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Abstract—Passengers’ experience is becoming a key metric to 
evaluate the air transportation system’s performance. Efficient 
and robust tools to handle airport operations are needed along 
with a better understanding of passengers’ interests and 
concerns. This paper is concerned with airport gate scheduling 
for improved passenger experience while ensuring robust air-side 
operations. Three metrics accounting for passengers, aircraft, 
and operations are presented. Trade-offs between these metrics 
are analyzed, and a balancing objective function is proposed. 
Numerical simulations show that the balanced objective can 
improve the efficiency of traffic flow in passenger terminals and 
on ramps, as well as the robustness of gate operations.  

Keywords-airport gate assignment; ramp operation; passengers’ 
experience; optimization 

I.  INTRODUCTION 
Flight delays do not accurately reflect the delays imposed 

upon passengers’ full itineraries. The growing interest in 
measuring the Air Transportation System’s performance calls 
for new metrics, reflecting passengers’ experience [1]. Because 
of the hub-and-spoke structure of the network of U.S. airports, 
major airports, such as Hartsfield-Jackson Atlanta International 
Airport, have a significant impact on the performance of the 
overall system. In particular, connecting passengers in such 
hubs may represent the largest share of traffic and are most 
vulnerable to delays that can severely perturb their journeys. In 
a worst-case scenario, a single delay can "snowball" through 
the entire network [2]. In 2011, according to Airlines for 
America, 103 million system delay minutes have cost $7.7 
billion to scheduled U.S. passenger airlines [3].  

Airport Collaborative Decision Making (A-CDM) aims at 
reducing delays and improving system predictability, while 
optimizing the utilization of resources and reducing 
environmental impact. The mechanisms involve the provision 
of accurate data (estimates of arrival and departure times) to 
stakeholders, the sharing of information, the airline’s decision 
to cancel or delay flights, and the rescheduling of flights with 
priority constraints. This effort is currently one of the five 
priority measures in the Flight Efficiency Plan published by 
IATA, CANSO and Eurocontrol [4]. In the U.S., the CDM-
based ground delay program planning and control appeared in 

1998; the stakeholders are the U.S. government, airlines, the 
Federal Aviation Administration including Air Traffic Control 
and Air Traffic Flow Management, and airports. Several 
improvements have been reported resulting from the CDM 
initiative, such as the Collaborative Departure Queue 
Management strategy at Memphis International Airport (MEM) 
[5], the Surface Congestion Management scheme at New 
York’s John F. Kennedy International Airport (JFK) [6], and 
the pushback rate control demonstrated at Boston Logan 
International Airport (BOS) [7]. In Europe, CDM has been 
implemented at Munich Airport [8], Brussels Airport, Frankfurt 
Airport, London Heathrow Airport, and Paris Charles De 
Gaulle Airport [9]. However, there is still a growing need for 
more efficient and more robust tools to improve operations at 
congested airports. In particular, we believe that this effort 
should be combined with a necessary shift towards a better 
understanding of passengers’ interests and concerns. 

Airport operations range from the landing to the take-off of 
an aircraft as shown in Fig. 1. When an aircraft lands, it taxies 
into a ramp area and parks at a gate. While the aircraft is 
docking at the gate, passengers disembark and board the plane. 
When the aircraft is ready to depart, it pushes back and taxies 
out to a runway. Then, the aircraft takes off. Among these 
operations, this study focuses on the optimization of ramp 
operations and the accommodation of passengers.  

Most air travelers have experienced walking long distances 
in a passenger terminal to catch a flight or waiting on board 
their aircraft while it is waiting for a gate or is delayed by the 
movement of another aircraft. Many such situations can be 
resolved or reduced by proper gate scheduling or assignment.  

The first metric of this study is the transit time of 
passengers in a passenger terminal. The transit time of 
passengers consists of the time from the security checkpoint to 
a gate, from a gate to baggage claim, and from one gate to 
another gate. This is the most common objective of traditional 
studies focusing on gate assignment [10, 11]. 
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Figure 1.  A synopsis of airport operations. The area of interest of this paper 
is optimal gate assignment, accounting for aircraft and passenger performance 

metrics. 

The second metric of this study is the taxi time on ramps 
[12]. The taxi time depends on the length of the taxi route. 
However, interfering taxi routes cause taxi delay. If two aircraft 
taxi in opposite directions on the same taxi lane, one aircraft 
moves to different taxi lane and it results in taxi delays. 
Because the taxi route of an aircraft is determined by the 
locations of its assigned runway and gate, gate assignment is 
critical to reduce taxi time and taxi delays on ramps.  

The last metric of importance to this study is disturbances 
in gate operations, or equivalently, the robustness of gate 
assignment [13, 14]. “Robust” means that the gate assignment 
is resistant to uncertain delays. Indeed, severe delays perturb 
gate operations by forcing arriving aircraft to wait for gates, or 
ramp controllers to reassign gates. The disturbances can be 
reduced if the gate assignment is robust against uncertain 
delays. In addition, a robust gate assignment allows air traffic 
controllers to utilize gate-holding departure control more 
efficiently [15]. Indeed, the gate-holding departure control, 
currently in use at many European airports [9] and under 
evaluation at MEM [5], JFK [6], and BOS [7], delays push-
backs in order to reduce taxi times and emissions when the 
airport surface is congested. As a result, aircraft occupy gates 
longer than scheduled, which can negatively impact gate 
operations. If the gate assignment is robust, aircraft are able to 
stay longer at gates without disturbing gate operations and 
gate-holding departure control performs better. 

All three metrics cannot be optimized at the same time. 
Hence, this study presents trade-offs between metrics using 
flight schedules of a major U.S. hub airport. 

II. GATE ASSIGNMENT PROBLEM 

A. Data Source 
Prior studies on gate assignment rely on fictitious passenger 

data (e.g., number of transfer passengers), because such data 
are not published. Thanks to a major U.S. carrier, this study is 

able to assign airport gates and analyze gate assignments with 
the actual number of transfer passengers at a U.S. major hub 
airport. The carrier provided flight schedules and transfer 
passenger data from May 1st, 2011 at the hub airport. 
Passengers who check in at the airport (origin passengers) and 
those whose final destination is the airport (destination 
passengers) move from the passenger terminal to a gate or vice 
versa. Passengers who have connecting flights at the airport 
(transfer passengers) move from a gate to another gate. 
Because the only available data are the number of transfer 
passengers of the carrier, all the flights are assumed to be full 
with passengers, and passengers other than those transferring 
within the carrier’s flights are considered to be origin and 
destination (O&D) passengers.  

B. Metric 1: Passenger Transit Time 
The first metric is the transit time of passengers. Passengers 

in an airport are categorized into three groups. Origin 
passengers begin their itinerary from the airport. Destination 
passengers finish their itinerary at the airport. Transfer 
passengers connect from one flight to another at the airport.  

The transit time of O&D passengers depends on the 
distance from a point of the airport (e.g., security checkpoint, 
baggage claim) to a gate. Assume that flight i is assigned to 
gate j. Let ds

j denote the distance from a security checkpoint to 
gate j and vm denote the average passenger moving speed. vm 
varies with the configuration of the passenger terminal: vm is 
higher where passengers can move faster by taking a moving 
sidewalk, underground people mover, etc. The number of 
origin passengers of flight i is no

i, then the total transit time of 
origin passengers of flight i is no

i ds
j/ vm. Similarly, the total 

transit time of destination passengers of flight i is nd
i db

j/ vm, 
where nd

i is the number of destination passengers of flight i, 
and db

j is the distance from gate j to baggage claim. Therefore, 
the transit time of O&D passengers is determined by the 
location of a single gate because the locations of the security 
checkpoint and baggage claim are fixed. 

The transit time of transfer passengers depends on the 
distance between two gates (djl). Let nik denote the number of 
transfer passengers between flight i and flight k. Then, the total 
transit time of passengers who transfer between flight i and 
flight k is nik djl/ vm. 

Consequently, the transit times of O&D passengers are 
expressed by linear terms of the decision variable (xij) and the 
transit times of transfer passengers are expressed by quadratic 
terms in Equation (1), where xij is a decision variable that 
indicates whether flight i is assigned to gate j. A mathematical 
expression for the first metric is therefore  
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Metrictransit = (ni
o d j

s
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+ ni

d d j
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vm
)xij
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∑ + nik
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,where F and G denote the sets of flights and gates. 

 



C. Metric 2: Aircraft Taxi Time 
The second metric is the sum of unimpeded taxi time and 

taxi delay. The unimpeded taxi time for an arrival is the time 
taken for an aircraft to taxi from a spot to a gate when 
congestion or other taxi impediments are not present. The taxi 
time from a spot to a gate is calculated by dividing the distance 
from a spot to a gate by the taxi speed. The unimpeded taxi 
time for a departure is the time needed by an aircraft to taxi 
from a gate to a spot when congestion or other taxi 
impediments are not present. This unimpeded taxi time 
includes the time needed for the aircraft to push back. This 
study accounts for taxi delays that happen when either of the 
following cases occurs. 1) A taxiing aircraft prevents another 
aircraft from pushing back. 2) Two aircraft taxi in opposite 
directions on the same taxi lane. The first case is called a push-
back blocking and the push-back is delayed until the taxiing 
aircraft passes through the push-back route. The second case is 
called a taxi blocking and one of the aircraft must shift its taxi 
lane to another taxi lane; there are two parallel taxi lanes in the 
ramp area at the airport of interest as shown in Fig. 2. 
Therefore, taxi delays depend on the taxi routes of two aircraft. 
Authors collected the taxi delay characteristics. Detailed 
information is available in [12].  

Let nin
i denote the number of arrival passengers of flight i 

and uin
ij denote the unimpeded arrival taxi time of flight i to 

gate j. Note that nin
i includes both destination passengers and 

transfer passengers, and uin
ij depends on the distance between 

gate j and the arrival spot of flight i. Let nout
i denote the number 

of departure passengers of flight i and uout
ij denote the 

unimpeded departure taxi time of flight i from gate j. Then, the 
unimpeded taxi time of flight i, which is weighted by the 
number of passengers on board, is nin

i uin
ij +nout

i uout
ij. Thus, the 

weighted unimpeded taxi time is a linear function of the 
decision variable (xij) in Equation (2). 

Taxi delay (tdly) involves a pair of aircraft, and it is 
weighted by the sum of the number of passengers on board 
both aircraft. For instance, if the taxi delay occurs between two 
arrivals, the total number of passengers is nin

i +nin
k. So, the taxi 

delays, which are quadratic terms of Equation (2), are weighted 
by a general form of the total number of passengers on board 
flight i and k, ni +nk. 

The formulation of the second metric is given below.  
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Figure 2.  Satellite picture of the airport of interest from Google Maps [16]. 
There are two parallel taxi lanes, and one aircraft (circled) is taxiing from a 

taxi lane to another in order to avoid the pushing-back aircraft. 

D. Metric 3: Robustness of Gate Assignments 
The third metric is the robustness of gate assignments. 

Equivalently, the metric is the duration of gate conflicts. If a 
gate is still occupied by an aircraft when another aircraft 
requests the gate, the latter should wait until the assigned gate 
or another gate is available, which corresponds to a gate 
conflict. Fig. 3 illustrates a gate conflict, where acta(i) and 
actd(i) denote the actual arrival and departure times of flight i, 
and the gate separation is the time gap between the scheduled 
departure time of flight i (tout

i) and the scheduled arrival time of 
flight k (tin

k). In Fig. 3, flight i is scheduled to leave the gate 
before flight k arrives, but the departure time of flight i is 
delayed, and flight k arrives earlier than scheduled. So, when 
flight k arrives, the gate is not released yet and flight k has to 
wait for a gate. 

 
Figure 3.  Typical gate conflict where two aircraft need the same gate at the 

same time. The conflict arises when aircraft i's departure is delayed and 
aircraft k arrives early. 

 

 



 

Figure 4.  Expected duration of gate conflict as a function of planned 
separation between consecutive occupancies, together with the exponential fit 

12.4*0.96sep(i,k). 

Because the actual arrival and departure times are unknown 
when gates are assigned, the duration of a gate conflict is 
estimated based on the probability distributions of arrival delay 
and departure delay. The expected duration of a gate conflict is 
calculated by E[actd(i)-acta(k) | actd(i)>acta(k)] when tin

k > tout
i. 

Details of the calculation are given in [14]. 

The expected duration of a gate conflict is known to depend 
on gate separation [14]. Using the delay data of the U.S. carrier 
at the hub airport, which focused our attention, collected in 
May 2011, the expected duration of gate conflict as a function 
of gate separation is shown in Fig. 4. It is matched with the 
exponential fit a*bsep(i,k), where a = 12.4, b = 0.96, and sep(i,k) 
denotes the gate separation between flights i and k. 

The formulation of the third metric is given in Equation (3) 
below. Note that the expected duration of a gate conflict is 
weighted by the number of arrival passengers because only 
arrivals are delayed due to a gate conflict.  

€ 

Metricrobust = nin ×12.4 × 0.96sep( i,k )
k∈F ,k> i
∑ xij xkj

j∈G
∑

i∈F
∑  

  (3) 

E. Trade-offs of Multiple Metrics 
It is known that the metrics presented above cannot be all 

simultaneously optimized; thus, optimal trade-offs must be 
achieved instead [12, 17]. In order to analyze the trade-offs 
among the three metrics, a composite objective function is 
given below. 

€ 

Obj = wtransitMetrictransit + wtaxiMetrictaxi + wrobustMetricrobust , 
  (4) 

where 

€ 

wtransit + wtaxi + wrobust =1,   (5) 

and 

€ 

wtransit ,wtaxi,wrobust ≥ 0.  (6)  

The optimization problem for the analysis of trade-offs 
among the three metrics is given below. 

Minimize Obj              (7) 

subject to the constrains 

  (8) 

 

  (9) 

 (10) 

Two constraints are given in (8)-(9). Equation (8) makes 
sure that every flight is assigned to a single gate. Equation (9) 
constrains two successive gate occupancies, so that they are 
separated by more than a certain amount of time, which is 
called buffer time (tbuff). Equation (9) is binding only if flights i 
and k are assigned to gate j (xij=xkj=1), because M is an 
arbitrarily large number. tin

i indicates the scheduled gate-in 
time (arrival time) of flight i, tout

i indicates the scheduled gate-
out time (departure time).  

The objective function (4) is a linear combination of the 
metrics in Section II-B (Equation (1)), II-C (Equation (2)), and 
II-D (Equation (3)). The quantities wtransit, wtaxi, and wrobust are 
the weighting factors of the metrics. For instance, when wtransit 
is 1, the resulting optimization problem minimizes passenger 
transit time only. In the trade-off study that follows, the 
weighting factors are explored in increments of 0.1, so the 
number of possible combinations of the weighting factors is 66. 
All the possible combinations are evaluated for the analysis of 
trade-offs of multiple metrics. 

F. Optimization Method 
The Tabu Search (TS) is a meta-heuristic algorithm known 

to efficiently deal with combinatorial optimization problems 
such as the gate assignment problem [18, 19]. Although it is 
difficult for any optimization methods to find optimal solutions 
at all, our previous experience indicates that the TS can 
outperform the Branch and Bound and Genetic Algorithm in 
terms of solution time and solution accuracy for the gate 
assignment problem [12]. The results presented in this paper, 
therefore, rely on our use of TS for the optimization problem 
(7)-(10). The TS is a local search, so the algorithm can 
converge to a local optimum, which is not the global optimum. 
In order to help the TS escape from a local optimum, a tabu 
memory prevents the TS from utilizing recently used search  

 



 
Figure 5.  Insert move: Change a flight’s assignment from one gate to another 

that is also able to serve the equipment type of the flight. 

 
Figure 6.  Interval exchange move: Swap two groups of assignments if the 
correponding two gates are able to serve the equipment types of the groups. 

moves for certain iterations. However, if a restricted search 
move improves the objective value, the search move can be 
used regardless of the tabu memory, known as the aspiration 
criterion. Two types of neighborhood search moves of the TS 
have been used for the solution to problem (7)-(10). They are 
shown in Fig. 5 and Fig. 6. The insert move changes a flight's 
gate assignment from one to another, and the interval exchange 
move swaps the gate assignments of two groups of flights. 
Note that each gate has a list of equipment types that the gate 
can serve, and flights whose equipments are incompatible with 
the gate cannot be assigned to the gate. 

The TS iterates until the number of iterations reaches the 
maximum iteration or there is no improvement of the objective 
value after some iterations past the last best score. The insert 
move is evaluated at every iteration in order to intensify a local 
search around a narrow neighborhood of the current solution. 
The interval exchange move is evaluated periodically in order 
to diversify the search: the interval exchange move brings a 
relatively large change in the current solution. More details of 
the implementation of the TS on the gate assignment problem 
are given in [12]. 

III. RESULTS 
Fig. 7 illustrates the average transit time experienced by 

each passenger, which is given in Equation (11). 

Average transit time = Metrictransit / number of passengers.  (11) 

The number of passengers is the sum of the number of 
O&D passengers and the number of transfer passengers. Each 
data point of Fig. 7 represents a value of three weighting 
factors (wtransit, wtaxi, wrobust). The value of the horizontal axis is 
wtransit and the value of the vertical axis is wtaxi. wrobust is 
obtained from Equation (5) because the sum of three weighting 
factors is equal to 1. For instance, the bottom-left vertex 

corresponds to the value (wtransit, wtaxi, wrobust) = (0, 0, 1). The 
passenger transit time for each value of the weighting factors is 
color-coded: the blue-end indicates the shortest transit time and 
the red-end indicates the longest transit time. As expected, the 
average transit time experienced by each passenger tends to 
become shorter as wtransit gets larger. 

Fig. 8 shows the average taxi time experienced by each 
passenger, which is given in Equation (12).  

Average taxi time = Metrictaxi / number of passengers on board. 
              (12) 

 
Figure 7.  Average transit time in minutes per passenger for 66 values of 

(wtransit, wtaxi, wrobust): transit times are color-coded from blue (~4 min) to red 
(~6.5 min). 

 
Figure 8.  Average taxi time in minutes per passsenger for 66 values of 

(wtransit, wtaxi, wrobust): taxi times are color-coded from blue (~2.2 min) to red 
(~3.4 min). 
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Note that the number of passengers on board is not equal to 
the number of passengers. Transfer passengers take flights 
twice (an arrival and a departure), so they count twice. Hence, 
the number of passengers on board is larger then the number of 
passengers. Each data point represents a value of the weighting 
factors the same as Fig. 7. Similar to Fig. 7, the average taxi 
time tends to become shorter as wtaxi gets larger. 

From Fig. 7 and Fig. 8, the trade-off between average 
transit time and average taxi time per passenger can be 
analyzed. First, wrobust is set to zero, which corresponds to 
wtransit and wtaxi standing on the longest edge of the triangular 
shape. Then, there are 11 data points on the line from (0, 1, 0) 
to (1, 0, 0). When wtransit is 0 and wtaxi is 1, the average transit 
time is the longest and the average taxi time is the shortest 
along the line (wrobust = 0). On the other hand, when wtransit is 1 
and wtaxi is 0, the average transit time is the shortest and the 
average taxi time is the longest along the line (wrobust = 0). 
Table 1 shows the details on the trade-off between average 
transit time and average taxi time per passenger when wrobust is 
equal to zero. Therefore, there is a trade-off between transit 
time and aircraft taxi time as discussed in [12]. Focusing on 
one metric alone will harm the others.  

Fig. 9 shows the average gate conflict duration experienced 
by each passenger, which is given in Equation (13).  

Average gate conflict duration = Metricrobust / number of arrival 
passengers.             (13) 

TABLE I.  TRADE-OFF BETWEEN AVERAGE TRANSIT TIME AND AVERAGE 
TAXI TIME WHEN WROBUST = 0 

(wtransit, wtaxi, wrobust) Average Transit Time Average Taxi Time 

(0, 1, 0) 6.3 min 2.2 min 

(1, 0, 0) 4.1 min 3.3 min 

 

 
Figure 9.  Average duration of gate conflict in minutes per passenger for 66 
values of (wtransit, wtaxi, wrobust): gate conflict durations are color-coded from 

blue (~1 min) to red (~4 min). 

 
Figure 10.  Comparison of the current gate assignment and the optimized gate 
assignment: The current gate assignment is obtained from the U.S. carrier and 
the optimized gate assignment corresponds to (wtransit, wtaxi, wrobust) = (0.2, 0.2, 

0.6). 

Note that the arrival passengers are the passengers who take 
flights arriving the airport. Similar to the previous analyses on 
transit time and taxi time, the duration of gate conflict becomes 
shorter as wrobust gets larger. 

Then, we compare the optimized gate assignment with the 
current gate assignment in order to assess how airlines 
accommodate passenger experience in the three metrics 
proposed in this paper. The current gate assignment is obtained 
from the carrier, and the optimized gate assignment is chosen 
with (wtransit, wtaxi, wrobust) = (0.2, 0.2, 0.6). However, the choice 
of the weighting factors can depend on the policy of airport 
gate managers and airlines. Fig. 10 shows the comparison of 
the current gate assignment and the optimized gate assignment. 
From the perspective of a passenger, the average taxi time is 
the time spent on the ramp and the average duration of gate 
conflict is the time waiting for a gate, which happens only to 
arrivals. It is shown that the optimized gate assignment can 
improve all the metrics compared to the current gate 
assignment. Specifically, average transit time, average taxi 
time, and average gate conflict duration are reduced by 6%, 
18%, and 81% respectively with the optimized gate 
assignment. In conclusion, the saving from the optimized gate 
assignment is 4.7 minutes per passenger, which means that 
passengers save 4.7 minutes on average in the passenger 
terminal and the ramp area. 

IV. CONCLUSION 
This study presents three of the metrics that most affect 

passenger experience at congested airport. These metrics are 
transit time of passengers in passenger terminals; aircraft taxi 
time on ramps; and the duration of gate conflicts. It is known 
that these metrics compete against each other, so an objective 
function that balances three metrics is proposed. The objective 
function can simulate the preferences of the airline, the air 
navigation service provider, or passengers by combining a 
value of the weighting factors. Different values of the 
weighting factors result in significantly different gate allocation 
strategies. Moreover, the performance obtained by optimizing 
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the balanced objective function appears to outperform the 
observed, real-life gate assignment in every metric. Therefore, 
and although further studies are necessary to understand this 
difference in performance, the gate assignment of the airport 
offers the potential to improve the efficiency of traffic flow in 
passenger terminals and on ramps, as well as the robustness of 
gate operations. 

Future work will account for gate-holding strategies 
generated by Airport CDM [15]. Although this study in this 
paper includes the robustness of gate assignment, which was 
shown to help gate-holding strategies perform better [15], a 
comprehensive analysis of gate-holding strategies and 
passengers’ experience at the airport is still needed. 
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