocean Circulation Explorer (GOCE). The orbit determination results are compared with the GPS-

derived orbits. The radial and cross-track position errors are on the order of tens of meters, whereas the along-track 

position error is over one order of magnitude larger. The gravity gradient based orbit determination method is 

promising for potential use in GPS-denied navigation and in outer space planetary exploration. 
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1. Introduction 

Satellite orbit determination usually relies on geometric measurements. Two typical examples are the ground-

based radar tracking and the Global Positioning System (GPS), both of which utilize electromagnetic wave 

propagation to measure relative distance and direction. Current GPS technology achieves centimeter-level accuracy 

for LEO satellites with dual-frequency carrier phases [1,2]. An alternative method to the geometry-based orbit 

determination is the geophysical navigation, which derives position from local geophysical data. One representative 

is the magnetometer-based autonomous navigation. Orbital position errors ranging from a few to a hundred 

kilometers have been achieved with real flight data from several LEO satellites [3-6]. Despite the low accuracy, the 
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geophysical navigation does not need supports from ground stations or any other satellites and is thus suitable for 

autonomous spacecraft operation in GPS-denied environments. 

Besides the magnetic field, the gravity is another kind of geophysical information that can be exploited for orbit 

determination. The Earth has a relatively stable gravity field. Its effects on satellites include two aspects. Firstly, the 

gravity force (or gravitational acceleration) is the main driving force of the orbital motion. The modeling of the 

gravity field is of crucial importance to precise orbit prediction. Secondly, the gravity gradients (or gravitational 

gradients) vary as functions of position and orientation and can be measured by a spaceborne gradiometer [7,8]. 

With a known gravity model as well as the satellite orientation information, the orbit could be estimated from the 

gravity gradient observations. 

The application of gravity gradiometry for navigation has been studied since the 1960s. One of the main research 

interests is to incorporate a gradiometer into an airborne or shipborne inertial navigation system (INS) for real-time 

compensation of gravity model uncertainties [9-12]. Metzger and Jircitano [13] presented an early form of map-

matching technique by cross-correlating sensed gravity gradients with previously mapped values. The premise was 

to let a vehicle travel a course twice and to compute the state lag from gravity gradient measurements on both passes. 

The idea developed into a passive gravity gradiometer navigation system in which the gravity gradient map was not 

provided by a first flight but generated from the terrain elevation data base [14]. An optimal filter was designed to 

update positions and to correct instrument errors. During the following twenty years further contributions were made 

on this topic, including the Fast Fourier Transformation based rapid map generation [15], extended application to a 

hypersonic cruise [16], and feasibility investigation using a modern gradiometer [17]. By contrast, little research has 

been conducted on the applications of gradiometry for spacecraft navigation. The major difference between the 

inertial navigation aiding and the application for spacecraft navigation lies in the fact that high-precision attitude 

information could be easily obtained onboard a satellite by star trackers. This decouples position estimation from 

attitude estimation. In addition, the higher frequency terrain contributions are dramatically attenuated at the height of 

a spacecraft. A truncated spherical harmonic gravity model will be accurate enough for space users. 

In 2009, ESA's GOCE satellite was launched into a sun-synchronous LEO orbit to determine the Earth's gravity 

field and geoid heights. The satellite carried an Electrostatic Gravity Gradiometer (EGG) and measured gravity 

gradients from an unprecedented low altitude of about 260 km in space. Post flight analysis showed that a noise 

density level of 0.01 E/√Hz was achieved within the measurement band (MB) from 5×10-3 to 0.1 Hz [8]. The 



satellite was also equipped with three advanced star trackers and two dual-frequency GPS receivers. These 

conditions make GOCE an ideal testbed for the research of gravity gradient based space navigation. X. Sun [18] 

introduced an idea of using full-tensor gravity gradients combined with high-precision attitudes to determine a 

spacecraft’s position. A least squares searching algorithm was developed and a mean positioning error of 620 m was 

achieved with real GOCE data. An eigendecomposition method using the J2 gravity model was presented in P. Chen 

[19] and position errors ranging from 421 to 2690 m were achieved. 

In the previous studies mentioned above, the gravity gradient observation errors are modeled as low-level white 

noise only. In fact, the gradiometer measurements contain significant biases and low-frequency noises. The present 

work deals with the biases and the drifts in the actual measurements. The noise characteristics are investigated and a 

simplified error model is formulated. An adaptive hybrid least squares batch filter is developed to estimate the 

orbital states and the biases. The filter combines the advantages of the linear approximation of the orbital equation 

and the unscented transformation of gravity gradient observations to achieve fast and accurate orbit determination. 

The measurement time span at each iteration step is adaptively adjusted to restrict the linearization errors and thus to 

guarantee convergence. An augmented state iterated least squares filter is also implemented to further estimate the 

drifts. The algorithms are tested with real GOCE data and the orbit determination results are compared with the 

Precise Science Orbit (PSO) solutions derived from the GPS system. 

This contribution is organized as follows. Section 2 briefly reviews the measurement principle of GOCE gravity 

gradiometry and investigates the sources of error in gravity gradient retrieval. Section 3 presents the orbital dynamic 

model, the gravity gradient observation model, and the measurement error model for orbit determination. Section 4 

summarizes the iterated least squares filter and the unscented least squares filter for nonlinear estimation and gives 

the algorithm of the adaptive hybrid least squares filter. Section 5 presents the orbit determination results obtained 

with real GOCE data. Conclusions are drawn in Section 6. 

2. GOCE gravity gradiometry 

A differential accelerometry technique was employed by GOCE to measure gravity gradients. The gradiometer 

was placed close to the spacecraft's center of mass (CoM) and consisted of three orthogonal pairs of capacitive 

accelerometers. Each accelerometer had two ultra-sensitive axes and one less-sensitive axis. The three pairs were 

mounted at the ends of three baselines having an approximate length of 0.5 m. The gradiometer reference frame 



(GRF) is materialized by the three orthogonal baselines with the X axis in the flight direction, the Y axis normal to 

the orbit plane, and the Z axis radially downwards, as depicted in Fig. 1. Inside each accelerometer, a platinum-

rhodium proof mass was electrostatically levitated at the center of a cage, leading to control voltages that were 

representative of the sum of the non-gravitational accelerations at the location of the proof mass [20]. The gravity 

gradients were contained in the accelerometer differences. 
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Fig. 1. The arrangement of the six accelerometers inside GOCE gradiometer and the orientation of the GRF reference frame. The 

solid arrows at each accelerometer show the ultra-sensitive axes and the dashed arrows show the less sensitive axes. 

2.1. Measurement principle 

To describe the measurement process, an ideal gradiometer is considered by assuming that: 

(i). The centers of the three baselines are coincident; 

(ii). The baselines are mutually perpendicular and perfectly aligned with the three axes of GRF; 

(iii). The accelerometers occupy their nominal positions and their axes are also aligned with GRF; 

(iv). The accelerometers can sense the local non-gravitational accelerations exactly, which means that there are 

no errors in the conversion of control voltages. 

Under these ideal conditions, the output of each accelerometer has the following expression 
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where i is the identifier of the accelerometer, ir  is the vector from CoM to the position of the ith accelerometer, 

2
iΩ r  is the centrifugal acceleration induced by the spacecraft’s angular rotation, i

Ωr  is the Euler acceleration, V is 

the gravity gradient tensor (GGT), and ad  is the non-gravitational acceleration at CoM. The accelerations due to the 

higher order (  3rd) derivatives of the gravitational potential, relative motion of the cage (e.g., Coriolis effects), self-

gravity, and the coupling with the external magnetic field are not considered. The matrices Ω, ,Ω  and 2Ω are 

defined as 
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where ,x ,y  and z  are the angular velocities, and ,x ,y  and z  are the angular accelerations. All the vectors 

and matrices are expressed in the GRF frame. 

The non-gravitational acceleration ad  is first isolated by forming the common-mode (CM) and the differential-

mode (DM) accelerations 
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where  14, 25, 36ij  represents the index of the accelerometer pairs, c is the vector from CoM to the center of the 

baselines, and ijL  is the vector from the jth to the ith accelerometer. 

Then combine the three DM accelerations to form a matrix equation 
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where ,xL ,yL  and zL  are the lengths of the three baselines. The right-hand side of Eq. (7) contains the GGT, the 

centrifugal accelerations, and the Euler accelerations. Based on the symmetry of 2Ω  and V and the skew-symmetry 

of ,Ω  the Euler accelerations can be isolated 
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The gravity gradient tensor is finally retrieved as follows 
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2.2. Error sources 

The ideal GGT retrieval procedure is subject to several sources of error. For the most part, the errors are 

attributed to the accelerometers. First, accelerations are measured by voltage signals. The transformation from 

voltage to acceleration requires the accurate knowledge of the electrostatic gains and the read-out gain. Uncertainties 

of these gains result in scale factors in the outputs [20]. Second, non-linearity exists in the electronic components 

and the transfer functions of the control loop, leading to an additional quadratic term, which is proportional to the 

square of the input acceleration. Last but not least, the accelerometer outputs contain unknown biases and noises due 

to the intrinsic imperfection. In addition to the accelerometer-related errors, the gravity gradiometer also has 

geocentric imperfections. For example, the misalignments of the six accelerometers induce small rotation angles 

with respect to the nominal GRF frame and non-perfect orthogonality between the accelerometer axes causes cross 

coupling errors. 

Taking all of the factors above into consideration, the actual output of each accelerometer should be written as 
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where iK  and iK2  are the scale factor and the quadratic factor, idR  is the rotation matrix due to misalignments, 

idS  is the accelerometer inter-axis coupling matrix, and ib  and in  are the accelerometer bias and noise. 

The quadratic factor of each accelerometer has been identified and calibrated in flight and the calibration error is 

negligible [21]. Let iM  denote the sum of ,iK ,idR  and .idS  According to Eq. (6), the actual obtained CM and 

DM accelerations are 
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where ,c ija  and ,d ija  are true CM and DM accelerations, ijM  is a scaling calibration matrix related to iM  and ,jM  

and , , ,, , ,c ij d ij c ijb b n  and ,d ijn  are CM and DM biases and noises, respectively. To obtain ,c ija  and ,d ija  from ,c ij
a  and 

, ,d ij
a  the inverse of the calibration matrix (ICM) is needed. The ICMs of the three baselines were directly 

determined from an in-flight satellite shaking procedure, which was achieved by the ion thruster and the gradiometer 

calibration device. Details of the calibration are found in [21]. Let 1ˆ
ij
M  and 1

ij
M  denote the calibration value and 

the calibration error of 1
ij
M , respectively. The CM and DM accelerations after ICM calibration will be 
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where ,
ˆ

c ija  and ,
ˆ

d ija  are called the calibrated CM and DM accelerations. The dA  matrix can now be formed using 

,
ˆ

c ija  and ,
ˆ

d ija  according to Eq. (8) and the error consists of a 1ˆ
ij
M  related term and linear combination of the 

accelerometer biases and noises. 

In the final step of GGT retrieval, the accurate knowledge of centrifugal accelerations is required, as seen in Eq. 

(12). The angular velocities have been derived from an optimized combination of angular accelerations from the 



gradiometer, as seen in Eq. (10), and attitude quaternions from the star trackers [22,23]. The angular velocity 

estimation error will definitely affect the accuracy of the GGT measurements. 

Based on the analysis of error sources, the GGT observation error can be decomposed as 

 ICM a a     V N B N N   (18) 
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Where ICMN  is the noise due to the ICM calibration error, aB  and aN  are the bias and noise due to biases and 

noises in the six accelerometers, respectively, N  is the noise due to angular velocity estimation error, 1
,

ˆ
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M  and 
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,

ˆ
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submatrices of 1ˆ
ij
M , and x , ,y  and z  are the angular velocity errors. The characteristics of these errors 

will be discussed in the next section. 



3. Orbit determination models 

This section describes the orbital dynamic model and the gravity gradient observation model used for GOCE 

orbit determination. In addition, the characteristics of the sources of error are analyzed and a simplified 

measurement error model is formulated.  

3.1. Orbital dynamic model 

The spacecraft’s orbital motion is described by the following first-order differential equation 
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where r and v are the inertial position and velocity vectors and a (t, r, v) is the inertial acceleration. In this study, the 

International Celestial Reference Frame (ICRF) is used as the inertial coordinate system. The definition of ICRF 

refers to Petit et al. [24]. Given initial values and accurate force models, position and velocity over time can be 

obtained by numerical integration of Eq. (23).  

The forces on LEO satellites usually include the Earth's gravitational attraction, third-body attractions from the 

Sun and the Moon, atmospheric drag, solar radiation pressure and thruster forces. In the case of GOCE, the non-

gravitational forces in the flight direction were continuously compensated by electric propulsion. The remaining 

perturbation acceleration is on the order of 10-7 m/s2. In this study, a 70×70 subset of the Earth Gravitational Model 

2008 (EGM2008) [25] is used to compute the acceleration due to the Earth's static gravity field. The tidal effects 

such as solid Earth tides, polar tides and ocean tides are not considered. The gravitational attractions of the Sun and 

Moon are modeled by using analytical series expansions of luni-solar coordinates [26]. 

The linearization of orbital equation requires the state transmission matrix, which refers to the partial derivative 

of the orbital state (position and velocity) at arbitrary time t with respect to the initial state. The state transmission 

matrix is obtained by integration of the following differential equation 
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where  0,t tΦ  denotes the state transmission matrix from 0t  to t. The initial value of the equation above is 

  0 0 6 6,t t Φ I   (25) 



The accuracy requirement for  0,t tΦ  is not as stringent as that for the trajectory integration. A simplification of the 

force model is used, where only the contribution of the Earth’s gravitation up to degree 2 and order 0 is considered. 

3.2. Gravity gradient observation model 

The gravity gradients are second-order derivatives of the gravitational potential with respect to position and form 

a 3×3 matrix. The gravity gradients measured by GOCE are expressed in the GRF frame, whereas most of the Earth 

gravity models utilize the Earth-Centered Earth-Fixed (ECEF) frame. The GGT in GRF and the GGT in ECEF have 

the following relationship 

  T  V C Γ C   (26) 

with 
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where V is the GGT in GRF, Γ is the GGT in ECEF, and C is the rotation matrix from ECEF to GRF. The 

coordinate transformation is implemented via the ECI frame. The star trackers provide accurate attitude information 

which can be used to compute the rotation matrix from ECI to GRF. The IERS models provide high-precision 

transformation from ECI and ECEF [24]. 

The GGT is a symmetric matrix and contains 9 elements. As mentioned in Section 2, the symmetric property of 

GGT is used to isolate Euler accelerations. Thus the GOCE gradiometer outputs only 6 components at each epoch. 

The measurement equation is usually given in a vector form. Rewrite V and Γ into column vectors 
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where the array symbol denotes the vector form of GGT. The relationship between

V and


Γ is 
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with 
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where the coefficient matrix Π comprises elements from the rotation matrix C and ijc  represents the ith row and jth 

column element in C. 

The gravitational potential is expressed as a series of spherical harmonics 
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with 
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where GM is the Earth’s geocentric gravitational constant, R is the reference equatorial radius of the Earth, n and m 

are degree and order, nmC  and nmS  are normalized spherical harmonic coefficients, nmV  and  nmW  are the associated 

normalized terms, nmP  is the normalized Legendre function, and r, ϕ, and λ are the geocentric distance, latitude, and 

longitude of position in ECEF. GM, R, ,nmC  and nmS  are constants and their values are provided in Earth gravity 

model files. The recursive computation of  nmV  and  nmW   are given in Montenbruck et al. [26]. 

The expression of the GGT in ECEF can be obtained by evaluating the second-order derivatives of U 
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where  , , , , ,ij xx yy zz xy xz yz  represents the index of the gravity gradient components. In this study, a 120×120 

subset of the EGM2008 gravity model is used to compute gravity gradients. The contributions of tidal effects are on 

the order of 0.1 mE and are thus not considered [27]. 

The partial derivatives of the GGT in ECEF with respect to position are calculated by 
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where  , ,k x y z  represents the index of the position components. The 18 partial derivatives form a 6×3 matrix 

called the gravity gradient Jacobian matrix. The accuracy requirement for the computation of ,ij kT  is also not 

stringent and only the Earth’s gravitation up to degree 2 and order 0 is involved. 

3.3. Measurement error model 

As stated in Section 2, the GOCE gravity gradient measurements contain complicated errors. An appropriate 

error model is essential to the formulation of the measurement equation. The following is an analysis of the 

characteristics of the errors in Eq. (18), from perspectives of frequency spectrum and noise level.  

First consider the ICM calibration-induced noise .ICMN  According to the error budget analysis given in Cesare 

et al. [20], the submatrix 1
,

ˆ
c ij
M  is close enough to zero and the elements in 1

,
ˆ

d ij
M  have a maximum value of about 

3×10-3. GOCE data show that the differential-mode accelerations ,d ija  are nearly constant and are disturbed by small 

periodical variations. The variations are concentrated near the orbit revolution frequency and their magnitudes are 

between 10 and 100 E. Therefore, the noise ICMN  can be modeled as a constant bias plus small periodical variations 

(between 0.03 and 0.3 E). 

The bias aB  and the noise aN  are determined by the characteristic of the accelerometers. According to Rummel 

et al. [8], the accelerometers achieve high sensitivity only in frequencies between 5×10-3 and 0.1 Hz. Inside the 

measurement band, the accelerometers show white noise behavior. Along the ultra-sensitive axes, the noise density 

level is about 10-12 m/s2/√Hz, whereas along the less sensitive axes, the noise density level is about 3×10-10 m/s2/√Hz 

[20]. Below the measurement band, the noise is proportional to the inverse of the frequency, and shows a typical 

drift behavior in the time domain. As seen in Eqs. (20) and (21), aB  and aN  are linear functions of the 

accelerometer biases and noises. Therefore, the sum of the two errors can be modeled as a drifting bias plus white 

noise.  

The characteristic of the noise N  is determined by the angular velocities and their estimation errors. Similar to 

the differential-mode accelerations, the angular velocities of GOCE are also nearly constant and contain periodical 

variations having a magnitude of about 10-4 rad/s. Due to the spectral combination, the angular velocity errors show 



a f behavior in lower frequencies and show a 1/f 2 behavior in higher frequencies. The maximum value of the angular 

velocity errors is about 10-6 rad/s [20]. Therefore, according to Eq. (22), the periodical variations of N  are on the 

order of 0.1 E (10-10 s-2). 

By summing up all the errors above, the noise characteristic of the total observation error ∆V can be obtained. 

Inside the measurement band, the noise shows white noise behavior. For the , ,xx yy zzV V V  and xzV  components, the 

noise density levels are on the order of 10 mE√Hz, whereas for the xyV  and yzV  components, the noise density levels 

are much higher, 350 mE√Hz and 500 mE√Hz, respectively. Below the measurement band, the noise increases 

inversely with frequency and is superimposed by cyclic distortions (due to the variations of ICMN  and N ). Fig. 2 

plots the measurement error of the yyV  component as an example. 

0 3 6 9 12
-755.35

-755.30

-755.25

-755.20

-755.15

-755.10

-755.05

-755.00

Time (hour)

E
rr

or
 (

E
)

 

Fig. 2.  Measurement error of the GOCE yyV component. 

Therefore, the observation error of each gravity gradient component in this study is modeled as a drifting bias 

plus small periodical variations as well as low-level white noise 

    0ij ij ij ij ijV b d nt t t v      (36) 

where ij denotes the index of the gravity gradient component, ijb  is the bias at the reference epoch 0t , ijd  is the 

constant drift of the bias, ijn  is the low-frequency noise, and ijv  is the white noise. The bias ijb  represents the sum 

of aB  and the constant parts of ICMN  and .N  The drift ijd is due to the 1/f  behavior of the accelerometer noises. 

The noise ijn  represents the sum of periodical variations of ICMN  and N  and has a magnitude of about 0.1 E and 

ijv  represents the white noise part of aN . 



Let the vector z denote the gravity gradient measurements. The observation equation can be written as 

    0t t t         
  

z V V Π Γ b d n v   (37) 

where b is the bias vector, d is the constant drift vector, n is the low-frequency noise, and v is the white noise. 

4. Batch filter design 

The orbital motion is close to linear over a small range, whereas the gravity gradient observations are highly 

nonlinear functions. A hybrid least squares (HLS) batch filter based on linearization of the orbital equation and 

unscented transformation of the measurement equation is developed to deal with different degrees of nonlinearity in 

the system. In addition, to restrict orbit linearization errors, the filter adaptively adjusts the time span of the 

measurement data arc at each iteration step. This section starts with an overview of the iterated least squares and the 

unscented least squares, and a detailed description of the adaptive HLS filter design is given thereafter. 

4.1. The iterated least squares and the unscented least squares 

The principle of least squares (LS) batch filter is to determine a set of states that minimizes the sum of the 

squares of measurement residuals. For nonlinear measurement equations, the iterated least squares (ILS) filter 

iteratively improves state estimation using the first-order partial derivatives of the linearized system [28]. For highly 

nonlinear functions, sigma-point transformation is introduced in Park et al. [29], and a non-recursive unscented least 

squares (ULS) filter is developed. To illustrate the methods of ILS and ULS, the measurement equation is redefined 

in the following general mathematical form 
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where x is the state vector, z is the stacked vector of measurements, h is the stacked measurement function, and w is 

the additive zero-mean measurement noise vector.  

Assume the initial state estimate and its covariance as  

 ILS ILS
0 , 0

ˆ ˆˆ ˆ , , 0j j j  xxx x P P   (39) 

The ILS filter updates the estimate ILSˆ
jx  as follows 
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where 
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is the measurement Jacobian matrix and R is the covariance matrix of the noise w. The convergence criterion for the 

iteration is usually given by 
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where η is a predefined relative error tolerance. The covariance of the ILS final state estimate is 
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The ILS filter performs well for weakly nonlinear equations. For highly nonlinear systems, however, the linear 

approximation will induce significant errors and make it difficult to achieve convergence. The ULS filter is an 

extension of the sequential unscented Kalman filter and deals with the nonlinearity problem using a set of selected 

sigma points. The mean and the covariance of the measurements are calculated and are used to correct the state 

estimate. 

Assume the initial state estimate and its covariance as  

 ULS ULS
0 , 0

ˆ ˆˆ ˆ , , 0j j j  xxx x P P   (44) 

where  j is the iteration number. The sigma points are selected as follows 
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where L is the dimension of x,  2 L L     is a scaling parameter, α is a constant and is usually set to a small 

positive value, κ is a secondary scaling parameter which is usually set to 0 or 3-L, and   ULS
,

ˆ
j

i
L  xxP  is the ith 

column of the matrix square root. 

Each sigma point is propagated using the nonlinear measurement function 
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The mean and the covariance of the measurement vector are calculated as follows 
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and the cross-correlation matrix of x and z is 
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where  m
iW and  c

iW are the weighting factors and are defined as follows 
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where β is the third scaling parameter and is used to incorporate prior knowledge of the distribution of x. 

The ULS filter updates the estimate ULSˆ
jx  as follows 

  ULS ULS
1
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with 

 1
, ,
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where jK is the optimal filter gain. 

The convergence criterion can be set to be the same as that of the ILS. The covariance of the final estimate is 

given by 

 ULS
0 1 ,1 1
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The covariance matrices ILSˆ
xxP  and ULSˆ

xxP  are consistent with the state estimation if and only if the measurement noise 

w is white and Gaussian. Otherwise, a fudge factor has to be added to guarantee the filter consistency 

   1ILS ILS 1ˆ T
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  ULS ULS
0 1 ,1 1

ˆ ˆ ˆ T xx zzP P K P K   (55) 

4.2. Adaptive hybrid least squares batch filter design 

The batch orbit determination problem is to estimate unknown orbital elements from a set of measurements. The 

measurement function h actually consists of not only the observation equation but also the orbital equation. The 

adaptive HLS filter exploits the different degrees of nonlinearity in the two equations and autonomously adjusts the 

measurement time span to bound orbit linearization errors. In this study, the adaptive HLS filter is first implemented 

to estimate the initial position and velocity as well as the initial biases. An additional augmented state ILS filter is 

then carried out to obtain the bias drifts and to correct the adaptive HLS filter’s results. The low-frequency noise n is 

not estimated and is included with v into the measurement noise vector w as follows 
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where N is the total measurement epochs. The standard deviations of the six components of the noise (n + v) are set 

to be 100 mE, 100 mE, 100 mE, 350 mE, 100 mE, and 500 mE, respectively. 

The algorithm of the adaptive HLS for GOCE gravity gradient based orbit determination is proposed as follows. 

The state vector HLSx̂  comprises the 6-dimensional orbital state vector y (the initial position 0r  and the initial 

velocity 0v ) and the 6-dimensional bias vector b. The initial state and its covariance are assumed as 

 HLS HLS
0 , 0

ˆ ˆˆ ˆ , , 0j j j  xxx x P P   (57) 

where j is the iteration number. The orbital state y and the bias vector b and their covariances can be extracted as 

follows 
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where the indices refer to the elements of the vector and the matrix. The sigma points of the orbital state are selected 

by 
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In the case of GOCE orbit determination, 6.L   

The sigma points are propagated using the orbital integrator and the state transmission matrices to obtain the 

position at each measurement epoch  0, , 1k jt k N   
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where  , , 0, , 2k i j i L ψ  are the sigma points of position at epoch kt  and the nonlinear function f represents the 

orbital integrator. In this study, a variable-order Adams-Bashforth-Moulton integrator is used. The calculation of 

 , , 1, , 2k i j i L ψ  makes use of linearization of the orbital equation. To restrict the linearization errors, the time 

span jN is determined from the position uncertainties. The covariance of position at epoch kt is 
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The jN is determined by 
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where ε is the tolerance of the position uncertainty and the operator 
p

  is defined as 
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The sigma points of positions are further propagated to obtain the stacked gravity gradient measurements as 

follows 
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The mean and covariance of the gravity gradient measurements are 
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where bH is the partial derivative matrix of the stacked vector of measurements z with respect to the bias vector b 
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and R is the covariance of the measurement noise vector w. 

The cross-correlation matrix of y and z is 
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and the cross-correlation matrix of b and z is 
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Thus the cross-correlation matrix of x and z is 
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The HLS filter updates the estimate HLSˆ
jx  and its covariance HLS

,
ˆ

jxxP  as follows 

  HLS HLS
1ˆ ˆj j j j   x x K z z   (72) 
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with 

 1
, ,

ˆ ˆ
j j j

 xz zzK P P   (74) 

The iteration is terminated by the same convergence condition of the ILS filter in Eq. (42).  The flowchart of the 

adaptive HLS filter is summarized in Fig. 3. 
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Fig. 3.  Flowchart of the adaptive hybrid least squares. 

 

After the adaptive HLS filter, an augmented state ILS filter is used to estimate the drifts and to improve the orbit 

determination results. The augmented state vector is defined as 
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  (75) 

And the measurement Jacobian matrix is constructed by 



 a    y b dH H H H   (76) 

The matrix yH  is calculated using the state transmission matrix and the gravity gradient Jacobian matrix. The 

matrix bH  is defined in Eq. (68) and dH  is defined as follows 
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The state update and the final covariance are the same as Eq. (40) and Eq.(54), respectively. 

5. Results 

The orbit determination algorithm has been tested with real GOCE data. The Level 1b product EGG_NOM_1b 

which contains the raw GGT measurements (EGG_GGT dataset) and the gradiometer inertial attitude quaternions 

(EGG_IAQ dataset) are used as inputs. The precise orbit solutions provided in the Level 2 product SST_PSO_2 

(reduced-dynamic orbits from GPS) are used to evaluate the accuracy of the GGT derived orbits. The test covers 12-

hour arc data starting 8 September 2013, 00:00:00.0 (GPS Time). The data are reported to have good quality and no 

special events (data anomaly or calibration) occurred. The data are resampled at intervals of 30s. Thus the gravity 

gradients accumulate to a total number of 8640 measurements. 

The initial position and velocity as well as the initial biases are estimated using the ILS filter, the ULS filter, and 

the adaptive HLS filter, respectively. The initial errors added in position and velocity are set to [104 m, 104 m, 104 m, 

10 m/s, 10 m/s, 10 m/s] and the diagonal elements of the initial covariance of position and velocity are set to [(104 

m)2, (104 m)2, (104 m)2, (10 m/s)2, (10 m/s)2, (10 m/s)2]. The initial errors added in the 6 biases are set to [10 E, 10 E, 

10 E, 10 E, 10 E, 10 E] and the diagonal elements of the initial covariance of the biases are set to [(10 E)2, (10 E)2, 

(10 E)2, (10 E)2, (10 E)2, (10 E)2]. The bias drifts are all assumed to be zero. The relative error tolerance for the 

convergence criterion is set to 10-5 and the maximum iteration number is set to 10. The fudge factors of the 

covariance computation are all set to 10. For the ULS filter and the adaptive HLS filter, the three scaling parameters 

of the unscented transformation, i.e., α, β, and κ are set to 1, 2, and 0, respectively. The tolerance of the position 

uncertainty in the adaptive HLS filter is set to 5×104 m. 



Figs. 4(a) and 4(b) show the histories of iterations and the variations of the position and velocity errors. The ULS 

filter and the adaptive HLS filter are successfully converged, whereas the ILS filter fails to converge due to the large 

initial errors. The adaptive HLS filter shows better convergence performance and better accuracy than the ULS filter 

since the system’s nonlinearity are kept much lower by the adaptive adjustment of measurement time span and the 

iterative updating of the covariance matrix. Another advantage of the adaptive HLS filter is the short computation 

time. For each iteration loop, the execution time of the ULS filter is 8107 s and the execution time of the adaptive 

HLS filter is 2382 s. The reason is that the ULS filter propagates 13 (= 2L + 1) sigma points of orbits at each time, 

whereas the adaptive HLS filter propagates one orbit only. 
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Fig. 4. Histories of iterations and the variations of the position and velocity errors of the ILS, the ULS, and the adaptive HLS. 

 



The estimated initial position and velocity from the adaptive HLS filter have been used to generate the orbit 

ephemeris which is compared with the GPS-derived orbit trajectory. The position and velocity errors (radial, along-

track, and cross-track components) varying with time are shown in Figs. 5(a) and 5(b). The root mean square (RMS) 

values of the position errors are 10.8 m, 1208.3 m, and 37.9 m, respectively. The RMS values of the velocity errors 

are 1.2 m/s, 0.013 m/s and 0.044 m/s, respectively. The large along-track position error (negative) and the large 

radial velocity error (positive) indicate that the orbit estimated from the adaptive HLS filter is a trailing orbit of the 

true orbit. This phenomenon is due to the estimation errors of the biases. 
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Fig. 5. Evolution of the radial, along-track, and cross-track position and velocity errors of the adaptive HLS filter. 

 



Table 1 lists the reference values of the biases and the drifts, which are determined from the differences between 

the actual measurements and the gravity gradients computed using the GPS-derived orbits and a 300×300 subset of 

the EGM2008 gravity model. The estimation errors of the 6 biases are -3.7 mE, 64.3 mE, 0.4 mE, -542 mE, -641.9 

mE, and -314.0 mE, respectively. The poor observability of the xzb  component results in the biases in the orbit 

estimation. The post-fit measurement residuals of the adaptive HLS filter are also investigated and are illustrated in 

Fig. 6. The obvious drifts in the residuals (yy, xy, and yz components) are due to the underfitting of the filter. 

 

Table 1. Reference values of the initial biases and the drifts 

Component Initial bias, E Drift, mE/h 

xx 532.71 -1.10 

yy -755.26 11.53 

zz -217.51 0.11 

xy -5909.76 -89.75 

xz -26.60 0.28 

yz -3171.07 47.30 
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Fig. 6. Post-fit measurement residuals of the adaptive HLS filter. 

 

The bias drifts are further estimated using the augmented state ILS filter. The initial values of the orbital states 

and the biases are set to the estimates obtained from the adaptive HLS filter. The initial covariance of these 

parameters is set to be the same as that for the adaptive HLS filter. The initial values of the drifts are all set to be 

zero. The diagonal elements of the initial covariance of the drifts are set to [(1 mE/h)2, (10 mE/h)2, (1 mE/h)2, (100 

mE/h)2, (1 mE/h)2, (100 mE/h)2]. The augmented state ILS filter successfully estimates the drifts and improves the 



orbit determination accuracy. Figs 7(a) and 7(b) plot the position and velocity errors varying with time after the drift 

estimation. The RMS values of the position errors are reduced to 10.4 m, 677.0 m, and 22.8 m. The RMS values of 

the velocity errors are reduced to 0.80 m/s, 0.012 m/s and 0.026 m/s. The estimation errors of the 6 biases are 

reduced to -1.32 mE, 7.65 mE, -4.63 mE, 22.40 mE, -420.31 mE, and -44.59 mE, respectively. The estimation errors 

of the drifts are 0.59 mE/h, -2.07 mE/h, 0.84 mE/h, -4.77 mE/h, 0.21 mE/h, and 2.76 mE/h, respectively. The post-fit 

measurement residuals after drift estimation are shown in Fig. 8. It is seen that there are no drifts in the residuals. 

For the ultra-sensitive components (xx, yy, zz, and xz) the residuals are dominated by the low-frequency noises. For 

the less-sensitive components (xy and yz) white noises dominate the residuals. 
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Fig. 7. Evolution of the radial, along-track, and cross-track position and velocity errors after the drift estimation. 
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Fig. 8. Post-fit measurement residuals after drift estimation. 

6. Conclusions 

In this contribution, an orbit determination method using gravity gradient measurements has been described and 

the GOCE satellite has been used as a case study. Within the strategy, satellite orbits are estimated from a combined 

usage of the spaceborne gravity gradiometer and star trackers. Actually, the function of the star trackers is two-fold: 

to provide estimations of angular rates and angular accelerations for gravity gradients retrieval and to provide 

precise attitude quaternions in order to isolate the orientation contributions. 

The orbit determination is implemented by an adaptive hybrid least squares batch filter. The performance of the 

algorithm is evaluated using real GOCE data, and a position accuracy of tens of meters has been achieved for the 

radial and cross-track position components. The large along-track position error is due to the poor observation of 

one of the measurement biases. The low-frequency noises are remained in the measurement residuals and need to be 

dealt with in the future study to further improve the accuracy. Nevertheless, the present work demonstrates the 

feasibility of orbit determination from gravity gradients containing drifting biases and provides an alternative 

autonomous navigation method for satellites in near-Earth orbits. 
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