
HAL Id: hal-01293554
https://enac.hal.science/hal-01293554

Submitted on 24 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ant Colony Optimization for Air Traffic Conflict
Resolution

Nicolas Durand, Jean-Marc Alliot

To cite this version:
Nicolas Durand, Jean-Marc Alliot. Ant Colony Optimization for Air Traffic Conflict Resolution .
ATM Seminar 2009, 8th USA/Europe Air Traffic Management Research and Developpment Seminar,
Jun 2009, Napa, California, United States. �hal-01293554�

https://enac.hal.science/hal-01293554
https://hal.archives-ouvertes.fr

Eighth USA/Europe Air Traffic Management Research and Development Seminar (ATM2009)

Ant Colony Optimization
for Air Traffic Conflict Resolution

Nicolas Durand
DTI R&D/POM

DSNA
Toulouse, France

durand@aviation-civile.gouv.fr

Jean-Marc Alliot
DTI R&D

DSNA
Toulouse,France

alliot@aviation-civile.gouv.fr

Abstract— The n aircraft conflict resolution problem is highly
combinatorial and can be optimally solved using classical mathe-
matical optimisation techniques only for small problems involving
less than 5 aircraft. This article applies an Ant Colony Optimiza-
tion (ACO) algorithm in order to solve large problems involving
up to 30 aircraft. In order to limit the number of pheromone
trails to update, a n aircraft conflict resolution problem is not
modeled by a single ant but by a bunch of n ants choosing their
trajectories independantly. A relaxation process is also used in
order to be able to handle difficult conflicts for which partial
solutions can help finding a path toward the optimal solution.
Two different sizes of a toy problem are solved and presented.

Keywords:

Ant Colony Optimization, Metaheuristic, Air Traffic Con-
flict Resolution

I. INTRODUCTION

Aicrcaft conflict resolution is highly combinatorial. It cannot
be solved using classical optimization techniques and realistic
models when the number of aircraft involved exceeds 4 or
5. The most efficient classical algorithm was developped
by Palatino, Feron and Bicchi [PFB02] using mixed integer
programming. They were able to handle up to 15 aircraft on
a toy problem, but the hypotheses on trajectories were totally
unrealistic because they assumed constant speeds and climbing
rates as well as no uncertainty. With stochastic optimization
methods such as Evolutionnary Algorithms, Durand and Al-
liot [DA97] were able to handle conflicts involving up to 30
aircraft by taking advantage of the partial separability of the
problem [DA98].

Algorithms such as Branch and Bound methods using In-
terval analysis [M9́8], or semi-definite programming [FMF01],
[Dod99] succeeded in solving smaller toy problems, but each
time the hypothesis on the trajectories (constant speeds, con-
stant climbing rates, no uncertainty) remained unsuitable in
a real context. Other approaches using potential fields mod-
els [TPS98], [GT00], neural networks [DAN96], [DAM00],
and linear programming [M9́4] did not give better results
and also relied on unrealistic assumptions on trajectories
predictions.

In this article, a new approach using Ant Colony Optimiza-
tion (ACO) is introduced and adapted in order to solve large

 Conflict zone

 n aircraft

Fig. 1. n aircraft conflict problem

conflicts. ACO was introduced by Marco Dorigo [DMC96],
[DC99] in the 90’s. ACO takes inspiration from the behaviour
of some ant species. These ants deposit pheromones on the
ground in order to mark some favorable path that should be
followed by other members of the colony. ACO exploits a
similar mechanism for solving problems.

In part two of the article, the problem modeling is discussed.
In part three the algorithm is detailed. An improvement of the
algorithm in order to deal with difficult problems is detailed
in part four. In part five the algorithm is tested on a 5 and
30 aircraft conflict toy problem. Further work to be done is
discussed in the conclusion.

II. PROBLEM MODELING

The toy problem used in this article is described on figure 1.
n aircraft are located on a circle of radius R and flying to the
center of the circle with the same speed. Their destination
is the point of the circle located at the other end of the
circle diameter they are flying on. This problem is known
to be difficult to solve ([Dur96]) because each aircraft is in
conflict with every other aircraft. The objective is to find new
trajectories for every aircraft that solve every conflict and
minimise the extra distance flown.

As long as humans pilot aircraft, the maneuvers orders
given to the aircraft to solve conflicts must remain simple

W

U

V

T1

T0

Fig. 2. Maneuver modeling

to understand and execute. This means that in the modeling,
a single maneuver is given per aircraft. Time is discretized.
The maneuver starts at some time T1 and ends at some time
T2. In this article, conflicts are solved horizontally : a heading
change of 10, 20 or 30 degrees right or left is given to the
aircraft (see figure 2).

An aircraft trajectory can be modeled by a graph. Time is
discretized in nt timesteps. The graph of the aircraft positions
can be defined as follows: each node represents a time and an
aircraft position. The transition from position i to position i+1
is represented by an edge on which ants deposit pheromones.

An aircraft can be successively in three states. An aircraft is
in state U before any maneuver. When a maneuver is started
at T1, it is in state V . Finally, when the maneuver is ended at
T2, aircraft is in state W . If Ui, Vi and Wi are the number of
possible aircraft positions respectively in state U , V and W
at time i, then:

Ui+1 = Ui

Vi+1 = Vi + 6
Wi+1 = Vi

with U1 = 1, V1 = 6 and W1 = 0. It can be easily deduced
that Ui + Vi + Wi = 12 i− 5.

If we consider that one ant represents one conflict solution
of an ACO (see figure 3), then for na aircraft and nt timesteps,
the number of possible trails at time i is (12 i− 5)na , and the
total number of possible trails is (12 nt − 5)na . For na = 5
and nt = 10, more than 1010 trails can be obtained.

The modeling presented in this article considers a bunch
of na ants to solve a na conflicting aircraft problem. Ants
are treated independantly, except to calculate the quantity
of pheromones to deposit which depends on the number
of conflicts each ant of the bunch has been able to solve.
This modeling reduces the number of trails to update to
na (12 nt − 5). For na = 5 and nt = 10, the number of
trails to update is 575 which is far less excessive than 1010.
For na = 30 and nt = 20 the number of trails to update is
only 7050 instead of 1071 with the previous modeling.

III. ALGORITHM DESCRIPTION

The ACO algorithm, is a probabilistic technique for solving
computational problems which can be reduced to finding good
paths through graphs. The original idea was introduced by
[DMC96], [DC99]. First algorithms were tested on the Trav-
elling Salesman Problem. The algorithm mimics the behavior
of ants seeking a path between their colony and a source of

one ant for n aircraft

one ant per aircraft

Fig. 3. one ant per cluster or one ant per aircraft

Home
Food

Fig. 4. Best path choice to get some food

food (see figure 4). The idea has since been diversified to solve
a wider class of numerical problems.

Ants use the environment as a medium of communication.
They exchange information by depositing pheromones. The
information exchanged has a local scope. On the Travelling
Salesman Problem, the first ants choose their path randomly
and deposit all the more pheromones since the path cho-
sen is short. New ants then choose their path taking into
account the amount of pheromones they find locally. The
more pheromones they find on a given path, the likelier
they are to take it. A dissipation of the path by evaporation
of the pheromones prevents the algorithm from premature
convergence.

The ACO used in this article is a classical ACO as presented
by Dorigo. The only difference is that an ant is replaced by a
bunch of na ants representing the na aircraft. Each ant of a
bunch represents an aircraft. An ant can be in three different
states as shown on figure 5.

• Before any maneuver the ant ins in state U
• After T0, it changes its heading and moves to state V

END

V
W

W

U

V

Fig. 5. Graph modeling

END

U V W

Fig. 6. Possible transitions

• After T1, it changes its heading and moves to state W

At each node of the graph representing the possible tra-
jectories of an aircraft, the ant chooses the next node with a
probability depending on the quantity of pheromones left on
the edge connecting the two nodes. The trajectories are then
tested in order to check the existing conflicts. Ants represent-
ing conflicting aircraft do not deposit any pheromones whereas
ants representing conflict free aircraft deposit pheromones. The
quantity of pheromones deposited decreases with the delay due
to the aircraft maneuver.

The graph of possible paths is built in order to accept
a maximum delay for each aircraft. At the beginning of
the algorithm, initial pheromones are spread on the graph
in order to ensure an equal probability for each path to be
chosen. Figure 7 gives an example of the distribution of initial
pheromones that ensures equal chance to every path. In this
simple example, aircraft can turn left or right (30 degrees)
or go straight and only a few steps are represented. The
amount of pheromones on each edge is thus proportional to
the number of possible path remaining after passing through
this edge. Starting from the END, a state W is given a unit
of pheromones, and then pheromones are added at each node
in order to fill the whole graph.

If na is the number of aircraft, a bunch of p × na ants is
created in order to represent each aircraft at each generation.
Thus, the total number of ants is p × n2

a (in the example,
p = 10).

Each path is given a score. The smaller the score, the better
the path is. Because the straight line is the shortest path,
getting through state U does not change the score. State V
adds 2 points and state W adds 1 point. This scoring gives
an advantage to maneuvers starting late: when aircraft are in

END

1

1

1

1
1

1

1

1

1

1

1

2

2

1

1

126

1

1
1

1

2

2

3

3

12

1

Fig. 7. Initial amount of pheromones on the graph

state W the score increases whereas in state U it does not.
At each node an ant chooses the next edge with a probability

depending on the quantity of pheromones left on the next edge.
If the ant is in conflict with another ant, it does not deposit

any pheromones. However, when there is no conflict, it leaves
behind it a quantity of pheromones equal to

∆τ =
na − nout

na
· τ0

spath

where nout is the number of ”lost” ants, τ0 the original
quantity of pheromones, and spath the score of the path
followed by the ant. This amount takes into account the
number of ants that finally found a valid path.

After each generation, and before starting a new generation
an evaporation principle is applied on the existing trails. The
amount of pheromones is decreased by x% (in the examples
x = 10%) at the end of each generation.

The algorithm ends when the score obtained by each bunch
of ants representing each aircraft does not decrease for a while
or when the time allowed for the algorithm runs out.

IV. ALGORITHM IMPROVEMENT: CONSTRAINT RELAX-
ATION

In high density areas, conflicts might become difficult
to solve and it may happen that a random generation of
maneuvers cannot solve any conflict. This means that none of
the ants might be able to solve every conflict. In such a case,
there is no way to find even a bad solution for the problem.
We propose to relax the conflict resolution constraint during
the first generations in order to help the algorithm to find
solutions with a small number of conflicts remaining. When
solutions are found for a certain number of ants, the constraint
is reinforced in order to move toward solutions that solve more
conflicts and so on. For example, at the first generation of the
algorithm, we count the number nc of ants having less than
c conflicts for c = 0, 1, 2, 3...(na − 1). Let us define r as the
maximum value of na

nc
rounded to the higher integer. r gives

the number of allowed conflicts per ant at the first generation.
Each time the number of ants having less than r conflicts is
higher than na

r then r is reduced by one unit. This is repeated
as long as r > 0.

There are lots of ways to choose r and to make it decrease.
The choice made in this article is empirical and further work
needs to be done to check it on different conflict sizes and
configurations. Different strategies need to be compared.

V. RESULTS

In this section, a difficult toy problem is solved with the
ACO algorithm described in the previous section. Figure 8
shows the best solution obtained after 18, 46 and 105 iterations
of the algorithm for the 5 aircraft problem. On this figure, we
can see how the algorithm is able to deal with the combi-
natorial characteristics of the problem because the different
solutions found at different steps of the algorithm do not give
the same combinations of maneuvers to the aircraft. The scores
obtained decrease with the generations. At generation 18 the
score is 89, at generation 46 it is 78, and at generation 105 it
is 50.

Figure 9 shows the best solution obtained for a 30 aircraft
problem at different steps of the algorithm. The initial picture
shows the best solution at the first generation. Only 9 ants
having 4 conflict or less are represented. The conflict constraint
is reinforced because 30

9 ≤ 4. Only ants having less than 3
conflicts now survive. At generation 14, 13 ants are having
less than 3 conflicts. The conflict constraint is reinforced again
because 30

13 ≤ 3. At generation 15, despite the reinforcement
13 ants are still having less than 2 conflicts. This number
increases to 20 at generation 44 and the conflict constraint
is reinforced again because 30

20 ≤ 2. At the next generation,
the number of ants having less than 1 conflict is still 20 and
increases to 30 at generation 47. The no conflict constraint
is applied at this step because 30

1 ≤ 1. The first solution of
the problem is found at generation 48. The solution is then
improved and the ending criteria occurs at generation 65.

VI. CONCLUSION AND FURTHER WORK

The n aircraft conflict resolution problem is very complex
and and cannot be solved with classical optimization tools
when n is large. Furthermore, classical optimization algo-
rithms generally require trajectory modelings that do not match
with real constraints. This article presents a new approach
for solving the problem using Ant Colony Optimization.
Trajectories are modeled by a simple graph and the algorithm
is adapted in order to deal with a reasonable number of
trails: each aircraft is represented by a bunch of ants that
optimizes its trajectory. A relaxation principle is also added
in order to help the algorithm find solutions when the conflict
is complex to solve. When the algorithm starts to converge,
it becomes possible to reinforce the constraint to find a no
conflict solution.

The algorithm has not been tested on real examples yet
and a lot of values have been empirically chosen. However
the algorithm is able to deal with very large problems as it
was shown in an example involving 30 aircraft. The algorithm
must now be compared to other efficient methods such as
evolutionnary algorithms and tested on other examples with

 18 iterations - score=89

 46 iterations - score=78

 105 iterations - score=50

Fig. 8. Example of 5 aircraft conflict resolution

generation: 0 - 4 conflicts max - 9 aircraft

generation: 14 - 3 conflicts max - 13 aircraft

generation: 15 - 2 conflicts max - 13 aircraft

generation: 44 - 2 conflicts max - 20 aircraft

generation: 45 - 1 conflicts max - 20 aircraft

generation: 47 - 1 conflicts max - 30 aircraft

generation: 48 - 0 conflicts max - 30 aircraft

generation: 65 - 0 conflicts max - 30 aircraft

Fig. 9. Example of 30 aircraft conflict resolution

different numbers of aircraft and conflicts. It could then be
tested on real data with a fast time simulator.

REFERENCES

[DA97] N. Durand and J.M. Alliot. Optimal resolution of en route conflicts.
In Procceedings of the 1rst USA/Europe Seminar, 1997.

[DA98] Nicolas Durand and Jean-Marc Alliot. Genetic crossover operator
for partially separable functions. In Genetic Programming, 1998.

[DAM00] N. Durand, J.M. Alliot, and F. Medioni. Neural nets trained
by genetic algorithms for collision avoidance. Applied Artificial
Intelligence, 2000.

[DAN96] N. Durand, J.M. Alliot, and J. Noailles. Collision avoidance using
neural networks learned by genetic algorithms. In Ninth Interna-
tional Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, Fukuoka, 1996.

[DC99] Marco Dorigo and Gianni Di Caro. Ant colony optimization: a
new meta-heuristic. In Congress on Evolutionary Computation,
1999.

[DMC96] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant
system: Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics-Part B, 26:29–41,
1996.

[Dod99] Pierre Dodin. Résolution de conflits via la programmation semie-
définie. Master’s thesis, Paris VI, 1999.

[Dur96] Nicolas Durand. Optimisation de trajectoires pour la résolution
de conflits en route. PhD thesis, INPT, 1996.

[FMF01] E. Frazzoli, Z.H. Mao, and E. Feron. Aircraft conflict resolution
via semidefinite programming. AIAA Journal of Guidance, Control
and Dynamics, 2001.

[GT00] R. Gosh and C. Tomlin. Maneuver design for multiple aircraft
conflict resolution. In American Control Conference, 2000.

[M9́4] Frédéric Médioni. Algorithmes génétiques et programmation
linéaire appliqués a la résolution de conflits aériens. Master’s
thesis, Ecole Nationale de l’Aviation Civile (ENAC), 1994.

[M9́8] Frédéric Médioni. Méthodes d’optimisation pour l’évitement
aérien : systèmes centralisés, systémes embarqués. PhD thesis,
Ecole Polytechnique, 1998.

[PFB02] L. Pallottino, E. Feron, and A. Bicchi. Conflict resolution problems
for air traffic management systems solved with mixed integer
programming. IEEE Transactions on Intelligent Transportation
Systems, 3(1):3–11, 2002.

[TPS98] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air
traffic management: a case study in multi-agent hybrid systems.
In IEEE Transactions on Automatic Control, 1998.

BIOGRAPHY

Nicolas Durand graduated from the Ecole Polytechnique
de Paris in 1990 and from the Ecole Nationale de l’Aviation
Civile (ENAC) in 1992. He has been a design engineer at the
Centre d’Etudes de la Navigation Aérienne (CENA) from 1992
to 2007 and holds a Ph.D. in computer Science (1996). He is
currently in charge of the air traffic Planning, Optimization
and Modeling team of the R&D department of DSNA.

Jean-Marc Alliot graduated from the Ecole Polytechnique
de Paris in 1986 and from the Ecole Nationale de l’Aviation
Civile (ENAC) in 1988. He also holds a Ph.D. in Computer
Science (1992). He has been in charge of the global optimiza-
tion laboratory (LOG) of CENA and ENAC in Toulouse from
1996 to 2007. He is currently deputy director of the R&D
department of DSNA.

	Introduction
	Problem modeling
	Algorithm description
	Algorithm improvement: constraint relaxation
	Results
	Conclusion and further work
	References

