
HAL Id: hal-01286956
https://enac.hal.science/hal-01286956v1
Submitted on 11 Mar 2016 (v1), last revised 6 Sep 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PARTICIPATORY PROGRAMMING: DEVELOPING
PROGRAMMABLE BIOINFORMATICS TOOLS FOR

END-USERS IN CONTEXT
Catherine Letondal

To cite this version:
Catherine Letondal. PARTICIPATORY PROGRAMMING: DEVELOPING PROGRAMMABLE
BIOINFORMATICS TOOLS FOR END-USERS IN CONTEXT. End User Development, 9, Springer,
pp.207-242, 2006, Volume 9 2006, 978-1-4020-4220-1. �hal-01286956v1�

https://enac.hal.science/hal-01286956v1
https://hal.archives-ouvertes.fr

CATHERINE LETONDAL

PARTICIPATORY PROGRAMMING:

DEVELOPING PROGRAMMABLE BIOINFORMATICS
TOOLS FOR END-USERS IN CONTEXT

Abstract
We describe participatory programming as a process that spans design, programming, use and tailoring of software. This
process, that includes end-users at each stage, integrates participatory design and programmability. Programmability, as
a property that relies on a reflective architecture, aims to let the end-users evolve the tools themselves according to their
current, specific needs and to let them control better the way results are computed. We present an environment that
results from this approach, called biok, developed for researchers in biology, which is both domain-oriented and open to
full programming.

1 Introduction
This chapter describes what we call ’Participatory Programming’, or how to integrate
participatory design and programmability. We consider programming, not as a goal in itself, but
rather as a potential feature, available if things go wrong in the context of use. We discuss how
to better integrate the context of the user in the programming activity by both: a) letting the user
participate to the design of the tools and b) providing access to programming via the user
interface and from visible objects of interest, within a scaffolded software architecture. This
approach applies to fields where users are both experts in their domain and able to develop basic
programming skills to enhance their work.

Biology has seen a tremendous increase in the need for computing in recent years. Although
biology labs may employ professional programmers and numerous ready-made tools are
available, these are rarely sufficient to accommodate this fast-moving domain. Individual
biologists must cope with increasing quantities of data, new algorithms and changing
hypotheses. They have diverse, specialized computing needs which are strongly affected by
their local work settings. This argues strongly for a better form of end-user development.

The problem is how best to provide access to programming for non-professional
programmers. Can we determine, in advance, what kind of end-user development is required or
how the software might evolve? Must we limit end-user development to specific well-defined
features? Do end-users actually want to develop their own tools?

Our approach involves cooperative software development and co-evolution in two
complementary ways: interviews and workshops with biologists to define their environments for
data analysis, and software flexibility or programmability. This term refers to two main
dimensions: (a) to let the end-users evolve these tools themselves according to their current
specific needs; (b) to let the user better control the way results are computed.

In this chapter, we first describe some important characteristics of software development and
evolution in biology, as well as situations where biologists who are not professional
programmers may need to change the software they use. Next, we introduce our approach to
help biologists better control their tools, the idea of participatory programming, and we provide
a description of the participatory design process. We describe our prototype biok in section 4,
followed by a section (5) that recounts uses of this prototype. The final section (6) provides a
discussion of our choices, where we address the general aspects of software flexibility and open
systems with respect to End-User Development.

2 CATHERINE LETONDAL

2 Problem Description
Having installed scientific software for 8 years at the Institut Pasteur and having taught
biologists how to use these scientific tools, I have observed that, in the past decade, the
development of computing tools for biology and genomics has increased at a fast pace to deal
with huge genomic data and the need of algorithms to discover their meaning. Daily work has
also changed for the standard biologist: using computer systems to perform their biological
analyses is hardly possible without some basic programming [Tis01]. Indeed, although there are
already many ready-to-use tools, including Web-based tools and software packages for the
micro-computer this is not really sufficient, even for usual tasks.

In order to justify our objectives and our approach, we need to describe the context of this
work. In the following sections we describe the typical problems that have to be solved, the
general idea of programming in scientific research and the more general issue of dealing with
scientists as end-users. We have also performed several kinds of user studies that we describe in
section 3.7.

2.1 Use of Computing at Institut Pasteur

Figure 1: Campus-wide survey analysis of the use of computing.

We conducted a campus-wide survey in 1996, which consisted of 40 questions grouped in
categories, regarding computing education, software and network use, access to technical
documentation and types of technical problems encountered [Let99b]. Figure 1 shows the main
groups that we identified through the analysis of the survey data (about 600 answers) plotted on
two dimensions: level of programming autonomy and level of use of scientific computing:

• Occasional users were the largest group (36%) and had no direct use of scientific
computer tools.

• Non-Unix users (15%) did not use the IT department training and technical support, they
had their own PC and mostly ran statistical software.

• Young scientists (15%) were interested in bioinformatics, and were able to program or at
least build Web sites. They could read software documentation and were able to teach
themselves.

• Learners (15%) were more-established scientists who had recently taken a course to
improve their know-how of scientific software. This training was often conducted by the
IT department.

• Gurus (6%) were heavily involved in computing and programming scientific software.
They often acted as local consultants or gardeners [GN92].

PARTICIPATORY PROGRAMMING 3

Both the computing skills and the available computer tools have changed greatly in the
intervening years since this survey was taken. The Institut Pasteur has hired a significant
number of bioinformaticians to act as local developers [GN92]. In various laboratories, young
scientists (Ph.D.s and post-doctoral fellows) are now more likely to have had formal training in
computing and the number of convenient software packages for biologists has increased,
particularly via the Internet.

2.2 Typical Problems
In order to illustrate the need for end-user development in the context of biology and
bioinformatics, let us show some typical examples (see also [CFL03]). Below is a list of real
programming situation examples, drawn from interviews with biologists, news forum, or
technical desk. These situations happened when working with molecular sequences, i.e. either
DNA or protein sequences (a sequence is a molecule that is very often represented by a
character string, composed of either DNA letters – A, C, T and G – or amino-acid letters – 20
letters).

• scripting: search for a sequence pattern, then retrieve all the corresponding secondary
structures in a database

• parsing: search for the best match in a database similarity search report but relative to
each subsection

• formatting: renumber the positions of a sequence from -3000 to +500 instead of 0 to
3500

• variation: search for patterns in a sequence, except repeated ones

• finer control on the computation: control of the order in which multiple sequences are
compared and aligned

• simple operations: search in a DNA sequence for the characters other than A, C, T and G

As illustrated by these examples, unexpected problems may arise at any time. However,
these scenarios involve rather simple programmatic manipulations, without any algorithmic
difficulty or complex design. An important reason why programming is needed here is that the
function, although easy to program, or even already implemented somewhere inside the
program, has not been explicitly featured in the user interface of the tool.

2.3 Programming in scientific research
Apart from these scenarios showing that everyday work leads to operations that involve some
programming, there are fundamental reasons why scientific users, or at least a part of them,
would need to program.

• Sharing expertise. Biologists, having accumulated a lot of knowledge through their
academic and professional experience, in such a fast evolving area, are more able to
know what kind of information is involved in solving scientific problems by a
computational model. In her course on algorithmics for biologists [Sch03] [LS02],
Schuerer explains that sharing expertise requires some computing skills on the side of
biologists, in order for them to be aware of the tacit hypotheses that are sometimes
hidden in computer abstractions.

• Programs as evolving artifacts. A computer program evolves, not only for maintenance
reasons, but also as a refutable and empirical theory [Mor97]: thus, being able to modify
the underlying algorithm to adapt a method to emerging facts or ideas could be, if not
easily feasible, at least anticipated [LZ03].

• Expression medium. The field of bioinformatics and genomics is mostly composed of
tasks that are defined by computer artifacts. In these fields the expression medium
[DiS99] for problem solving is encoded as strings, and problems are expressed as string
operations (comparisons, counting, word search, etc...).

3 Approach: Participatory Programming
What kind of solutions could help biologists to get their work done?

4 CATHERINE LETONDAL

3.1 More tools
One possibility is that biologists simply need more tools, with more parameters and more
graphics. This is maybe true, but:

• Some features or needs, particularly in a fast evolving research field, where the
researcher must be inventive, cannot be anticipated.

• Such software is complex: users must master many different tools, with specific syntax,
behavior, constraints and underlying assumptions; furthermore, these tools must be
combined, with parsers and format converters to handle heterogeneous data.

3.2 A programmer at hand
A second possibility could be for biologists to have a programmer at hand whenever they need
to build or modify the programs. There are indeed many laboratories where one or more
programmers are hired to perform programming tasks. This is however clearly not feasible for
every biologist (for instance, the Institut Pasteur laboratories have about a dozen such local
programmers, for more than 1500 biologists).

3.3 Programming
A third possibility involves programming: biologists just have to learn some basic programming
skills, since programming is the most general solution to deal with unforeseen computational
needs. In fact, many biologists program, and even release software. Most of the programs for
data analysis are in fact programmed by biologists. We see two clear types of development:

• large-scale projects such as [SBB02], developments in important bioinformatics centers
such as the US National Center for Biotechnology Information (NCBI) or the European
Bioinformatics Institute (EBI), or research in algorithmics by researchers in computer
science;

• local developments by biologists who have learned some programming but who are not
professional developers, either to deal with everyday tasks for managing data and
analysis results, or to model and test scientific ideas.

The two lines often merge, since biologists also contribute to open-source projects and
distribute the software they have programmed for their own research in public repositories.

However, as programming is also known to be difficult, not every biologist wants to become
a programmer. Most of the time, this change implies a total switch from the bench to the
computer.

3.4 Programming With the User Interface
An intermediate step is End-User Programming (EUP) [Eis97], which gives biologists access to
programming with a familiar language, i.e., the language of the user interface. Programming by
demonstration (PBD) [Cyp93] [Lie00] lets the user program by using known functions of the
tool: with some help from the system, the user can register procedures, automate repetitive
tasks, or express specific models (styles and formats for word processors, patterns for
visualization and discovery tools, ...). Visual programming languages, in contrast, offer a visual
syntax for established programming concepts: programming with the user interface ideally
means programming at the task level, which is more familiar to the end-user [Nar93].

Customization is related, but has a different goal: EUP provides tools or languages for
building new artifacts, whereas customization enables to change the tool itself, usually from
among a set of predefined choices or a composition of existing elements. Although these two
different goals might be accomplished with similar techniques, this means that the level of the
language is a base level in the case of EUP, whereas it is a meta level in the case of
customization.

PARTICIPATORY PROGRAMMING 5

3.5 Programming In The User Interface
Section 4 describes a prototype tool for participatory programming, biok, that is both a tailorable
tool and a programming environment. In our approach, the focus of the user is the analysis of
his or her data, and the graphical user interface, when needed, just helps the user with access to
programming. Besides, the tool does not include an EUP language: we indeed observed that
using a standard general-purpose programming language is not the main obstacle in the actual
access to programming, in the context of bioinformatic analyses (see sections 3.6 and 5). We
thus distinguish Programming With the User Interface from Programming In the User Interface,
where the programming language is not necessarily the user interface language.

Related Work

 Related work includes tailoring approaches which enable the user to change the software at use-
time [FO02] [HK91] [MCLM90] [Mor97]. Similar approaches also include programmable tools
where the user can add functionalities to the tool by accessing to an embedded programming
language and environment [Eis95] [Mor97] [SU95]. Research such as [DE95] [WG01] focusing
on methods to encourage the user to tailor the software by lowering a technical, cognitive or
sociological barrier are very relevant as well, as explained in section 3.7.3.

Fischer’s concept of MetaDesign [FS00] attempts to empower users by enabling them to act
as designers at use-time. In this approach, software provides a domain-oriented language to the
users and lets them re-design and adapt current features to their own need. As explained in
[FO02], user software artifacts can then re-seed the original design in a participatory way. Our
approach is very similar: as described in section 3.7.2, we first let users participate to the initial
design by conducting workshops and various user studies. Then, we either take their
programming artifacts as input to prototyping workshops or, as described in section 5, we put
their modifications in biok back into the original tool. The main difference in our approach lies
in the programming language that is provided to the user. We chose a standard programming
language, that the user can re-use in other contexts, like Eisenberg [Eis95] who offers the
concept of programmable applications in which users of a drawing tool can add features by
programming in Scheme. This leads to an environment that is both highly domain-oriented and
highly generic and open to full programming.

Some approaches offer the technical possibility for the user to change the application during
use by having access to the underlying programming language. MacLean et al [MCLM90]
describe how to build a whole application by combining, cloning, and editing small components
(buttons), associated to simple individual actions. This seminal work has greatly inspired our
work, where graphical programmable objects (see section 4.2) form the basis of an application,
and are a technical extension of buttons to more general programmable graphical objects. In this
regard, our technical environment is closer to Self [SU95] or Boxer [DA89], except that we
needed to use an open environment and a scripting language featured with extensive graphical
and network libraries. As in Morch [Mor97], graphical objects provide an architecture where a
mapping is provided between application units and programming units in order for the user to
easily locate programming chunks of interest. However, as described in sections 3.7.2 and 3.7.3,
our approach is not only technical, it relies on a participative approach at design-time.

3.6 The problem of Programming
We decided to provide an access to a general programming language (see 4 for a short
description of this language), as explained in the previous section, as discussed by [Eis95], and
as opposed to EUP approaches. Let us discuss the choices we made:

• is programming really too difficult for end-users?

• is programming the main difficulty for end-users?

• is programming the problem at all?

Our thesis is that, focusing on the design of an end-user programming language and
stressing programming difficulties, we do not progress toward a general solution regarding end-
user development in biology or similar fields.

6 CATHERINE LETONDAL

3.6.1 Difficulties of Programming

Programming is indeed technically difficult and raises cognitive issues, but this is not the main
reason for biologists not to program when they need it. Nardi [Nar93] has shown that having to
write textual commands, one of the most “visible” and discriminating aspect of classical
programming, is not really the main explanation for the technical barrier: for instance, users are
able to enter formula in a spreadsheet, for example, or to copy and modify HTML pages. If the
language is centered on the task to perform, the user will be able to learn and use it.

We have also been running an annual intensive four-month course for research biologists to
teach them various aspects of computing [LS02]. During this course, computer scientists and
bioinformaticians from the IT department, as well as visiting professors, cover programming
techniques, theoretical aspects (such as algorithm development, logic, problem modeling and
design methods), and technical applications (databases and Web technologies) that are relevant
for biologists. According to our experience during this course, reducing the difficulty of
programming to difficulties with algorithms is too simple. The first reason is that there is not
much algorithmic complexity in their everyday programming. The second reason is that,
whereas biology students had good aptitude for programming (they had to program in Scheme,
Java, perl or Python), and enough abstract reasoning for the required programming tasks, a
significant part of them did not actually program after the course, even though they would need
it. Why is that? This issue formed a basis for our reflection on both the technical and
organizational context of the programming activity of biologists, that is illustrated by a case
study described in section 5.2.

Software engineering aspects is a more significant barrier. The occasional user faces more
problems with programming-in-the-large than with syntax or abstraction. The tools that are
actually used for bioinfomatics analyses are often complex and large systems, rather than small
software packages. Users can not build such systems by themselves. Can they at least participate
in those parts that depend on their expertise? Finally, biologists want to do biology, not
computer science. Even if they can program, and could overcome specific technical problems,
they prefer to spend their time on biology. Therefore, both the technical context (software being
used) and the use context (data analyses) should be taken into account when designing
programming tools for such users.

3.6.2 What is Programming?

We believe that seeking for the perfect programming language for end-users is both too
simplistic and illusory. When I say to a colleague that "I am programming", he or she knows
what I mean. This however does not lead to a definition of programming. There are indeed
various and different definitions of programming : design of algorithms, automation, building of
software, abstraction [Bla02], delegation [Rep93], design of the static representation of a
dynamic process [LF95], problem definition, [Rep93][Nar93]. Thus, programming, being a
polysemic term, that is not precisely defined, seems quite inappropriate for a specification to
develop an end-user programming system [Let99a] [Let99c]. Even though programming claims
to be a general solution and a general tool, it is also rather difficult to define programming
activity without taking the sociological and professional context of this activity into account. A
student learning programming to prepare for an exam and to enhance his or her reasoning
capabilities is not pursuing the same objective as a software engineer building an application for
a customer, and, more generally, one does not program the same way when programming for
oneself than when programming for other people.

Furthermore, the definition of what programming is might benefit from the definition of
what programming is not.

PARTICIPATORY PROGRAMMING 7

Figure 2: Dimensions to contrast programming and non-programming.

Figure 2 shows various concepts related to programming or non-programming opposed
along 3 axes:

1. the mode (x axis): from batch, indirect and continuous to interactive, direct and
discontinuous,

2. the underlying task (y axis): from using to programming,

3. the form of the expression (z axis): from textual to graphical.

This diagram is inspired by the classification given in [BHP94], where visualization
software is classified along three axes: mode, expression and the compatibility of the system
with legacy software. The expression (z axis) and mode (x axis) axes have been thoroughly
studied, and it is not our purpose here to study them further. For instance, the expression (z) axis
describes the difference between programming in the C language and programming in the
Labview visual environment [lab87]. But it also describes the difference between reading a
textual program result, such as searching for similarities in sequences databases, visualizing hits
in a 3D graphical plot. The mode axis (x axis) describes the difference between programming
with a compiler and programming within an interactive interpreter. This axis also describes the
difference between using an interactive tool and running long batch analyses that read their
input at the beginning of the computation and produce their output at the end [BHP94].

We can observe from this diagram that, even though we build it on dimensions that, taken
separately, contrast programming to non-programming, clearly-identified programming
activities often belong to the non-programming side of each: while programming is often
opposed to interaction, learning to program with a Lisp interpreter is on the interactive end of
the x axis; building a Petri Net or programming in Labview belong to the graphical end of the z
axis, and writing a script to build a visual model of a molecule [PL92] is on the use end of the y
axis, since the goal is to understand and analyze a molecule, not to program. In fact, within these
combined dimensions, programming activities fit within a continuum, which makes it difficult
to rely only on a definition of programming to build an end-user programming environment.

In our diagram, we stress the importance of the context of programming as determined by
the user’s activity and goals: we use a task axis (y axis) instead of the compatibility axis from
[BHP94], to describe the difference between programming, building a tool, and using it. This
axis and the issues of why and when biologists need to program is the topic of the following
section.

3.7 Studying the Context of Programming
Having explained in the previous section why the context of programming should be taken into
account more deeply than a definition of programming, we describe in this section the studies
and participatory activities that have been organized to understand this context [LM04].

8 CATHERINE LETONDAL

3.7.1 Interviews

Among a total of 65 interviews that were conducted in the context of various projects over the
past seven years, about 30 were dedicated to end-user programming. They were mainly intended
to collect use scenarios, or to observe biologists using scientific software. Interviews were
generally informal and open: we often just asked the biologists to act in front of us a scenario of
a recent bioinformatic analysis. Some of the interviews have been videotaped or recorded, and
annotated.

Several of these interviews enabled us to observe biologists programming, either by using
standard programming environments and languages such as C or C++, or, very often, scripting
languages such as awk to parse large text files, perl to write simple Web applications, or Python
to build scripts for analyzing structural properties of proteins. We also observed uses of visual
programming environments such as HyperCard or even visual programming languages. Khoros
[RASW90] for image analysis or Labview [lab87], for instance, are used in some laboratories,
mostly due to their good libraries for driving hardware devices, and image or signal processing
routines. We also observed various people using spreadsheets for performing simple sequence
analyses.

During these interviews, we made several observations:

• Re-use of knowledge. Most of the time, biologists prefer using a technique or a language
that they already know, rather than a language that is more appropriate for the task at
hand, which is referred to as the assimilation bias by [CR87]. A researcher had learnt
HyperCard to make games for his children, and used it in the laboratory for data
analysis, even though nobody else knew it and thus was able to provide help. But the
result was efficient and he almost never had to ask to the IT Center for help to find or
install simple tools. Another researcher wrote small scripts in the only scripting language
she knew: awk, although perl that is now often used and taught in biology would have
been much more efficient. In summary, as long as the result is obtained, it does not
matter how you get it. Similarly, a researcher tends to use a spreadsheet instead of
learning to write simple scripts that would be be more suitable to the task.

• Opportunistic behavior. Generally and as described in [Mac91b], biologists, even if they
can program, will not do so, unless they feel that the result will be obtained really much
faster by programming. If this is not the case, they prefer to switch to a non-
programming methods, such as doing a repetitive task within a word processor or
performing an experiment at the bench. There is no requirement nor any scientific
reward for writing programs. They are only used as a means to an end, building
hypotheses.

• Simple programming problems. During his or her everyday work, a biologist may
encounter various situations where some programming is needed, such as simple
formatting or scripting (for extracting gene names from the result of an analysis program
and use them for a subsequent database search) and parsing, or simple operations, not
provided in the user interface, such a searching for characters other than A, C, G or T in
a DNA sequence.

• Need for modifying tools rather than building from scratch. A frequent need for
programming that we observed is to make a variant or add a function to an existing tool.
Designing variants for standard published bench protocols is often needed in a biology
laboratory. For instance, when constructing a primer for hybridization 1 , it is often
needed to adapt the number of washings according to the required length and
composition of the primer, or to the product that is used. With software tools, this is
however unfortunately seldom feasible, but it would be highly valuable since there are
already many existing tools that perform helpful tasks, and biologists rarely want to
build a tool from scratch.

• Exploratory use of tools. There is a plethora of tools, including new tools, for the
everyday task of biologists, and these tools are often specialized for a specific type of
data. This leads to a very interactive and exploratory use of computing tools [OAKB01].

1A primer is a short DNA sequence used to generate the complementary DNA of a given
sequence

PARTICIPATORY PROGRAMMING 9

For instance, an observed scenario started by the search of a protein pattern published in
a recent paper. The user was looking for other proteins than those referred to in this
paper and that also contained this motif. After an unsuccessful attempt - the results were
too numerous for an interactive analysis - the researcher decided to use another program.
This attempt failed again because his pattern was too short for the setting of this specific
program. He then decided to extend it by adding another one, also belonging to the set of
proteins mentioned in the paper. In the end, this enabled a final iterative analysis of each
result. This is a brief summary that stands for many scenarios we have observed, often
resulting in many failures due to a problem with the program, or with the format of the
data.

This typical behavior might both be a barrier to and a reason for programming. It can be
a barrier by preventing a user to think of a more efficient way to get a result (leading to
an “active” user behavior as described by [CR87]). However, at the same time, it can be
a ground for programming since programming could help to rationalize, a posteriori,
such an exploratory behavior. This, however, involves some kind of anticipation: for
instance, it might be a good place for programming instruments such as history and
macro recording.

3.7.2 Workshops

biok, that we describe in section 4, has involved a series of video brainstorming and prototyping
workshops over several years from 1996 to 2004. We drew prototyping themes from
brainstorming sessions (Figure 3) and from use scenarios, which based on interviews and
observation. Each workshop involved from 5 to 30 people, with participants from the Institut
Pasteur or other biological research laboratories, as well as biology researchers who were
students in our programming course.

Finding potential dimensions for evolution

 From the very beginning of the design process, it is important to consider the potential
dimensions along which features may evolve. Interviews with users help inform concrete use
scenarios, whereas brainstorming and future workshops create a design space within which
design options can be explore. As Trigg [Tri92], Kjaer [KM95], [SKW97] or [Kah96] suggest,
participatory design helps identify which areas in a system are stable and which are suitable for
variation. Stable parts require functionality to be available directly, without any programming,
whereas variable parts must be subject to tailoring.

For example, the visual alignment tool in biok vertically displays corresponding letters in
multiple related sequences (Figure 6, back window). Initial observations of biologists using this
type of tool [Let01b] revealed that they were rarely flexible enough: biologists preferred
spreadsheets or text editors to manually adjust alignments, add styles and highlight specific
parts. It became clear that this functionality was an area requiring explicit tailoring support.

Design of meta-techniques

 Scenarios and workshops are important to effectively design meta-level features. Scenarios
sometimes reveal programming areas as side issues. The goal is not to describe the
programming activity per se, but rather to create an analogy between the task, how to perform it,
and the relevant programming techniques. We identified several types of end-user programming
scenarios:

• Programming with examples: One workshop participant suggested that the system learn
new tags from examples (tags are visualization functions, see 4.4). Another proposed a
system that infers regular expressions from a set of DNA sequences. These led to a
design similar to SWYN [Bla00].

• Scripting: one participant explained that text annotations, associated with data, can act as
a “to do” list, which can be managed with small scripts associated with the data.

• Command history: a brainstorming session focusing on data versioning suggested the
complementary idea of command history.

The biok tag editor design (Figure 6, front window) had to consider the following issues:

10 CATHERINE LETONDAL

Must programming be available in a special editor? Must it require a simplified programming
interface? Should the user interface be interactive? Should it be accessible via graphical user
interface menus?

We found prototyping workshops invaluable for addressing such issues: they help explore
which interaction techniques best trigger programming actions and determine the level of
complexity of a programming tool. For example, one group in an alignment sequence workshop
built a pattern-search mockup including syntax for constraints and errors (Figure 3).

One of the participatory design workshops was organized in the Winter of 2001 with five
biologists to work on the biok prototype. Among the participants, four had followed a
programming course, and programmed from time to time, but not in Tcl, except one who had
programmed in Visual Tcl. Before the workshop, interviews had been conducted with
discussions about the prototype, and participants were sent a small Tcl tutorial by email. The
aim of the workshop was to experiment the prototype and get familiar with it through a scenario
(instructions were provided on a Web page). They had to play with graphical objects, and define
a simple tag. The issues that would arise during this part would then be discussed and re-
prototyped during a second part. The scenario had also spontaneously been “tested” by one of
the participants who brought some feedback about it. Although the workshop was not directly
aimed at properly testing the prototype, the participants behaved as if it was, and this actually
brought some insights on the design of the prototype - briefly and among the most important
ones:

• The participants were somewhat disturbed by a too large number of programming areas:
formula box, shell, method editor, ...

• They had trouble to understand, at a first sight, the various elements of the user interface
and how they interact.

• They had the feeling that understanding the underlying model would help.

One of the the tasks of the scenario was to define a tag. The only tool that the participants had
for this was an enhanced text editor, only providing templates and interactive choosers for the
graphical attributes. This tool proved completely unusable and participants got lost. The tool
was indeed too programmer-centered, and difficult to use, and there was no unified view of the
tag definition. This led to another workshop shortly after this one, and after a long brainstorming
session, one participant built a paper-and-transparencies prototype. We created an A3-size
storyboard mockup and walked through the tag creation scenario with the biologists. The tag
editor currently implemented in biok is a direct result of these workshops (see section 4.4).

Participatory approaches are also helpful when designing language syntax [PRM01,
dCdS03] or deciding on the granularity of code modification. As observed during the previously
described workshop, the object-oriented architecture and the method definition task apparently
did not disturb users that much. In a previous workshop that we started by displaying a video
prototype showing the main features of biok, participants tended to adopt the words “object” and
“method” that were used in the video. Interestingly, one of them used the term: “frame” all
along the workshop in place of object, probably because objects in biok (and in the video
prototype) are most often represented by graphical windows. In object-oriented programming
terms, we found however that biologists are more likely to need new methods than new classes.
Since defining new classes is a skilled modeling activity, we designed biok so that user
modifications at the user level do not require sub-classing. User-edited methods are performed
within the current method’s class (see section 4.5) and are saved in directories that are loaded
after the system. However, visualizing tags required the user to create new classes, which lead
us to provide this as a mechanism in the user interface.

Figure 3: Prototyping a pattern-search and an annotation scenario.

PARTICIPATORY PROGRAMMING 11

Setting a design context for tailoring situations

 Our observations of biologists showed that most programming situations correspond with
breakdowns: particular events cause users to reflect on their activities and trigger a switch to
programming [Mac91a]. Programming is not the focus of interest, but rather a means of fixing a
problem. It is a distant, reflexive and detached “mode”, as described in [Win95], [SUC92] or
[Gre93]. While end-user programming tools may seek to blur the border between use and
programming [DLL03], it is important to take this disruptive aspect into account, by enabling
programming in context. Developing and playing through scenarios are particularly useful for
identifying breakdowns and visualizing how users would like to work around them.

3.7.3 Participatory Design and Participatory Programming

Participatory programming integrates participatory design and end-user programming.
Participatory design is used for the design of an end-user programmable tool, yet biologists
programming artifacts also participate in the making of tools. These artifacts are either produced
by local developers, observed during interviews, or they can be produced by end-users using
biok (section 5).

Henderson and Kyng [HK91] and Fischer [Fis03] also discuss how to extend end-user
participation in design to use-time. Our approach is very similar except that it includes
programming participation and not only domain-level design artifact. Likewise, Stiemerling et
al [SKW97] or [Kah96] provide a detailed description illustrated with various examples of a
participative development process for designing tailorable applications. Yet, in both cases, the
tools that offer document search and access right management features, do not include
programming.

4 Biok: Biological Interactive Object Kit

biok is a prototype of a programmable graphical application for biologists written in XOtcl
[NZ00] and the Tk graphical toolkit [Ous98]. XOtcl is an object extension of Tcl, inspired by
Otcl [WL95], a dynamic object-oriented language. Tcl is not an end-user programming
language: on the contrary, it is a general purpose language, and moreover, it is not simple. Like
[WP02], our experience teaching programming to biologists, show that languages such as
Python are much easier to learn. However, we chose Tcl XOtcl for:

1. its incremental programming feature, i.e. the possibility to define or redefine methods for
a class at any time, even when instances have been created, which is very convenient for
enabling programming in the user interface,

2. its introspection tools that are generally available in Tcl software components and that
are mandatory to get a reflective system (see 6);

3. its dynamic tools such as filters and mixins, that enabled us to build a debugging
environment and some algorithmic flexibility features [LZ03].

The purpose of biok is twofold: to analyze biological data such as DNA, protein sequences
or multiple alignments, and to support tailorability and extensions by the end user through an
integrated programming environment.

4.1 Biological data analyses
The first purpose of biok is to provide an environment for biologists to analyze biological data.
Currently, it includes a tool to compare and manually align several related sequences or display
alignments that are computed by one of the numerous alignment programs available [Let01a]. A
molecular 3D viewer is also provided [TNQL03] (Figure 4). Thanks to this toolkit, biologists
can compare similar objects in various representations, simultaneously highlighting specific
features in the data: the alignment tool stresses common features among homologous sequences,
whereas the 3D viewer shows their structural location, which provides useful hints regarding the
potential function in the cell.

12 CATHERINE LETONDAL

Figure 4: Analyzing biological data: a plot displays the hydrophobicity curve of a protein
sequence, that is simultaneously displayed in a 3D viewer. Structural properties of the protein,

namely transmembrane segments, are simultaneously highlighted in the two protein
representations. The user, by selecting parts of the curve, can check to which hydrophobicity

peaks these segments might correspond.

4.2 Graphical programmable objects
The main unit both for using and programming in biok is what we call a “graphical object”.
Objects are indeed “visible” through a window having a name, or alias, that the user may use as
a global Tcl variable (Figure 4 show three such graphical objects). Graphical objects are
programmable in several senses:

1. their “content” may be defined by a formula,

2. their methods may be edited, modified, copied to define new methods

3. their graphical components are accessible as program objects

4. graphical attributes may be defined to implement visualization functions

Graphical objects also have a command “shell”, to either directly call the object’s methods
or to configure the Tk widget via a special “%w” command, as illustrated in Figure 5 where the
plot’s title and curve legend have been directly set up by Tk commands. Commands are stored
in a class-specific editable history file as soon as they have been issued, so they can be
instantaneously reused on another object of the same class.

4.3 Dataflow and Spreadsheet models

Figure 5: Graphical objects, formulas and shell.

PARTICIPATORY PROGRAMMING 13

Given the wide use of spreadsheets and the pervasiness of its related dataflow computing
paradigm, we have designed the content of graphical objects as being optionally defined by a
formula involving one or more source objects. Figure 5 shows two graphical objects: one (front
window) is a “Sequence” object, called “seq0”, containing the letters representing the amino-
acids of a protein. The other is a “Plot” object (“plot0”). Its formula returns two lists of floating
point numbers: the first one represents the ticks of the x axis and the second the values of the
curve, that displays the hydrophobicity peaks of the “seq0” object. Each time the sequence is
modified, the curve is redisplayed, unless the “Dynamic” switch has been turned off. The “Plot”
object is composed of a BLT graph, two sliders to select the displayed portion of the curve, and
two fields showing the x and y values selected by the user.

4.4 Programmable Visualization Features
One of the central tools of biok is a spreadsheet specialized in displaying and editing sequences
alignments (Figure 6, back window). As in many other scientific research areas, visualization is
critical in biology. Several graphical functions, or tags, are available in biok . A tag is a
mechanism that highlights some parts of an object. For instance, segments of protein sequences
showing a specific property, such as a high hydrophobicity, can be highlighted in the
spreadsheet. Table 1 shows that a tag is composed of two relations:

1. between graphical attributes (such as colors, relief or fonts) and predefined tag values,

2. between these values and positions in the annotated object.

Graphical attributes Tag values Locations
blue certain 36 .. 55
dark green putative 137 .. 157
red AXA 13 .. 15

Table 1: Tag relations

New tags may also be defined with a dedicated editor (Figure 6 (front window)), where the
user has to define a method to associate tag values to data positions in a script. This method is
typically either a small script for simple tags, or an invocation to more complex methods that
run analyses, notably from a Web Server [Let01b].

biok comes with several pre-defined tags, which can be modified, or the user can create new
ones with a set of super-classes of tags, that define e.g. row tags, column tags, cell tags, or
sequence tags. For example, a tag class Toppred, named after a published algorithm for
detecting transmembrane segments in a protein sequence [Hei92], is available in biok. This tag
was implemented by a biology student during her internship (section 5.2). Section 5.4 reports a
concrete case of a tag extension which highlights non-conventional patterns.

Figure 6: Tag editor (front) and alignment editor (back). In the tag editor, the top part displays
a field to enter parameters for this tag, if needed. The part below contains a superclass chooser
and an editor for the code to define tag values. The middle part is a tool to associate graphical
attributes to tag values. The bottom part displays a short description of the tag. The positions

associated with the various tag values are highlighted in the alignment editor. In this example, a
tag showing transmembrane segments (in blue) is extended by a sub-tag highlighting small

patterns around them (in red).

14 CATHERINE LETONDAL

The spreadsheet tool, the tag editor and the 3D molecular visualization widget [TNQL03]
(Figure 4), have been the subject of numerous workshops. Among these workshops, the
workshop dedicated to the design of the tag editor has been described in section 3.7.2.

4.5 Programming Environment
A method editor lets users redefine any method, save it, print it, search its code, and try it with
different parameters (which just makes the editor a form to run the code), to set breakpoints, and
to ask for trace.

User-created or re-defined methods and classes are saved in a user directory, on a per-class
and per-method basis. This enables the user to go back to the system’s version by removing
unwanted methods files, and to manage the code outside of biok, with the system file commands
and the preferred code editor. This double access and the fact that the result of user’s
programming work is not hidden in a mysterious format or database, where source code is
stored as records organized in a way that the users are not able to understand, is very important
to us.

biok features several navigational tools that enable the user to locate source code directly
from the user interface, whenever needed during standard use of the tool:

1. methods browser and inspector available from any graphical objects: source code is
available at the method level, on a per-object basis,

2. search tools for classes and methods that enable to search the name, body or
documentation,

3. a classes browser.

The methods browser can be triggered from any graphical object, by a menu that only
displays methods relevant to this object. In this menu, “Data analysis” methods are
distinguished from methods dealing with “Graphical Display”, the former being often more of
interest to the biologists than the latter.

Figure 7: Spying and Tracing method calls. Object “c0” uses “c1” in its formula. The
“Methods stacks” window displays methods called when a change occurs in “c1”. The “Spy”

window enables to start/stop spying and to select methods for being traced.

biok also has various debugging tools, that we were able to develop quite easily thanks to the
dynamic introspection tools provided by the XOtcl language. Users can print keyed debug
messages, put/remove breakpoints on method calls by simply clicking on a button in the method
editor, and put breakpoints inside the code.

Figure 7 shows spy and trace tools. A button in the editor enables the user to trace method
calls: this opens a “Methods stack” window displaying method calls with parameters and return

PARTICIPATORY PROGRAMMING 15

values. In a way similar to direct activation [WG01], a concept to encourage tailoring, the user
can spy the execution during a short period, and select specific methods from the list of those
called (see “Spy” window in figure 7). Thus, these tools are useful for both source code
navigation and comprehension: combining browsers, spy or trace tools, and breakpoints is a
good mean to find the location of a specific problem, or to understand the way the program
works.

4.6 Programming errors
A frequent objection to our approach is that opening the source code to end-users might make
programming errors or break the system. By providing programming and debugging tools, and
by designing the environment for incremental changes, we sought a way to minimize the impact
of errors, not to remove them.

Breaking the system is indeed feasible at the user level, in the same way as with an open-
source software that the user can download, install and modify locally. However, whenever the
system incidentally breaks, there is a simple way to go back to a previous state: user source is
saved as simple text files organized in easy to manage directories. If a new method breaks the
class, for example, the user only has to remove its corresponding file from its class directory.
There is no specific mechanism implemented yet in the prototype to organize source code
management, for this can easily be implemented with standard versioning tools such as CVS.

We observed, though, that biologists are not really interested in challenging software
robustness! On the contrary, as we observed during student projects (section 5), they are very
cautious, and generally only focus on the part of the code they feel they have control over.
According to [WG01] or [Mac91a], tailoring has even rather to be encouraged than prevented.

4.7 Design rationale summary
Our focus in biok is not on programming, but rather on the programming context. We provide
however a full access to programming as a key feature of the tool. biok contextualizes the task
of programming with respect to the biologist’s scientific tasks and motivations. We stress:

1. Focus: the focus of the tool is on biology or bioinformatics tasks; coding software is
possible, but not obligatory.

2. Incremental programming: programming from scratch is difficult: whereas modifying an
existing, working program, especially if it includes domain-centered examples, is
motivating and helpful. The PITUI (Programming In The User Interface) approach
enables incremental programming and progressive learning [CSBA90].

3. Integration of the graphical and coding levels: an important aspect of a programmable
application is to integrate code objects of interest and graphical representation of these
objects [WG01]. Integration should work both from the graphical object to the code
object, and from the code to the graphical object. In [Eis95], some variables describe the
user interface state, and some commands for modifying this state are available at the
scripting level. The notion of graphical objects gets close to the extreme integration of
graphical and coding elements that is provided in Boxer [DA89] or Self [SMU95].
Following the spreadsheet paradigm, and whenever possible, graphical objects of
interest, such as sub-areas of objects, or tags, are available from the code.

4. A good programming environment: motivation for the user to program, although
existing, is probably discouraged by common standard environments [LF95].

5 Reports on the uses of the prototype
This section reports various uses of the prototype over the last years. It has three purposes:

1. to show how the prototype can be used as a programming environment, either to tailor or
to create simple functions; this also illustrates an aspect of the participatory
programming process, where programming artifacts produced by end-users can be
incorporated back into the tool to be shared with other users (sections 5.2 and 5.3);

2. to show that domain orientation is obviously important to sustain programming activity

16 CATHERINE LETONDAL

(5.2) and to provide tailoring affordances (5.4); this shows however that this does not
exclude encoding with a standard programming language as discussed in section 3.6;

3. to illustrate the use of the prototype for design or re-design purposes (section 5.5).

5.1 Users of the prototype
Even though biok is not specifically aimed at students, it has mostly been used by them. The
main reason for this is that it is a prototype and this is why I have preferred not to distribute it,
for the moment. These students, however, were biologists with bioinformatics training,
including a first exposure to programming (from a few hours to several weeks). An important
part of bioinformatics work, and this is not only true in the Institut Pasteur, is performed by
students, this makes them significant users of the tool. Moreover, none of these students were
obliged to use the prototype. As a matter of fact, some of them did not, but used more standard
programming tools such as a text editor and the Tcl interpreter instead. More established
scientists indirectly used biok’s although not alone, because it is not finished and stable enough,
hence they needed my help. They were interested by its incremental programming features
particularly for visualization. For one of them, the possibility to superimpose several
visualizations of patterns was interesting (see a description in section 5.4). Other scientists
reported their need to use the prototype and urged me to finish it. For one of them, an alignment
editor was a pivotal tool in bioinformatics, since it helps produce data that lead to a considerable
quantity of other analysis tools. Added to this, she said that it was essential to be able to add
functions, because it is impossible to have every function provided for in a single tool. Other
scientists stressed the value of Web server tools integration [Let00].

Student internships brought various types of information. None of projects that are described
here can be considered as a proper user study with controlled setting. Our approach seeks to
explore a complex problem space by conducting user studies and workshops, rather than to
evaluate specific solutions. However, we did some user testing (section 3.7.2) and since the
prototype - that was still at development stage - has been used on a daily basis during the
internships, the students’ projects were an opportunity to informally observe how the
environment and the task-centered tools could help.

Generally speaking, most of the students used a great deal the environment either for
locating examples of code by using the navigation and search tools, for debugging their code
and understanding interactions between objects, or just for modifying simple methods, for
instance either by adding a parameter to a method that calculates the hydrophobicity of a
protein, or by adding a default value to a parameter, or by adding a branch in a conditional, in a
function that select the appropriate hydrophobicity scale for a given protein. The following
sections provide a more detailed description of some specific projects using biok.

5.2 Learning to program
A first two months project (Spring 2001) involved a student in biology having learnt some
programming at the university, in a different language (Python). She first had a few days
training in Tcl and biok, either from the documentation provided on a Web page, from Tcl books
or with assistance from me. Then she had to implement a published algorithm [Hei92] to predict
transmembrane segments in proteins.

Figure 8: Heijne algorithm

The algorithm consists in the computation of a weighted sum: hi*wi on a sliding window

(figure 8), with:

PARTICIPATORY PROGRAMMING 17

hi = amino-acid hydrophobicity values

wi = i /S for 1<=i< =n-q +1 ; (n -q+1)/S for (n - q+1)<i<(n+q+1); (2n+2-i)/S for

(n+q+1)<=i<=2n+1)

with a normalization factor: S=(1+n)2-q2 to get:

2n+1
 Sum wi = 1

i=1

At first, the student encountered a lot of problems in programming, since the course she had
was too short and too difficult. At the beginning, she had no or very few understanding of
computing or programming concepts, such as functions, loops, parameter passing, etc... She was
really discouraged.

The human environment helped a lot: several computer scientists of the team gave her
advice, and she could at any time ask for information. We believe that biok helped her mainly
by bringing a real motivation. We observed her positive reaction the first time she obtained a
display of the curve she had to compute for the algorithm - a hydrophobicity curve (figure 5).
From this moment, she progressed much faster and explored spontaneously various alternatives,
new computations, etc... She was also able to find out - with little help - how to add a graphical
component to the plot object (field displaying the pointed location on the curve). Besides, she
confirmed in interviews that programming with objects of interest makes a real change.

She also helped a lot to enhance biok. Convenient although very simple features, such as the
“Print” button in the method editor or in the Plot object were added. She was always doing a
cut-and paste of single methods code into the emacs editor just to get a printed copy. The
formula-level history also originated from seeing her copy-and-pasting the very same formula
for the very same kind of objects.

However, she almost never used the debugging tools, although we did a quick demo. The
reason for her not using the trace tool was probably that she had a dozen methods to program,
where the order of method calls was always the same. The only tool that could have been
helpful is the keyed print statement, to visualize variables’ values, but this mechanism was too
complex, compared to a simple print that one can interactively comment out. Furthermore, the
breakpoint mechanism was not ready at the time of her internship.

We observed that implementing this type of algorithm (about 300 lines of code, divided in
about 10 functions, with some simple embedded loops), is a current practice among
bioinformaticians. Even though the program corresponding to the published algorithm is
generally available from the authors, researchers might need to apply it to a variant set of data,
or to take only a part of it for a similar problem. However, even though the code she has
developed is now included in biok, and is the basis of the visualization tag described in section
4.4, the implementation represented for her only exercise. Why are we reporting about this
project? It is to show that that cognitive problems raised by programming decrease in a domain-
oriented environment, even if the programming language is a general-purpose language. This
supports the hypothesis described in section 3.6.

5.3 Adding new features in an existing component and
connecting objects
Another bioinformatics student, who had learnt programming for a few months, spent 6 months
(Spring 2002) on a project where she had to refine a graphical object defined in biok, on top of a
Tk widget for visualizing a molecule. She also had to link this object to the alignment editor, in
order for features common to both representations to be simultaneously displayed by the mean
of tags (section 4.4) by using a simple protocol that is provided in biok to enable the user to
synchronize selections (see section 6.3.2 and figure 4). This student was of course able to
program, although as a beginner, for she had just learnt programming. The main benefit of this
project for our approach was to provide a test-bench for our environment, that she used all the

18 CATHERINE LETONDAL

time. In particular, she used the debugging tools (section 4.5) that proved quite useful to
program interactions between graphical objects. She also used the method editor all the time,
even though it is not a full featured editor, and although the use of another external editor such
as emacs is possible in the environment. Several technical aspects we focused on in the design
proved to be really useful for her: as a biologist, she especially liked the focus on the task. The
incremental programming idea, and the direct connection between graphical objects and code
enabled her to better control the appropriate parts of the program.

5.4 Tailoring a visualization function
We illustrate here a situation where a biologist came to me because he knew about the
programming features of biok and he knew that it was the only mean to get his peptide features
visualized in a reasonable time. This scientist wanted to search in a large set of protein
sequences for a signal peptide recognized by non-conventional secretion enzymes. For this
purpose, he had to check whether a short pattern, composed of 3 letters and corresponding to the
following regular expression: A.A, also occurred in his sequences, either before the first
predicted transmembrane segment, or after the last one. Defining a new tag for this purpose,
required:

• to define a new tag in the tag editor as a sub-class of the Toppred tag (a menu to select a
base-class is provided),

• to add about 20 lines of code to:

• search for the positions of the first and last segment in a list of segments,

• search for an occurrence of the A.A pattern before the first position or after the
last one,

• associate a color (red) to this new tag (Figure 6).

It is worth noting that such a specific problem could not have been anticipated in a general-
purpose bioinformatic tool. This newly created tag, once saved, is then available to the user for
the current and next sessions. It can be sent to a colleague as a separate and easy to locate file to
be copied in his or her biok classes directory.

5.5 A prototyping tool for design
One convenient aspect of the sequences alignment editor is its flexibility and, thanks to its
adequation to users domain and work practices, it also proved to be a quite powerful tool to
explore design ideas.

Unexpectedly using the alignment editor to align analyses

 Figure 9 shows the visualization of three independent analyses of the same sequence. Although
the possibility to compare analyses was not really anticipated, it could be quickly developed
during the preparation of a workshop where visualization issues were addressed.

Figure 9: Comparing analyses: predator is a secondary structure analysis, showing helices and
sheets, Toppred is a transmembrane segments predictor, another kind of secondary structure

specific to membrane proteins, and zappo is a physico-chemical analysis, showing hydrophobic
amino-acids, very often found in helices and transmembrane segments

PARTICIPATORY PROGRAMMING 19

Exploring algorithmic problems

 biok has been used in several occasions as an environment to explore new ideas regarding
algorithmic issues. Section 6.1 reports on an attempt to open unexpected points of interactions
within an algorithm. In this situation, we were again able to quickly prototype the idea, before
re-implementing it in a more efficient programming language.

Demonstrating ideas for participatory workshops

 Although we have not directly used biok during workshops, as in [BG91], the tool has often
been used before participatory workshops to demonstrate some ideas and open the design space.

6 Bridging the Gap between End-User Programming
and Open Systems
We have analyzed the programming practices among biologists and observed the context of
programming, which often consists in adapting software to numerous specific and diverse
situations. We wanted, as far as possible, to better deal with unanticipated software evolution
[LZ03] and adaptation, so it appeared important to consider general software flexibility issues.
In [vR99] Rossum advocates for the access to programming for everybody 2 through computing
education, development of better programming tools and the building of a community of users.
In this approach, access to programming not only enables end-users to build small programs or
to customize their tools, but also to modify them. The approach also explicitly relies on the use
of a general-purpose programming language, such as Python, that is easy for beginners to learn
and yet is suited for building real-world professional applications. Thus it goes beyond End-
User Programming as described in [Lie00]. We agree with Rossum that, following the open
source movement, such a desirable development of end-user programming will change the
nature of the software development process. In our approach however, even though our
objectives are very similar, we believe that more results from the EUD field should be taken into
account to enhance access to programming. Powerful programming tools, such as enhanced
Undo or program visualization tools are envisioned in [vR99]. But these tools are still quite
programmer-oriented and lack data visualization features or lack links to the domain-oriented
concepts; this proved critical in the success of biok as a programming environment. Moreover,
we believe that programmability requires powerful mechanisms such as introspection, that are
lacking in Python, as well as powerful concepts such as meta-level interfaces, hence we will
describe which general principles should be applied, related to software flexibility, as described
by the Open Systems approach [KdRB91][Dou96]. This section, by describing how these
principles could be applied in EUD, is an attempt at bridging the gap between EUP, CP4E and
Open Systems. We first report on the specific software flexibility issues we observed in our user
studies (section 6.1). We then relate these problem to the work on reflective architectures and
open system protocols (section 6.2). Finally (section 6.3), we describe how these principles have
been applied in the biok architecture and how they could be adapted to End-User Programming.

6.1 Dimensions of flexibility
Component technology is generally acknowledged as an all purpose solution to achieve software
flexibility, and this is why biok is based on object-oriented constructs. Yet, can we entirely rely
on component technology to address unanticipated software changes by the end-user? [Boy98]
[SBB02] or [CC00] are examples of this approach in the field of bioinformatics, and at least for
the latter ones, are extensively used even by novice programmers. However, we have observed
during our user studies that this approach has some limitations, compared to the flexibility that
biologists need, such as:

1. components should be modifiable (and they are often not),

2. components often do not easily adapt,

3. the vast majority of tools are monolithic applications,

2CP4E: Computer Programming For Everybody

20 CATHERINE LETONDAL

4. flexibility during the computation of a scientific result is often required.

Figure 10: Dimensions of flexibility

Figure 10 shows the important flexibility dimensions that emerged during the user studies
(section 3.7).

1. Open systems or system flexibility addresses the possibilities to change the system, from
simple customization to reflective systems.

2. Integrability or interface flexibility refers to the possibility to easily combine
components. Bioinformatics is a fast evolving field: changes often occur at the
component interface level. Typical solutions include dataflow systems [Biz00],
wrappers, API [SBB02] and Web services [WL02]. Along this dimension, explicit and
interactive interface adaptation features by the end-user could be defined.

3. Interactivity or algorithmic flexibility describes systems that give a significant control on
the computation to the user, from interactive visualization tools to domain-oriented
programming languages such as Darwin [GHKB00]. As observed by Repenning
[Rep93], the whole field of HCI aims at building systems that provide control to the user
at the appropriate moment. In this view, a programmable software enables the user to
control the computation better. Typically, the user can provide hints to the heuristic of
the algorithm. In a multiple alignment of several sequences, the user could control the
order in which the sequences are compared. Interestingly, opening unforeseen points of
control in a tool does not lead to more programming but to more interaction. At one end
of this spectrum there are unconstrained tools, such as spreadsheets and word processors
which according to [NJ94], lead to a level of flexibility necessary for visualizing
scientific data (see an example in section 5.5). The more a system can be progressively
adjusted with parameters in a rich dialog between the user and the tool, the more flexible
and adaptable it becomes [BHP94]. One could even say that the most adjustable systems
are these unconstrained tools we have just mentioned, (i.e.) systems whose “result” are
entirely decided by the user. In bioinformatics, several tools already enable the user to
interactively steer the computation, or even change results. Several tools [Let01b] allow
the manual change of the output of algorithms that compute multiple alignments.
However, changing the results can provoque mistakes. In [LZ03], we describe an
attempt to open new unexpected points of control in the algorithm: this mixed-initiative
approach enhances the final result and prevents such mistakes.

6.2 Reflective and Open Architectures for
Unanticipated Changes
There are systems that anticipate their own modification: this starts from customizable systems,
up to meta and reflective systems.

Nierstrasz [NT95] identifies three main levels of software flexibility (three first levels of
Figure 11):

1. functional parameterization, where the parameters may be values or functions, and
where the system is composed of functions;

PARTICIPATORY PROGRAMMING 21

2. software composition, where the parameterized part includes the scripting to glue
software components;

3. programming , where the user input is the program code, and the system is the
programming language.

The third level is thus the most flexible, but too much freedom does not help the end-user,
who needs scaffoldings.

6.2.1 Flexibility and Reflexivity

Our goal is to achieve a general flexibility, similar to that in programming. In figure 11, the
fourth level shows that everything is “open” to the user, everything in the system becomes a
parameter. Yet, as opposed to free programming (third level in figure 11), here there is a
scaffolding. This scaffolding is composed of an existing program, with components, structures,
examples, as well as an environment to help use these objects. We put this approach in a
coherent way related to free software and open systems, but this freedom does not prevent an
inexperienced user to be involved.

Figure 11: Software levels of flexibility: the blank part is the “free” part for user input, and the
grey part the system.

As demonstrated by [Rep93], one can consider that the more a system makes its internal
objects - structure, functions, values, data structures - explicit, the more flexible it is. This
principle is indeed made systematic in the reflective systems approach, which uses internal
representation for standard computation and behavior [Mae87]. The principle that we have
followed in biok, is both to provide a structured underlying architecture and framework to help
the understanding of the code (see section 6.3), and to provide dynamic navigation tools to help
locate source code involved in a specific feature (section 4.5 and figure 7).

6.2.2 Meta-objects protocols

Providing a reflective architecture requires a specific internal design, where internal components
are available as an additional meta-level interface, potentially subject to modifications. The
meta-object protocol (MOP) technology [KdRB91] gives a model of an explicit modification
protocol for systems where changes of the system are anticipated. MOP were originally intended
for object-oriented languages, to let the user change the way object, classes, inheritance, etc...
behave. Figure 12 illustrates that this approach can be transposed to standard applications, as
was done by Rao [Rao91] for a window system or by Dourish [Dou96] for a CSCW toolkit.

Figure 12: From Meta-Object Protocol to Meta-Application Protocol

22 CATHERINE LETONDAL

6.3 Flexibility for the User
A reflective architecture does not only require an additional interface. Giving a non-specialist
that many possibilities to perform complex actions raises a usability issue. As explained by
[Mor97], or as modeled by [dCdS03], the more the user interface offers programmability, the
less usable the system is, since the user interface language departs from the user’s task.

To avoid user confusion, a compromise must be found to deal with these different
representations. How can we help the user understand which part of the source code corresponds
to such and such user interface components? How can we articulate both languages by using an
intermediate representation level? How can we structure the code in small enough components
that correspond to the user’s domain task units? In other words, internal architecture has to be
handled and designed as an explicit, although additional, user interface. In section 3.7, we
explained that this design was greatly influenced by the observations we made during interviews
and the ideas that emerged in participatory workshops.

6.3.1 Explicit Intermediate Meta-level Interfaces

In the context of EUP, several approaches exist to manage intermediate levels of access from the
user interface to the code. Morch [Mor94] suggests a design where tailoring can occur at three
levels: customization, integration, or extension. Extension can be performed through three kinds
of interfaces: the standard user interface, design rationales or source code. The design rationale
fills the gap between the source code and the user interface. It is a pedagogical go-between
which explains the behavior of the application units. For instance, a diagram can explain how
the code deals with mouse movements in a drawing application.

More generally, our approach draws from the MAP model (figure 12). Not only must this
interface be explicit, it must also belong to the user’s working environment so that the user does
not have to switch from his or her work environment to an encoding environment.

Figure 13: Adding intermediate programming levels and improving the programming
environment usability: two complementary approaches

In order to achieve this, we have built two kinds of intermediate interfaces that are directly
accessible from the application: intermediate programming levels and a programming interface
(Figure 13). Programming levels and intermediate meta-level user interfaces include:

1. a formula spreadsheet-like level (section 4.3),

2. a tag programming level to visualize biological functions (section 4.4),

3. a scripting level to facilitate program composition,

4. an object-oriented implementation level with a full-fledged integrated programming
environment (section 4.5).

6.3.2 Internal Framework: Explicit Elements of a Protocol

In addition, we not only structure the software in order to make it “source-navigable”, we also
borrow from the MOP approach the idea of having the source code follow a documented and
explicit framework. In order to do this, we need well-known method names where the user can

PARTICIPATORY PROGRAMMING 23

learn to go 3 . In biok, graphical objects define a set of protocols:

• Graphical display. Graphical objects define draw and redisplay methods for
graphical components to be created, initialized and refreshed. If, for example, fields were
missing in the tool for displaying curves, the user would just have to edit the draw
method. This is what happened with a student who wanted to add the x and y fields in
the initial tool (Figure 5).

• Synchronized selections. A simple protocol has been defined with another biology
student as a set of three generic methods. These methods define which selections in
objects should be synchronized (interact); what to do when a synchronization should
occur (propagate); how to enforce selection in the target object (highlight).

• Persistence. Two methods deal with object contents (value) and persistence (save).

6.4 Concluding Remarks on Flexibility
In this section, we have tried to show that general software flexibility is desirable for educated
end-users, as long as explicit tools are designed for it, and that this scaffolded flexibility is
feasible through reflective mechanisms. We preferred to adopt a reflective architecture rather
than a more explicit meta-descriptive system. The first reason is that the latter solution is more
costly: we have chosen to reuse descriptive constructs (classes and methods) instead of rewriting
a language, and to have them available and modifiable through introspection. Secondly, true
reflective mechanisms ensure a causal connection between the running system and its source
code [Mae87]. Finally, an explicit meta-descriptive system requires an additional abstraction
level. Bentley et al [BD95] have demonstrated that computer abstractions, unlike mathematical
ones, are often compromises, leaving potentially important aspects out of its scope. Hence,
instead of being a positive tool to structure application, they become a barrier.

7 Conclusion
We built biok as an environment that enables biologists to conduct data analyses, combine them
and visualize the results with graphical tools. In this environment, and according to their needs,
biologists can locate and modify the code of methods, and create new ones. Through familiar
entities such as programmable graphical objects corresponding to domain concepts, biok makes
programming more accessible, but it still requires a basic knowledge of programming, as in
[vR99] or [Eis95]. Being embedded within a running application, the programming meta-level
has to rely on a well designed internal architecture [KdRB91], where flexibility dimensions
carefully correspond to the users needs. Participatory programming, a process that integrates
participatory design and End-User Programming, leads to enhanced flexibility in the right places
[Tri92][SKW97][KM95]. Our work consists more in the exploration of the problem space: we
wanted to investigate on the context of the programming tasks rather than programming itself,
by addressing the following issues: what do users want or need to program? when do users want
or need to program? The main outcome was that biologists preferred to program in the context
of normal software use, or even that they preferred not to program at all. An important
consequence is that a software with programming facilities should, through a careful design,
both maximize the available programming features, and minimize the programming needs. This
is why a better cooperation should take place in the building of software. Indeed, we discovered
that problems arising when biologists need to program lie in the way common software is built
rather than in the difficulty of the programming activity itself. This is why we shifted the
problem focus from programming to flexibility, in order to take into account the fact that
programming, in our context, is neither the goal nor the main difficulty for biology researchers.

Acknowledgements

 My thanks to the many biologists, programmers and bioinformaticians who participate to the
interviews and workshops. Special thanks to Wendy Mackay, Michel Beaudouin-Lafon, Katja

3Notice however that we are not looking for a framework-based approach. biok is not an abstract
set of classes that first need to be instantiated. Yet, there is a documented framework within the
running application. In biok, programming is possible, not required.

24 CATHERINE LETONDAL

Schuerer, Alexandre Dehne Garcia, Fabienne Dulin, Albane Le Roch, Alexis Gambis, Marie-
France Sagot, Thierry Rose, Pierre Tuffery, Victoria Dominguez, Francois Huetz, Lionel
Frangeul, Bertrand Neron, Pierre Dehoux and Stephane Bortzmeyer. Many thanks to Andrew
Farr for his helpful assistance on the English.

References
[BD95] R. Bentley and P. Dourish. Medium versus mechanism: Supporting collaboration

through customization. In In Proceedings of ECSCW’95, pages 133–148, 1995.

[BG91] S. Bodker and K. Gronbaek. Design in action: From prototyping by demonstration
to cooperative prototyping. In Design at Work: Cooperative Design of Computer
Systems, Chapter 11., pages 197–218. Hillsdale, New Jersey Lawrence Erlbaum
Associates, 1991.

[BHP+94] M. M. Burnett, R. Hossli, T. Pulliam, B. VanVoorst, and X. Yang. Toward
visual programming languages for steering in scientific visualization: a taxonomy.
IEEE Computational Science and Engineering, pages 44–62, 1994.

[Biz00] J.W. Bizzaro. Distributing scientific applications with Gnu Piper. Technical
report, Bioinformatics.org, 2000. http://bioinformatics.org/piper.

[Bla00] Alan F. Blackwell. Swyn: A visual representation for regular expressions. In Your
Wish is My Command: Giving Users the Power to Instruct their Software. Morgan
Kaufmann, 2000.

[Bla02] Alan F. Blackwell. What is programming? In Proceedings of PPIG 2002, pages
204–218, 2002.

[Boy98] John Boyle. A visual environment for the manipulation and integration of java
beans. Bioinformatics, Volume 14, Issue 8, September 1998, pages 739–748,
September 1998.

[CC00] Brad Chapman and Jeff Chang. Biopython: Python tools for computation biology.
ACM-SIGBIO Newsletter, August 2000.

[CFL+03] M.F. Costabile, D. Fogli, C. Letondal, P. Mussio, and A. Piccinno. Domain-
expert users and their needs of software development. In In Proceedings of the HCI
2003 End User Development Session, 2003.

[CR87] J. M. Carroll and M. B. Rosson. Interfacing Thought: Cognitive Aspects of
Human-Computer Interaction. J.M. Carroll ed., chapter 5, The paradox of the active
user, pages 80–111. Cambridge, Mass: MIT Press, 1987.

[CSBA90] J. M. Carroll, J. A. Singer, R. K. E. Bellamy, and S. R. Alpert. A view matcher
for learning Smalltalk. In Proceedings of ACM CHI’90 Conference on Human
Factors in Computing Systems, pages 431 – 437. ACM Press, 1990.

[Cyp93] Allen Cypher. Watch What I Do. Programming by Demonstration. MIT Press,
1993.

[DA89] A. DiSessa and H. Abelson. Boxer: a reconstructible computational medium. In
Studying the Novice Programmer, pages 467–481. Lawrence Elbaum Associates,
1989.

[dCdS03] C. K. V. da Cunha and C. S. de Souza. Toward a culture of end-user
programming understanding communication about extending applications. In
Proceedings of the CHI’03 Workshop on End-User Development, April 2003.

[DE95] C. DiGiano and M. Eisenberg. Self-disclosing design tools: a gentle introduction
to end-user programming. In G. Olson and S. Schuon, editors, In Proc. DIS’95
Symposium on action Systems, pages 189–197. ACM Press, Ann Arbor, Michigan,
1995.

[DiS99] Andy DiSessa. Changing Minds: Computers, Learning, and Literacy. MIT Press,
1999.

[DLL03] Y. Dittrich, L. Lundberg, and O. Lindeberg. End user development by tailoring.
Blurring the border between use and development. In Proceedings of the CHI’03
Workshop on End-User Development, April 2003.

PARTICIPATORY PROGRAMMING 25

[Dou96] Paul Dourish. Open Implementation and Flexibility in CSCW Toolkits. PhD
thesis, Dept of Computer Science, University College, London, 1996.

[Eis95] Michael Eisenberg. Programmable applications: Interpreter meets interface. ACM
SIGCHI Bulletin, 27(2):68–93, April 1995.

[Eis97] Michael Eisenberg. End-user programming. In Handbook of Human Computer
Interaction second, completely revised edition., pages 1127–1146. North-Holland,
1997.

[Fis03] Gerhard Fischer. Meta-design: Beyond user-centered and participatory design. In
In Proceedings of HCI International 2003, Constantine Stephanidis (ed.), Crete,
Greece, pages 78–82, June 2003.

[FO02] G. Fischer and J. Ostwald. Seeding, evolutionary growth, and reseeding: Enriching
participatory design with informed participation. In Proceedings of he Participatory
Design Conference (PDC’02), T. Binder, J. Gregory, I. Wagner (Eds.), Malm_
University, Sweden, June 2002, CPSR, P.O. Box 717, Palo Alto, CA 94302, pages
135–143, 2002.

[FS00] G. Fischer and E. Scharff. Meta-design–design for designers. In In Proceedings the
3rd International Conference on Designing Interactive Systems (DIS 2000); eds: D.
Boyarski and W. Kellogg, New York City, ACM., pages 396–405, August 2000.

[GHKB00] H.H. Gonnet, M.T. Hallett, C. Korostensky, and L. Bernardin. Darwin v. 2.0:
an interpreted computer language for the biosciences. Bioinformat ics ,
16(2):101–103, 2000.

[GN92] M. Gantt and B. A. Nardi. Gardeners and gurus: patterns of cooperation among
cad users. In ACM conference on Human Factors in Computing Systems
(Proceedings) (CHI ’92), pages 107–117. ACM Press, 1992.

[Gre93] Joan Greenbaum. PD, a personal statement. CACM, 36(6):47, June 1993.

[Hei92] Gunnar Von Heijne. Membrane protein structure prediction. hydrophobicity
analysis and the positive-inside rule. J. Mol. Biol, 225(2):487–494, 1992.

[HK91] A. Henderson and M. Kyng. Design at Work: Cooperative Design of Computer
Systems. Joan Greenbaum and Morten Kyng ed., chapter There’s no place like home:
Continuing Design in Use, pages 219–240. Hillsdale, New Jersey Lawrence Erlbaum
Associates, 1991.

[Kah96] Helge Kahler. Developing groupware with evolution and participation. a case
study. In Proceedings of the Participatory Design Conference 1996 (PDC’96),
Cambridge, MA, pages 173–182, 1996.

[KdRB91] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Meta-Object
Protocol. MIT Press, Cambridge (MA), USA, 1991.

[KM95] A. Kjaer and K.H. Madsen. Participatory analysis of flexibility. CACM ,
38(5):53–60, May 1995.

[lab87] Labview: a demonstration. unpublished, 1987.

[Let99a] Catherine Letondal. A practical and empirical approach for biologists who almost
program. In CHI’99 Workshop on End-User Programming and Blended-User
Programming, May 1999. http://www.pasteur.fr/ letondal/Papers/chi_pp.html.

[Let99b] Catherine Letondal. Résultats de l’enquête sur l’utilisation de l’informatique à
l’institut pasteur. Technical report, Institut Pasteur, Paris, April 1999.

[Let99c] Catherine Letondal. Une approche pragmatique de la programmation pour des
biologistes qui programment presque. In Actes Onzième confèrence francophone sur
l’Interaction Homme Machine, IHM’99, Montpellier (France), tome II, pages 5–8,
November 1999. http://www.pasteur.fr/ letondal/Papers/pc_ihm99.ps.gz.

[Let00] Catherine Letondal. A web interface generator for molecular biology programs in
UNIX. Bioinformatics, 17(1):73–82, 2000.

[Let01a] Catherine Letondal. Programmation et interaction. PhD thesis, Université de
Paris XI, Orsay, 2001.

[Let01b] Catherine Letondal. Software review: alignment edition, visualization and
presentation. Technical report, Institut Pasteur, Paris, France, may 2001.

26 CATHERINE LETONDAL

http://bioweb.pasteur.fr/cgi-bin/seqanal/review-edital.pl.

[LF95] H. Lieberman and C. Fry. Bridging the gulf between code and behavior in
programming. In ACM conference on Human Factors in Computing Systems
(Summary, Demonstrations) (CHI ’95), pages 480–486. ACM Press, 1995.

[Lie00] Henry Lieberman. Your Wish is My Command: Giving Users the Power to Instruct
their Software. Morgan Kaufmann, 2000.

[LM04] C. Letondal and W. E. Mackay. Participatory programming and the scope of
mutual responsibility: Balancing scientific, design and software commitment. In
Proceedings of the eighth biennial Participatory Design Conference (PDC 2004),
Toronto, Canada, July 2004.

[LS02] C. Letondal and K. Schuerer. Course in informatics for biology. Technical report,
Institut Pasteur, Paris, 2002. http://www.pasteur.fr/formation/infobio.

[LZ03] C. Letondal and U. Zdun. Anticipating scientific software evolution as a combined
technological and design approach. In USE2003: Second International Workshop on
Unanticipated Software Evolution, 2003.

[Mac91a] Wendy E. Mackay. Triggers and barriers to customizing software. In
Proceedings of ACM CHI’91 Conference on Human Factors in Computing Systems,
pages 153–160. ACM Press, 1991.

[Mac91b] Wendy E. Mackay. Users and Customizable Software: A Co-Adaptive
Phenomenon. PhD thesis, Massachusetts Institute of Technology, 1991.

[Mae87] Patti Maes. Concepts and experiments in computational reflection. In Proc. of the
OOPSLA-87: Conference on Object-Oriented Programming Systems, pages
147–155, Languages and Applications, Orlando, FL, 1987.

[MCLM90] A. MacLean, K. Carter, L. Lovstrand, and T. Moran. User-tailorable systems:
Pressing the issues with buttons. In Proceedings of ACM CHI’90 Conference on
Human Factors in Computing Systems, pages 175–182. ACM Press, 1990.

[Mor94] Anders Morch. Designing for radical tailorability: Coupling artifact and rationale.
Knowledge-Based Systems, 7(4):253–264, December 1994.

[Mor97] Anders Morch. Method and Tools for Tailoring of Object-oriented Applications:
An Evolving Artifacts Approach. PhD thesis, Department of Informatics, University
of Oslo, April 1997.

[Nar93] Bonnie A. Nardi. A small matter of programming: perspectives on end user
computing. MIT Press, 1993. 162 pages.

[NJ94] Bonnie A. Nardi and Jeff A. Johnson. User preferences for task specific vs. generic
application software. In ACM conference on Human Factors in Computing Systems
(Proceedings) (CHI ’94), pages 392–398. ACM Press, 1994.

[NT95] O. Nierstrasz and D. Tsichritzis, editors. Object-Oriented Software Composition.
Prentice Hall, 1995. 361 pages.

[NZ00] G. Neumann and U. Zdun. Xotcl, an object-oriented scripting language. In
Proceedings of 7th Usenix Tcl/Tk Conference (Tcl2k), Austin, Texas, Feb 14-18,
2000.

[OAKB01] V. L. O’Day, A. Adler, A. Kuchinsky, and A. Bouch. When worlds collide:
Molecular biology as interdisciplinary col laboration. In In Proceedings of
ECSCW’01, pages 399–418, 2001.

[Ous98] John K. Ousterhout. Scripting: Higher level programming for the 21st century.
IEEE Computer, 31(3):23–30, 1998.

[PL92] D. Ploger and E. Lay. The structure of programs and molecules. Journal of
Educational Computing Research, 8(3):347–364, 1992.

[PRM01] J.F. Pane, C.A. Ratanamahatana, and B. Myers. Studying the language and
structure in non-programmers’ solutions to programming problems. International
Journal of Human-Computer Studies, 54(2):237–264, February 2001.

[Rao91] Ramana Rao. Implementational reflection in silica. In ECOOP ’91 (LNCS 512),
pages 251–267. ACM Press, July 1991.

PARTICIPATORY PROGRAMMING 27

[RASW90] J. Rasure, D. Argiro, T. Sauer, and C. S. Williams. A visual language and
software development environment for image processing. International Journal of
Imaging Systems and Technology, 2:183–199, 1990.

[Rep93] Alexander Repenning. Agentsheets: A Tool for Building Domain-Oriented
Dynamic, Visual Environments. PhD thesis, University of Colorado at Boulder,
1993.

[SBB+02] J. E. Stajich, D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz, C. Dagdigian,
G. Fuellen, J. G.R. Gilbert, I. Korf, H. Lapp, H. Lehvaslaiho, C. Matsalla, C. J.
Mungall, B. I. Osborne, M. R. Pocock, P. Schattner, M. Senger, L. D. Stein,
E. Stupka, M. D. Wilkinson, and E. Birney. The bioperl toolkit: Perl modules for the
life sciences. Genome Research, 12(10):1611–1618, 2002.

[Sch03] Katja Schuerer. Course in informatics for biology: Introduction to Algorithmics.
Technica l r epor t , Ins t i tu t Pas teur , Par i s , F rance , 2003 .
http://www.pasteur.fr/formation/infobio/algo/Introduction.pdf.

[SKW97] O. Stiemerling, H. Kahler, and V. Wulf. How to make software softer -
designing tailorable applications. In Proc. DIS’97 (Amsterdam), pages 365–376,
1997.

[SMU95] R. B. Smith, J. Maloney, and D. Ungar. The Self-4.0 user interface:
Manifesting a system-wide vision of concreteness, uniformity, and flexibility. In in
Proc. OOPSLA ’95, pages 47–60, 1995.

[SU95] R. B. Smith and D. Ungar. Programming as an experience: The inspiration for
Self. In in Proc. ECOOP ’95, 1995.

[SUC92] R. B. Smith, D. Ungar, and B-W. Chang. The use-mention perspective on
programming for the interface. In Languages for Developing User Interfaces. Jones
and Bartlett, 1992.

[Tis01] James Tisdall. Why biologists want to program computers. Technical report,
O’Reilly, October 2001. http://www.oreilly.com/news/perlbio_1001.html.

[TNQL03] P. Tuffery, B. Neron, M. Quang, and C. Letondal. i3DMol: Molecular
visualization. Technical report, Institut Pasteur, Paris, France, 2003.
http://www.pasteur.fr/ letondal/biok/i3DMol.html.

[Tri92] Randall H. Trigg. Participatory design meets the MOP: Informing the design of
tailorable computer systems. In Proceedings of the 15th IRIS (Information systems
Research seminar In Scandinavia) Gro Bjerknes, Tone Bratteteig, Karlheinz Kautz
(eds.), August 1992, Larkollen, Norway., 1992.

[vR99] Guido van Rossum. Computer programming for everybody. Technical report,
CNRI: Corporation for National Research Initiatives, 1999.

[WG01] V. Wulf and B. Golombek. Direct activation: A concept to encourage tailoring
activities. Behaviour and Information Technology, 20(4):249 – 263, 2001.

[Win95] Terry Winograd. From programming environments to environments for
designing. CACM, 38(6):65 – 74, June 1995.

[WL95] D. Wetherall and C. J. Lindblad. Extending Tcl for dynamic object-oriented
programming. In Proceedings of the Tck/Tk Workshop 95, Toronto, Ontario, July
1995, 1995.

[WL02] MD Wilkinson and M. Links. Biomoby: an open-source biological web services
proposal. Briefings in Bioinformatics, 3(4):331–341, December 2002.

[WP02] L. Wang and P. Pfeiffer. A qualitative analysis of the usability of Perl, Python,
and Tcl. In Proceedings of The Tenth International Python Conference, 2002.

