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ABSTRACT  

Car navigation performance improvement is a subject of 

great interest nowadays especially with the development 

of autonomous car navigation. In urban environments, it 

is often difficult to rely on standalone Global Navigation 

Satellite System (GNSS) to obtain continuously an 

accurate and reliable navigation solution. In fact, the 

presence of buildings and other structures hindering the 

reception of GNSS signals (blockage, multipath, NLOS, 

poor geometry, etc.) makes it difficult for GNSS to 

provide accurate, continuous and reliable navigation 

solution in such an environment. A possible solution for 

this problem is to fuse information from a limited number 

of GNSS measurements and other sensors in order to 

enhance the system performance in terms of accuracy and 

availability. In this paper, we propose an integrated 

navigation system that fuses different sensor information 

in order to improve the car navigation performance in 

urban environments. A Low-cost navigation solution is 

proposed since the intended application is cost-sensitive. 

The proposed solution integrates information from an 

Inertial Measurement Unit (IMU), a GNSS receiver, a 

Wheel Speed Sensor (WSS) and a vision module based on 

monocular Simultaneous Localization And Mapping 

(SLAM). Motion constraints related to the movement of a 

land vehicle on the ground are also taken into account. 

 

INTRODUCTION  

The requirements in terms of navigation accuracy, 

integrity, continuity and availability are increasing for 

land vehicles especially with the development of 

autonomous land vehicles. In this work, the targeted 95% 

accuracy is of 1m for the horizontal position and of 1° for 

the attitude. These requirements are set by a French 

project called MIMOSA aiming to develop a low-cost 

navigation equipment for land vehicles capable of 

providing continuously an accurate navigation solution. 

One of the targeted applications of this project is the 

positioning of the garbage trucks in urban environments. 

In the last decades, GNSS has been the most widely used 

system for navigation especially with its decreasing cost 

over the years. However, despite of its capability to 

provide absolute navigation information with long time 

accuracy, this system suffers from the problems related to 

signal propagation especially in urban environments 

where buildings, trees and other structures hinder the 

reception of GNSS signals. In addition to nominal errors, 

GNSS measurements suffer in urban environments from 

blockage reducing the number of satellites in view and 

resulting either in poor geometry degrading the navigation 

performance, or even in the unavailability of GNSS if the 

number of satellites of view is less than 4. The problem of 

unavailability will be handled in the near future with the 

development of new constellations such as GALILEO, 

BEIDOU, etc. The most important issue in urban 

environments is signal reflections which result in 

significant positioning error. When the Line-Of-Sight 

(LOS) signal is reflected and received with the reflected 

signal, this is known as multipath. If the LOS signal is 

blocked and only its reflection arrives to the receiver 

antenna, this is known as Non-Line-Of-Sight (NLOS) 

signal. The latter error results in a positive pseudo-range 

measurement error equal to the additional path delay and 

its value may exceed in some cases a kilometer [1]. Many 

techniques are proposed in the literature in order to 

mitigate these problems and improve the GNSS accuracy 

[1]. Unfortunately, all these techniques have limitations as 

highlighted in [1].  



A possible way to overcome these problems is to fuse the 

“good” GNSS measurements with other sensors having 

complementary advantages. In fact, by exploiting the 

complementarity of sensors, hybridization algorithms can 

improve the navigation solution compared to solutions 

provided by each stand-alone sensor.  

Generally, the most widely implemented hybridization 

algorithms for land vehicles fuse GNSS measurements 

with inertial and/or odometric data [2] [3]. Thereby, these 

Dead-Reckoning (DR) sensors ensure the system 

continuity when GNSS information is unavailable and 

improve the system performance when GNSS signals are 

corrupted, and in return the GNSS limits the drift of the 

DR solution if it is available. However the performance 

achieved by this hybridization depends thoroughly on the 

quality of the DR sensor used especially when GNSS 

signals are degraded or unavailable. 

Since the targeted application is cost-sensitive and low-

cost sensors should be used, the common solution of 

fusing GNSS with inertial and/or odometric data 

mentioned previously cannot provide the high 

performance required by the project. For this reason, the 

SLAM is proposed as an additional sensor having the 

potential to improve the navigation performance. In fact, 

cameras have become one of the most attractive 

positioning sensors in the last decades and it has been 

proven that vision techniques are capable of providing 

accurate navigation solution [4] while having reasonable 

cost. In general, vision systems reach very accurate results 

when using stereovision. However, the main drawback of 

such a configuration compared to a single camera is that 

in large-scale environments such as streets, the images 

captured by the cameras might contain objects that are 

placed too far. Processing these images does not allow 

recovering the depth values unless the stereo camera 

baseline is of few meters [5]. In addition to this 

compactness issue, a calibration issue arises when a 

multi-camera system is used and the calibration of a 

single camera is much easier [6]. Therefore, a single 

camera will be considered in this study. Nonetheless, in 

case of a monocular vision module, a classical issue due 

to the projective nature of a single camera arises: the 

depth information of a 3D world point projected onto the 

image plane cannot be recovered using a single camera 

since a single 2D image point is the projection of an 

infinite number of 3D world points. This depth ambiguity 

results in a scale factor affecting the position estimated by 

the visual module and decreases dramatically its accuracy. 

Therefore, the visual navigation solution accuracy 

depends thoroughly on the good estimation of this scale 

factor. However the attitude estimation using a monocular 

camera is free from scale. This latter visual information is 

very important especially with the use of low-cost inertial 

sensors with bad gyroscope quality. In order to estimate 

this information, a vision module based on monocular 

SLAM technique is used as a black box providing the 

attitude. A review of SLAM algorithm is performed in 

[7]. Compared to simple visual odometry, this technique 

has the advantage of reducing the estimation error using 

the bundle adjustment process described in [8]. In this 

study, only the visual heading provided by the SLAM is 

used since we focus on horizontal navigation 

performance. 

In addition to the low-cost sensors mentioned above, 

motion constraints for land vehicles are costless solutions 

capable of improving navigation performance. These 

constraints consist of Non-Holonomic-Constraints (NHC) 

[9], Zero Velocity Update (ZVU) [10] and Zero Angular 

Rate Update (ZARU) [10]. NHC assume that the vehicle 

does not move in the plane perpendicular to the forward 

direction. ZVU and ZARU are applied when the 

navigation system is stationary. They respectively 

constrain the vehicle velocity and angular rate to be equal 

to zero when a stationarity is detected. When GNSS is 

unavailable or corrupted, this information helps reducing 

the navigation solution drift. 

The work proposed in this paper takes advantage of all the 

low-cost possible ways to improve the navigation solution 

mentioned above and uses their information in an 

integrated multi-sensor system. In the proposed 

architecture, the Inertial Navigation System (INS) is 

selected as the reference sensor since it provides a 

complete and continuous navigation solution including 

position, velocity and attitude with the highest rate. The 

INS estimation errors are corrected by GNSS, vision, 

WSS and motion constraints measurements using an 

error-state EKF based on a closed loop configuration. 

When GNSS measurements (pseudo-ranges and Doppler) 

are available, an innovation test [10] checking the 

consistency of new measurements with previous 

information is applied in order to exclude measurements 

considered as corrupted. When GNSS is unavailable, the 

filter keeps on running with the other measurements. 

Since the GNSS measurements have the lowest rate and 

are not necessarily available, this architecture is such as a 

virtual DR sensor is running continuously using the 

inertial, visual, odometric and motion constraints 

measurements. When GNSS measurements arrive, they 

allow the calibration of the DR system, otherwise the DR 

system works continuously without having a large drift.  

The paper is organized as follows. First the notations and 

coordinate frames used are described. Second, the 

integrated navigation system is detailed and the fusion 

strategy is proposed. The equations of the process and 

measurement models are presented and discussed. Then, 

the performance analysis of the proposed algorithm is 

performed. Finally, conclusions are given at the end the 

paper. 

 

COORDINATE FRAMES AND NOTATIONS 

Before tackling the sensor fusion strategy, it is important 

to remind the different coordinate frames associated to the 

sensors and the relationship between them.  

Figure 1 illustrates the coordinate frames we use: we 

assume that the IMU platform and the vehicle body frame 

(b) are aligned. This frame is attached to the vehicle 

center of gravity. Its X-axis points towards the right side 



of the vehicle, its Y-axis points towards the forward 

direction and its Z-axis points upwards and completes the 

right handed frame. The local frame (l) is defined by the 

East North Up (ENU) local tangent plane. This frame is 

attached to a local point (the initial navigation point is 

chosen in our study), and its X, Y and Z axis point 

towards the east, north and up directions, respectively. 

The Earth-Centered-Earth-Fixed frame (E) is attached to 

the Earth center of mass. Its X-axis points towards the 

intersection between the prime meridian and the equator 

plane, its Z-axis extends through the Earth spin axis and 

its Y-axis completes the right handed coordinate system. 

The geodetic coordinates (latitude, longitude and altitude) 

are defined with respect to this coordinate system. The 

vision frame (v) is the frame in which the SLAM provides 

its outputs. This frame is attached to the initial pose of the 

vehicle [11] and is defined up to rotation with respect to 

the (l) frame. If we assume that the IMU and the camera 

are aligned, then this rotation corresponds to the initial (b) 

to (l) rotation. 

 

 
Figure 1: Reference frames 

In this paper, the notations with the hat, ^, are the 

estimated quantities and those with the tilde, ~, are the 

measured quantities. The notations without hat or tilde are 

the actual quantities.  

We assume that all the lever arms and orientation between 

the aiding sensors and the IMU are perfectly known and 

are measured before the navigation starts. Let us note: 

- ∆𝒑𝐺
𝑏  the lever arm between GPS antenna and IMU:  

- ∆𝒑𝑤
𝑏  the lever arm between the center of the rear axle of 

the vehicle and IMU:  

Table 1 specifies, for each sensor, the outputs and the 

associated coordinate system. 

Nav. 

module 
Output Frame 

Frame 

Origin 

INS 

INS Position �̂�𝑏
𝑙  

(𝑙) 

Initial 

vehicle 

position 
INS Velocity �̂�𝑏

𝑙  

INS Attitude �̂�𝑏2𝑙  

GNSS 
ith Pseudo-range �̃�𝐺

𝑖  
-- -- 

ith Doppler �̃�𝐺
𝑖  

VSLAM Camera heading �̃�𝑆𝐿𝐴𝑀 (𝑣) 

Initial 

vehicle 

position 

WSS Velocity �̃�𝑤
𝑏𝑦

 (𝑏) 

Vehicle 

center of 

mass 

Table 1: Sensor outputs 

NAVIGATION FILTER 

Multi-sensor system design 

The aim of this study is to develop a low-cost multi-

sensor fusion system capable of providing accurate 

navigation information for land vehicles in urban 

environments. The proposed architecture consists of a 

single frequency GNSS receiver providing pseudo-range 

and Doppler measurements for each satellite in view, a 

low-cost IMU, a vision module processing the images of a 

single camera using the SLAM technique and providing 

heading information, a WSS providing the vehicle 

velocity and constraints describing the motion of the 

vehicle. The IMU is selected as the reference sensor since 

it is the only sensor continuously providing a complete 

navigation solution (position, velocity and attitude) at the 

highest rate. The mechanization providing these quantities 

is implemented in the (l) frame. As shown in Figure 2, 

the INS mechanization errors are corrected by the 

measurements of the other sensors. An error-state EKF is 

used in order to estimate the corrections that should be 

applied to the inertial navigation solution. As highlighted 

in [2] and [12], it is preferred to express the position error 

in meters than in radians in order to avoid numeric 

instability inside the filter. Hence, the (l) frame is used as 

the reference system instead of geodetic coordinates. The 

estimated IMU measurement errors (biases and scale 

factors) are fed back to the mechanization since we have 

to deal with a low-cost IMU. Otherwise the 

mechanization can experience unbounded error growth, 

and the assumption of small errors used in the 

linearization process of the filter can be violated [2]. WSS 

measurement is affected by an unknown scale factor due 

to the tire radius change. This scale factor should be 

estimated and the WSS velocity should be corrected in 

order to obtain a good velocity measurement used to 

update the Kalman filter. Since the WSS provides only 

the forward velocity (along 𝑌𝑏), the NHC completes the 

three-dimensional velocity by assuming that for a ground 

vehicle, the lateral and vertical velocities (along 𝑋𝑏 and 

𝑍𝑏) should be equal to zero if the vehicle does not slip or 

jump.  

 

 
Figure 2: Filter architecture 



The ZVU is used when a stationarity is detected. This 

detection is based on the comparison of the WSS velocity 

mean with a threshold over a suitable time window. 

Normally, the ZVU is useless in the presence of the WSS 

and NHC. However, the assumption of no side slip of the 

NHC could be violated in practical situations. To avoid 

NHC violations, NHC is modelled as: 

 

𝑣𝑥𝑏 = 𝜂𝑥𝑏 
 

(1) 

𝑣𝑧𝑏 = 𝜂𝑧𝑏 

 

(2) 

where 𝜂𝑥𝑏 and 𝜂𝑧𝑏 are Gaussian white noise sources with 

zero mean and a relatively high standard deviation equal 

to 0.5 m/s [12]. When a stationarity is detected, the trust 

that we have in a zero velocity increases and the standard 

deviation associated to the velocity measurement can be 

decreased. We set this standard deviation to 0.01 m/s.  

The ZARU is also applied in vehicle stationarity. It is also 

applied when a linear motion is detected. This detection is 

performed by comparing the standard deviation of the 

yaw rate obtained from differential odometry with a 

threshold or by using the steering angle information if 

available. 

The idea of using visual, odometric and motion 

constraints measurements to correct the inertial sensor is 

to form a DR system running without interruption. This 

system is capable of remarkably reduce the drift 

compared to a stand-alone running inertial system. 

As discussed in the introduction, GNSS measurements, if 

available, are very likely to be corrupted by reflections 

and blockage. Therefore, measurements affected by large 

errors should be detected and removed to avoid the 

degradation of the navigation solution. This detection is 

performed by an innovation test [10] that compares the 

normalized Kalman filter innovation to a threshold and 

removes measurements that are not consistent with 

previous information. The remaining measurements are 

used to update the filter with absolute information. If 

GNSS is not available, then the DR system keeps on 

running to ensure the navigation continuity. 

 

Inertial Sensor Model 

An IMU is at least composed of accelerometers and 

gyroscopes. The accelerometers measure the specific 

force and the gyroscopes measure the angular rate. The 

measurements are provided in the body frame. In this 

work, 3 accelerometers and 3 gyroscopes are used. These 

measurements are inevitably affected by errors. For a 

low-cost IMU, these errors mainly consist of biases, scale 

factors and noise [12]. In this study, the inertial 

measurements are modelled by the following equations: 

 

�̃�𝑏 = (𝑰𝟑 + 𝒌𝑎) ∙ 𝒇𝑏 + 𝒃𝑎 + 𝜼𝑎 (3) 

 

�̃�𝑏 = (𝑰𝟑 + 𝒌𝑔) ∙ 𝝎𝑏 + 𝒃𝑔 + 𝜼𝑔 (4) 

 

where �̃�𝑏 and �̃�𝑏 are respectively the measured specific 

force and angular rate in the body frame. 𝒇𝑏 and 𝝎𝑏  are 

the actual specific force and angular rate. 𝒌𝑎 and 𝒌𝑔are 

the scale factors. 𝒃𝑎and 𝒃𝑔 are the biases, and 𝜼𝑎 and 𝜼𝑔 

are zero-mean white Gaussian noises. 

 

GNSS measurement model 

The code pseudo-range measurement is the distance 

between the GNSS satellite and the receiver antenna. This 

measurement is computed from the propagation time 

between the transmission of the signal by the satellite and 

its reception by the receiver, and the multiplication of this 

time by the speed of light c. The fact that the clocks of the 

satellites and the receiver are not perfectly synchronized 

to GPS time, introduces a clock bias that drifts within 

time. Therefore, the pseudo-range measurement can be 

modeled as: 

 

�̃�𝐺
𝑖 = 𝑟𝑖 + 𝑐𝛿𝑡0 + 𝜂𝜌𝐺

𝑖    (5) 

 

where 𝑟𝑖  is the true range between the satellite i and the 

receiver antenna, 𝛿𝑡0 is the clock bias and 𝜂𝜌𝐺
𝑖  is a zero-

mean white Gaussian noise modeling the residual of all 

nominal errors after correction.  

The Doppler measurement represents the rate of change 

of the carrier phase. The multiplication of this 

measurement by the signal wavelength 𝜆0 provides the 

pseudo-range rate measurement:   

 

�̇�𝐺
𝑖 = �̃�𝐺

𝑖 .𝜆0 = �̇�𝑖 + 𝑐�̇�𝑡0 + 𝜂�̇�𝐺
𝑖    (6) 

 

where �̃�𝐺
𝑖  is the Doppler measurement of satellite i, �̇�𝑖  is 

the true pseudo-range rate between the satellite and the 

receiver, �̇�𝑡0 is the clock drift and 𝜂�̇�𝐺
𝑖  is the range rate 

error modeled as a zero-mean Gaussian white noise. 

 

WSS and NHC measurement model 

WSS provides velocity along the forward axis in the (𝑏) 

frame. The measurement model of the WSS is given in 

by: 

 

�̃�𝑤
𝑙 = 𝑪𝑏2𝑙(1 + 𝑘𝑤)�̃�𝑤

𝑏 + 𝜼𝑤 (7) 

 

with �̃�𝑤
𝑏 = [0 �̃�𝑤

𝑏𝑦
0]

𝑇
, 𝑘𝑤 is the WSS scale factor and 

𝜼𝑤 is the WSS noise modeled as zero-mean, white and 

Gaussian. The lateral and vertical velocities are set to zero 

by taking into account the NHC. 

 

Vision heading measurement model 

This heading measurement is provided in the vision 

frame. This means that the vision module assumes that the 

initial heading of the vehicle is equal to zero. In order to 

obtain the heading of the vehicle with respect to the local 

frame �̃�𝑆𝐿𝐴𝑀
𝑙 , it should be corrected with the initial 

heading 𝜓0
𝑙 : 

 

�̃�𝑆𝐿𝐴𝑀
𝑙 = �̃�𝑆𝐿𝐴𝑀

𝑣 + 𝜓0
𝑙 + 𝜂𝜓 (8) 

 

where 𝜂𝜓 is a Gaussian white noise. Note that this 

assumption only holds if the vehicle performs a loop 



closure (the end of its trajectory is the starting point). In 

fact, by detecting again the same features, the SLAM is 

capable of eliminating the drift using the bundle 

adjustment process. If no loop closure is done, this 

assumption holds if the SLAM is aided by a previously 

built georeferenced database. If none of these two 

conditions is fulfilled, then the assumption of Gaussian 

white noise is not realistic for the heading measurement 

but holds for the estimated vehicle heading change 

between two images. Therefore the heading should be 

modeled as a random walk. The latter case will be studied 

in future works. 
 

Sate Vector 

The INS estimates the navigation parameters i.e. the 

position, velocity and attitude of the vehicle, and the 

aiding sensors correct the INS estimation error through 

the Kalman filter. The errors of the navigation parameters 

are defined by: 

 

𝛿𝒑𝑏
𝑙 = �̂�𝑏

𝑙 − 𝒑𝑏
𝑙  (9) 

 

𝛿𝒗𝑏
𝑙 = �̂�𝑏

𝑙 − 𝒗𝑏
𝑙  (10) 

 

�̂�𝑏2𝑙 = (𝑰 − 𝑬𝑏2𝑙) 𝑪𝑏2𝑙 (11) 

  

where 𝑬𝑏2𝑙 is the skew-symmetric matrix of the attitude 

error 𝜺𝑏2𝑙 = [𝜀𝐸 𝜀𝑁 𝜀𝑈] 
 

Using the previous notations, a 21-element error state 

vector associated to INS is consequently used: 

   𝛿𝒙𝐼𝑁𝑆 = [𝛿𝒑𝑏
𝑙 𝛿𝒗𝑏

𝑙 𝜺𝑏2𝑙 𝛿𝒃𝑎 𝛿𝒃𝑔 𝛿𝒌𝑎 𝛿𝒌𝑔]
𝑇
    (12) 

 

Since WSS velocity is affected by an unknown scale 

factor, and GNSS clock bias and clock drift are also 

unknown, these quantities should be estimated by the 

filter. Therefore: 

𝛿𝒙𝐺 = [𝛿(𝑐𝛿𝑡0) 𝛿(𝑐�̇�𝑡0)]
𝑇
 (13) 

 

𝛿𝑥𝑤 = 𝛿𝑘𝑤 (14) 

 

The full EKF state is the concatenation of the state vectors 

associated to each sensor. It is given by the 24-element 

state vector: 

 

𝛿𝒙 = [𝛿𝒙𝐼𝑁𝑆
𝑇 𝛿𝒙𝐺

𝑇 𝛿𝑥𝑤]𝑇  (15) 

 

State transition model 

The INS mechanization equation is given by:  

[

�̇�𝑏
𝑙

�̇�𝑏
𝑙

�̇�𝑏2𝑙

] = [

𝒗𝑏
𝑙

𝑪𝑏2𝑙𝒇
𝑏 − (2𝝎𝑖𝑒

𝑙 + 𝝎𝑒𝑙
𝑙 ) × 𝒗𝑏

𝑙 + 𝒈𝑙

𝑪𝑏2𝑙(𝛀
𝑏 − 𝛀𝑖𝑙

𝑏 )

] 

 

(16) 

 

where 𝒈𝑙 is the local gravity including the Gravitation 

term and the centripetal term related to Earth rotation. 

To linearize the mechanization equation and derive the 

linear INS model, Eq.(3-4) and Eq.(9-11) are applied to 

the mechanization equation using the perturbation 

analysis described in [2]. Based on this analysis, The INS 

state transition matrix  𝑭𝐼𝑁𝑆 and the design matrix 𝑮𝐼𝑁𝑆 

are derived in the (l) frame. Their expressions are given in 

our previous paper [13]. 

We model the inertial measurement bias and scale factor 

errors as Gauss-Markov process [12]: 

 

𝛿𝑒𝑠𝑢
̇ = −

1

𝜏𝑒𝑠𝑢

∙  𝛿𝑒𝑠𝑢 + 𝜂𝑒𝑠𝑢
 

 

    (17) 

 

where 𝑒 is the error (𝑒 = 𝑏 or 𝑒 = 𝑘), 𝑠 is the sensor (𝑠 =
𝑎 or 𝑠 = 𝑔) and 𝑢 is the (𝑏) frame axis (𝑢 = 𝑥, 𝑢 = 𝑦 or 

𝑢 = 𝑧). 𝜏𝑒𝑠𝑢
is the correlation time of the error 𝑒 of the 

sensor 𝑠 along the 𝑢-axis and 𝜂𝑒𝑠𝑢
 is a zero-mean 

Gaussian noise. 

The WSS scale factor as well as the GNSS clock bias and 

clock drift are modeled as follows: 

𝛿(𝑐�̇�𝑡0) = 𝛿(𝑐𝛿𝑡0) + 𝜂bias (18) 
 

𝛿(𝑐�̈�𝑡0) = 𝜂drift   (19) 
 

 

The clock error spectral densities can be computed as: 

 

𝑞bias = 𝑐2 .
ℎ0

2
 

 

(20) 

 

𝑞drift = 𝑐2. 2𝜋2 . ℎ−2 (21) 

 

 

where ℎ0 and ℎ−2 are allan variance parameters 

describing the clock errors, typical values for 

compensated crystal clock can be 2 . 10−19 and 2 . 10−20 

respectively [14]. 

The WSS scale factor error is modeled as a constant, thus: 

 

𝛿𝑘𝑤
̇ = 𝜂𝑘𝑤  (22) 

 

 

The models defined previously can be summarized in the 

following linearized continuous time sate transition 

model: 

 

𝛿�̇� = 𝑭 ∙ 𝛿𝒙 + 𝑮 ∙ 𝒖 (23) 

 

where  

𝑭 = [

𝑭𝑰𝑵𝑺 𝟎21𝑥1 𝟎21𝑥1 𝟎21𝑥1

𝟎1𝑥21 0 1 0
𝟎2𝑥21 𝟎2𝑥1 𝟎2𝑥1 𝟎2𝑥1

] 

 

 

(24) 

𝑮 = [
𝑮𝐼𝑁𝑆 𝟎21𝑥3

𝟎3𝑥21 𝑰3
] 

 

(25) 

 

𝒖 = [𝜼𝑎 𝜼𝑔 𝜼𝑏𝑎 𝜼𝑏𝑔 𝜼𝑘𝑎 𝜼𝑘𝑔 𝜂bias 𝜼drift 𝜂𝑘𝑤]𝑇        (26) 
 



The corresponding process noise covariance matrix is 

given by: 

 

𝑸 = cov(𝒖) (27) 

 

The discrete time sate transition model assuming that F 

and G are constant over the time step between two 

consecutive state propagations  ∆𝑡 is given by: 

 

𝛿𝒙𝑘+1 = 𝚽𝑘 ∙ 𝛿𝒙𝑘+1 + 𝒘𝑘 (28) 

 

with [2] 

𝚽𝑘 = 𝑰 + 𝑭. ∆𝑡 (29) 

and  

𝐐𝑘 = cov(𝒘𝑘) = 𝚽𝑘𝑮𝑸𝑮𝑻𝚽𝑘
𝑇  ∆𝑡 (30) 

 

With the discrete state transition model, we can propagate 

the state using the prediction equations of the EKF. Since 

we are in a closed-loop configuration where the errors 

estimated by the EKF are fed back after the measurement 

update, the state vector should be reset to zero. 

Nonetheless, the state covariance is predicted using: 

 

𝑷𝑘+1
− = 𝚽𝑘𝑷𝑘𝚽𝑘

𝑇 + 𝐐𝑘 (31) 

 

Kalman filter update 

The update of the Kalman filter is performed by 

comparing the INS predicted states with the aiding 

measurements quantities, by relating the difference of the 

measured and predicted quantities to the state vector 

components. This update is performed as soon as a sensor 

measurement is available. This implies that the 

observation model varies according to the availability of 

aiding sensors.  

GNSS observation model 

The GNSS observation model is given by the following 

equation: 

 

𝛿𝒛𝐺 =

[
 
 
 
 
 
�̃�𝐺

1 − �̂�𝐺
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⋮
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⋮
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= 𝑯𝐺 ∙ 𝛿𝒙 +

[
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1

⋮
𝜂𝜌𝐺

𝑁

𝜂�̇�𝐺
1

⋮
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(32) 

 

where  

 
𝑯𝐺

=

[
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𝑠
1 − �̂�

𝑏

𝑙 )

𝑟1
03𝑥3 03𝑥15 1 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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03𝑥3 03𝑥15 1 0 0
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(33) 

𝒑𝑠
𝑖  and 𝒗𝑠

𝑖  are respectively the position and the velocity of 

satellite i computed in (l) frame. 

 

WSS and NHC observation model: 

 

𝛿𝒛𝑤 = �̃�𝑤
𝑙 − 𝑪𝑏2𝑙𝜴𝑙𝑏

𝑏 ∆𝒑𝑤
𝑏 − �̂�𝑏

𝑙  

= 𝑯𝑤 ∙ 𝛿𝒙 + 𝜼
𝑤

 

 

(34) 

 

with [15]: 

 

𝑯𝑤 = [𝟎3| −𝑰3| ( �̂�𝑏
𝑙 ) ×| 𝟎3| �̂�𝑏2𝑙(∆𝒑𝑤

𝑏 ) ×| 

𝟎3𝑥8| ( �̂�𝑏
𝑙 + �̂�𝑏2𝑙𝜴𝑙𝑏

𝑏 ∆𝒑𝑤
𝑏 )] 

(35) 

 

and 

 

-  𝛀𝑙𝑏
𝑏 = (�̃�b − 𝛀𝑖𝑙

𝑏 ), 𝛀b and 𝛀𝑖𝑙
𝑏  are respectively the 

skew-symmetric matrix of the gyro measurement �̃�𝑏and 

of 𝜔𝑖𝑙
𝑏 . 

- 𝝎𝑖𝑙
𝑏 = 𝑪𝑏2𝑙

𝑇 (𝝎𝑖𝑒
𝑙 + 𝝎𝑒𝑙

𝑙 ), with 𝝎𝑖𝑒
𝑙  is the earth rate and 

𝝎𝑒𝑙
𝑙  is the transport rate resolved in (𝑙) frame. 

 

where the notation (𝒂) × means the skew-symmetric 

matrix of the (3𝑥3) vector 𝒂. 

 

ZVU observation model 

The update based on ZVU is derived from the previous 

equations as follows: 
 

𝛿𝒛𝑍𝑉𝑈 = −�̂�𝑏
𝑙 = 𝑯𝑍𝑉𝑈𝛿𝒙 + 𝜼𝑍𝑉𝑈 

 

(36) 

with  

 

𝑯𝑍𝑉𝑈 = [𝟎3 −𝑰3 𝟎3𝑥18] (37) 
 

 

Vision observation model 

The heading observation is related to the state vector by 

the following equation:  

 

𝛿𝑧𝜓 = �̃�𝑉𝑆𝐿𝐴𝑀
𝑙 − �̂�𝐼𝑁𝑆

𝑙 = 𝑯𝜓𝛿𝒙 + 𝜂𝜓 

 

with 

 

(38) 

𝑯𝜓

= [01𝑥6

−�̂�𝑏2𝑙
12 �̂�𝑏2𝑙

32

[�̂�𝑏2𝑙
12 ]

2
+ [�̂�𝑏2𝑙

22 ]
2

−�̂�𝑏2𝑙
22 �̂�𝑏2𝑙

32

[�̂�𝑏2𝑙
12 ]

2
+ [�̂�𝑏2𝑙

22 ]
2 1 01𝑥17] 

 

 

(39) 

 

ZARU observation model 

Based on Eq. 4, when the vehicle is stationary or moves 

in linear motion, the actual angular rate is equal to zero. 

This means that the measurements given by the IMU 

gyroscopes are equal to the gyro biases: 

 

𝛿𝒛𝑍𝐴𝑅𝑈 = �̃�𝑏 = 𝒃𝑔 + 𝜼𝑔 = 𝑯𝑍𝐴𝑅𝑈𝛿𝒙 + 𝜼𝑔 

 

(40) 

with  

𝑯𝑍𝐴𝑅𝑈 = [03𝑥12 𝑰3 03𝑥9] (41) 



Kalman filter update 

Once 𝛿𝒛 and  𝑯 are determined, the update is performed 

using the Kalman filter equations: 

 

𝑲𝑘+1 = 𝑷𝑘+1
− 𝑯𝑘+1

𝑇 ∙ [𝑯𝑘+1𝑷𝑘+1
− 𝑯𝑘+1

𝑇 + 𝑹𝑘+1]
−1

 (42) 

 

𝛿𝒙𝑘+1
+ = 𝑲𝑘+1𝛿𝒛𝑘 (43) 

 

𝑷𝑘+1
+ = 𝑷𝑘+1

− − 𝑲𝑘+1 ∙ 𝑯𝑘+1 ∙ 𝑷𝑘+1
−

 (44) 

 

where R is the measurement covariance matrix. 

 

EXPERIMENTS AND RESULTS 

The algorithm is tested using GNSS and inertial data 

collected in Toulouse downtown during 30 minutes. 

GNSS data is given by the GPS L1 C/A stand-alone mode 

of a Ublox-6 receiver running at 1Hz. Inertial 

measurements are obtained using an Xsens Mti IMU 

running at 100 Hz. Figure 3 shows the reference 

trajectory determined using the NovAtel SPAN 

equipment [16]. 

  
Figure 3: Vehicle trajectory in Toulouse downtown 

The WSS velocity and visual data are generated from the 

reference trajectory such that the WSS is affected by a 

scale factor of -0.01 and a zero-mean white Gaussian 

noise with a standard deviation equal to 0.05m/s. The 

SLAM heading is assumed to be a zero-mean white 

Gaussian noise with a standard deviation of 2°. The WSS 

and SLAM are assumed to run respectively at 10Hz and 

20 Hz. As mentioned before, only the horizontal 

performance will be assessed in this study. 

To evaluate the contribution of each aiding sensor, seven 

configurations are tested and compared in this study. A 

GPS outage of 60s is also simulated in order to assess the 

performance of the DR system during GPS outage: 

- Config1: GNSS 

- Config2: GNSS+INS 

- Config3: GNSS+INS+Innovation test 

- Config4: Config3+NHC+ZVU+ZARU 

- Config5: Config4+WSS 

- Config6: Config5+heading 

- Config7: DR sensor 

 

Config1 results 

In this configuration we assume that the positioning is 

only based on GPS L1 C/A signals. As illustrated in 

Figure 4, the horizontal error is very important especially 

when the vehicle goes through dense streets (between 

550s and 700s). In this environment, the horizontal error 

reaches 172m. In addition, when less than 4 satellites are 

in view, GPS is unable to provide a navigation solution. 

 
Figure 4: Stand-alone GPS horizontal position error 

Config2 results 

This configuration consists of an INS based on the Xsens 

IMU measurements corrected by the pseudo-range and 

Doppler measurements from GPS in a closed-loop tight 

configuration. No aiding comes from any of the other 

sensors. During GPS outage, the system is able to coast 

thanks to the continuity of the inertial sensor. As 

illustrated in Figure 5, the position accuracy is increased 

when GPS is available and there is no discontinuity 

anymore. For example, between 550s and 770s, the 

RMSE is decreased by 87.1%. Yet the horizontal error 

remains very high especially during GPS outage. An error 

of 805m is reached after 60s of outage. 

 
Figure 5: Comparison of horizontal position error 

Config3 results 

This configuration adds the innovation test of GPS 

measurements before using them to update the Kalman 

state vector. This innovation test is very important in 

order to improve the navigation solution in urban 

environments when GPS measurements are available by 

eliminating the erroneous measurements. In fact, by 

removing the measurements inconsistent with previous 

information, we only keep the measurements that are not 
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affected by large error. Figure 6 shows the number of 

excluded pseudo-ranges and pseudo-range rates at each 

epoch.  

 
Figure 6: Number of removed SVs with innovation test 

It is important to check that after exclusion, the number of 

remaining satellites keeps high enough to improve the 

navigation solution. A drawback of this technique is that 

in case of little number of remaining satellites, the 

performance may be degraded due to the exclusion. In our 

case, the remaining number of measurements is high 

enough to be able to exclude without degrading the 

performance. Table 2 gives the availability of satellites 

during the measurement campaign (The simulated GPS 

outage is not considered): 

 

Number of SVs 
Pseudo-range 

test 

Pseudo-range 

rate test 

0 < N < 2 0 % 0.2 % 

2 ≤ N < 4 0.3 % 2.6 % 

4 ≤ N < 6 12.7 % 20.5 % 

6 ≤ N < 8 39 % 40.4 % 

≥ 8 48% 36.4 % 

Table 2: Satellite availability after exclusion 

Figure 7 and Figure 8 highlight the contribution of this 

technique in the improvement of the navigation solution 

when GPS measurements are available (without 

simulating the GPS outage of 60s). 

 
Figure 7: Comparison of horizontal position error  

 
Figure 8: Comparison of heading error with and without 

innovation test 

 As explained before, the fact that after exclusion, the 

number of the remaining good measurements is high 

helps to improve the navigation solution. The RMSE is 

decreased by 75.24% after applying the innovation test. 

 

Config4 results 

This configuration adds constraints related to the vehicle 

motion. The advantage of adding these constraints is that 

it does not have an additional cost compared to the 

previous configuration. The comparison of the horizontal 

error made using this configuration and that using the 

previous configuration shows that the estimation is clearly 

improved by introducing these constraints as shown in 

Figure 9 and Figure 11. However, in GPS outage, the 

drift of the navigation solution remains unacceptable 

since it reaches 309m after 60s of outage. 

 
Figure 9: Comparison of horizontal position error 

When GPS is available, the use of motion constraints 

improves slightly the performance of the navigation 

solution. This is highlighted in Figure 10. 
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Figure 10: Comparison of horizontal position error when 

GPS is available 

In Figure 11, the heading estimation is clearly improved 

by using the motion constraints. This is due to 2 main 

reasons: first, the ZARU allows the improvement of 

attitude estimation by helping estimating the gyro biases. 

In addition, the ZVU and NHC improve the velocity 

estimation. This is due to the correlation that exists 

between the vehicle velocity and its attitude. 

 
Figure 11: Comparison of heading error 

Config5 results 

In this configuration, the WSS is added. This sensor 

provides additional information to the filter about its 

longitudinal velocity. The comparison of the navigation 

performance with the previous configuration shows that 

the horizontal position error is improved as shown in 

Figure 12. The drift during GPS outage is reduced from 

309m to about 19.5m which is an improvement of 93.7%. 

When GPS is available and the innovation test on GPS 

measurements is performed, we have almost the same 

navigation performance as the previous configuration. 

For the heading, no improvement is noticed compared to 

the previous configuration as shown in Figure 13. 

 

 
Figure 12: Comparison of horizontal position error 

 
Figure 13: Comparison of heading error 

Config6 results 

In this configuration, the SLAM heading is added. As 

mentioned before, this heading is assumed as a zero-mean 

white Gaussian noise. This assumption could be realistic 

if the vehicle finishes its trajectory at its starting point, or 

if we have a previously built georeferenced database. The 

results introducing this information show an important 

improvement of the heading estimation as shown in 

Figure 14. 

 
Figure 14: Comparison of heading error 

For the horizontal error, this information is quite 

important since it reduces the drift of the DR system when 
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GPS is unavailable and reduces the horizontal error when 

GPS is available, as illustrated in Figure 15. During the 

60s of GPS outage, the error does not exceed 1.2m when 

we introduce the heading information.  

 
Figure 15: Comparison of horizontal position error 

 

Config7 results 

This configuration is tested in order to analyze the 

possible drift of the DR system without the use of GPS 

aid during the full trajectory. Figure 16 shows that the 

DR system is able to provide a navigation solution 

without drift. It also shows that the performance of the 

DR system with GPS aid is slightly better. 

 
Figure 16: Comparison of heading error 

 

Summary 

Table 3 summarizes the performance of the different 

tested configurations. It compares the errors of horizontal 

position and heading in terms of the maximum reached 

error and in terms of Root Mean Square (RMS). This 

summary shows the limitations of using a simple 

GNSS/INS integration in urban environment and 

highlights the contribution of each sensor in the 

improvement of the horizontal navigation solution. 

 

 

 

 

 

param 

 

Config 

Horizontal position 

error (m) 
Heading error (°) 

Max RMS Max RMS 

1 172 33 --- --- 

2 805 > 100 > 100  

3 805 64.62 17.22 7 

4 309 23,52 5.65 1.6 

5 19.45 4.36 8.46 1.59 

6 5.34 3.34 1.31 0.31 

7 6.25 4.3 0.89 0.28 

 Table 3: Comparison of the different configurations 

CONCLUSION 

In this paper, we proposed an algorithm integrating 

different low-cost sensors in order to improve the 

navigation performance in terms of accuracy and 

continuity in urban environments. This algorithm fuses 

information from an IMU considered as the reference 

sensor which is aided by GNSS raw measurements, WSS 

velocity, SLAM heading and motion constraints. Results 

show that the use of a GNSS/INS system is not sufficient 

especially in urban environments where the GNSS 

measurements could be corrupted or unavailable. GNSS 

outage was simulated to evaluate the horizontal 

positioning and heading drift by comparing 7 

configurations. This comparison aimed to highlight the 

contribution of each additional sensor to the decrease of 

the drift when GNSS is unavailable and to the 

improvement of the navigation solution when GNSS 

measurements are corrupted. A horizontal error RMS of 

3.34m on a trajectory of 30 minutes is achieved. This was 

possible thanks to the good SLAM heading considered in 

this study. However, this assumption is not realistic if the 

SLAM algorithm relies only on the DR principle. Future 

works should focus on the improvement of the SLAM 

measurement model and on the accuracy improvement of 

the navigation solution since the performance required by 

the project is still not achieved. 
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