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Abstract—This paper describes the application of high con-
fidence interval prediction methods to the aircraft trajectory
prediction problem, more specifically to the altitude prediction
during climb. We are interested in methods for finding two-
sided intervals that contain, with a specified confidence, at least a
desired proportion of the conditional distribution of the response
variable. This paper introduces Two-sided Bonferroni-Quantile
Confidence Intervals (TBQCI), which is a new method for ob-
taining high confidence two-sided intervals in quantile regression.
The paper also uses the Bonferroni inequality to propose a
new method for obtaining tolerance intervals in least-squares
regression. This latter has the advantages of being reliable,
fast and easy to calculate. We compare physical point-mass
models to the introduced models on an Air Traffic Management
(ATM) dataset composed of traffic at major French airports.
Experimental results show that the proposed interval prediction
models perform significantly better than the conventional point-
mass model currently used in most trajectory predictors. When
comparing with a recent state-of-the-art point-mass model with
adaptive mass estimation, the proposed methods give altitude
intervals that are slightly wider but more reliable.

Index Terms—High Confidence Interval Prediction, Tolerance
Intervals, Quantile Regression, Bonferroni inequality, Aircraft
Trajectory Prediction, Point-mass Model, BADA

I. INTRODUCTION

Predicting aircraft trajectories with high confidence is fun-
damental to most operational concepts ([1], [2]) and is neces-
sary to the automated tools that are expected to improve Air
Traffic Management (ATM) in the near future. The automated
detection and resolution of air traffic conflicts is one of the
key applications of aircraft trajectory prediction. It requires
a reliable prediction of the future aircraft positions in order
to detect trajectory conflicts, and propose maneuvers to avoid
these conflicts while minimizing trajectory deviations.

In this context, we are interested in providing a more
accurate and realistic prediction of the volumes containing the
future aircraft positions, based on actual radar data. As a first
step, we focus on the vertical dimension, and more specifically
on the aircraft climb where the uncertainties are known to
be huge. Most trajectory predictors use simplified physical
equations of the forces applied to the center of gravity of the
aircraft. Such point-mass models require knowledge of the air-
craft state (position, speed, mass, etc.), atmospheric conditions
(wind, temperature), and aircraft intent (target speed or climb
rate, for example). However, much of this information is not
available to ground-based systems, and the information that is
available is noisy, thus making the predictions inaccurate.

The literature on ground-based aircraft trajectory prediction
is fairly large, and one may refer to [3] for a literature survey
on the subject or [4] for the statistical analysis and validation
of trajectory predictors. Concerning the prediction model
itself, most research studies focus on point-mass models of the
aircraft dynamics. Several articles propose adaptive methods
adjusting some of the model parameters, such as the modeled
thrust ([5]), or the modeled mass ([6], [7], [8], [9], [10], [11]).
A few works use data-driven approaches or Machine Learning
methods (e.g. [12], [13], [14], [15]). Some recent works ([16])
mix the data-driven and physics-based approaches by learning
from historical data some of the missing inputs of the point-
mass model, such as the thrust law. All these works try to
improve the accuracy of the predicted nominal trajectory, and
do not consider the prediction of reliable altitude intervals as
their primary goal.

The subject of the current paper is to predict altitude
intervals that are guaranteed to contain the future altitude with
a chosen level of confidence. Considering all the unknowns
and uncertainties in the parameters of the physical model, we
propose to try a data-driven approach, where the prediction
model is tuned on historical data. In a previous publication
([17]), we applied regression methods to the prediction of
altitude intervals for the climbing aircraft. These preliminary
experiments showed that regression models (linear, local linear
and neural network) are much more efficient than one of the
most popular point-mass models, the Eurocontrol BADA (Base
of Aircraft Data) model [18] that uses default values for the
parameters missing in ground systems (speed intent, thrust law,
and aircraft mass).

In this paper, we introduce two new methods based on the
Bonferroni inequality – one in the context of least-squares
regression, and the other in the context of quantile regression –
to obtain intervals that contain at least a desired proportion β
of the distribution of the conditional response variable, with
a specified confidence level γ. Such β-content γ-coverage
intervals are referred to as tolerance intervals in least-squares
regression. In quantile regression, one can also define two-
sided confidence intervals having similar content and coverage
properties. The one we introduce will be denoted Two-sided
Bonferroni-Quantile Confidence Interval (TBQCI) in the rest
of this document.

We then apply the two proposed methods to the predic-
tion of altitude intervals for climbing aircraft, using linear
regression models. We compare our methods with the baseline
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BADA total energy model, to which we have added a term
modeling the influence of the wind on the aircraft dynamics
(see section V-A, or [16], [9], [19], [20] for the equations).
We also compare our approach to a state-of-the-art adaptive
method recently introduced in [8], [9]. This method estimates
the aircraft mass from the past trajectory points.

These comparisons are made using Paris Orly and Paris
Charles-de-Gaulle Air Traffic radar reports over two months
(July 2006 and January 2007). As a first step, the results in the
current study are presented for a look-ahead time of 10 minutes
and with an initial time t = 0 corresponding to a chosen
altitude (FL1801). This allows us to compare the different
methods in a context that is representative of the intended
application (conflict detection and resolution in the en-route
airspace). The proposed approach could easily be extended to
various initial altitudes and look-ahead times (see II-D).

The remainder of this paper is organized as follows: Sec-
tion II describes the context and intended application of
the proposed altitude interval prediction methods. Section III
provides background on least-squares and quantile regression.
Section IV describes how tolerance intervals and confidence
intervals on regression quantiles can be applied to the problem
of high confidence interval prediction. Both TBQCI and the
new Bonferroni tolerance interval for least-squares regression
are also introduced in the same section. Section V explains
the widely used point-mass model in BADA. The dataset
of example trajectories and the patterns extracted from this
dataset and used to train the regression models are described
in Section VI. The experimental results are shown in Section
VII. A conclusion is provided in the last section.

II. CONTEXT AND INTENDED APPLICATION

A. Trajectory prediction for conflict detection and resolution

In [21], Kuchar et al. classify the multitude of prediction
models that can be found in the literature on conflict detection
and resolution (CD&R) in three categories : nominal, worst-
case, or probabilistic. The nominal method uses the best
estimate of where the aircraft will be in the future. Its use in
CD&R applications is restricted to situations where trajectories
are highly predictable (e.g. with a look-ahead time of a few
seconds). The worst-case approach detects a conflict if any
of a range of maneuvers induces a possibility of conflict
with another aircraft. The probabilistic approach models the
uncertainties involved in the trajectory prediction process in
order to derive a probability of conflict. This is usually done
either by adding a position error to a nominal trajectory, or by
evaluating the probability of occurence of all possible future
trajectories.

Many research efforts have shown the feasibility and interest
of the probabilistic approach ([22], [23], [24], [25], [26]),
using a variety of methods such as the analytical derivation of
the conflict probability, Monte-Carlo simulations, or Bayesian
methods. However, many conflict resolution algorithms rely on
a modeling approach where the future position of the aircraft
is assumed to be in a volume of airspace with a given degree

1Flight level FL180 corresponds to 18000 feet above isobar 1013.25 hPa.

of certainty (close to 100%, ideally). Such algorithms compute
a set of maneuvers that ensure separation of the uncertainty
volumes associated to the positions of conflicting aircraft at
any time in the near future. The future time is usually bounded
by a maximum look-ahead time typically chosen between
10 and 20 minutes. Figure 1 shows an example of such
uncertainty volumes, taken from [27], where Durand et al.
apply genetic algorithms to solve conflicts involving multiple
aircraft.

The top view shows an horizontal projection of the volumes
at various look-ahead times. In this specific example, the
polygons enclosing the future 2D-position are computed by
adding an uncertainty to the times at which lateral maneuvers
are executed. The bottom view shows a vertical profile with
a constant rate of climb. Here, the height of each polygonal
volume is simply obtained by adding an uncertainty in the rate
of climb.

Figure 1. Uncertainty volumes in the horizontal plane (top) and vertical
dimension (bottom), at various look-ahead times

Algorithms such as the one proposed in [27] or other
population-based metaheuristics ([28], [29]) have proven quite
effective in solving large scale problems in a realistic, albeit
simulated context. The algorithms of Durand et al. ([30], [27],
[31]) have been applied to the strategic deconfliction through
speed adjustments developed in the European ERASMUS
project ([32]). A more recent application is the SESAR 4.7.2
(Separation Task in En Route Trajectory-based Environment)
project, where lateral and vertical maneuvers are also used.
These algorithms do address the combinatorial aspect of the
conflict resolution problem. However, their implementations
have been tested in simulated environments only. They cur-
rently rely on fairly basic assumptions concerning the trajec-
tory prediction itself.

B. Why not use the trajectory computed on board ?

One could think that downloading the trajectory computed
on board the aircraft would suffice to provide us with an accu-
rate prediction. This might be the case for conflict detection,
but this is not sufficient for many ground-based applications
such as conflict resolution. The metaheuristics cited before, as
well as other iterative optimization methods (e.g. the quasi-
Newton method used in [33]), require to compute hundreds or
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even thousands of candidate trajectories2. Such computation-
ally intensive methods would require to constantly downlink
a large number of alternative trajectories from each aircraft,
which is impractical at the present time. Consequently, we still
do need a ground-based trajectory prediction that should be as
fast, accurate and reliable as possible.

C. Data-driven vs. physics-based approach
In this paper, we propose a data-driven approach using

regression techniques to build a model predicting altitude inter-
vals for climbing aircraft. Obviously, data-driven methods can
only be as good as the data used to build the prediction model.
The dataset used to train the model must be as representative
as possible of the conditions that will be encountered when
making new predictions on fresh inputs with the tuned model.
For example, if one uses a dataset of examples containing
only climb segments at constant CAS (Calibrated Airspeed)
or Mach speed, it would not be a good idea to apply the tuned
model to an aircraft operated differently – at a constant rate
of climb, for example. One would need a different model for
each mode of operation, tuned on specific data.

The physical model of the aircraft does not suffer from such
drawbacks : it allows the parameter values (e.g. speed intent,
or rate of climb) to be set and possibly changed according to
the chosen mode of operation, still using the same model.
However, the physical model can only be as good as its
inputs (aircraft mass, thrust law, speed intent), which in the
case of a ground-based prediction are full of unknowns and
uncertainties.

In our case, the intended final application is to detect
conflicts in the en-route airspace and solve them by assigning
simple maneuvers to the aircraft, by modifying the aircraft
heading or cruise flight level, or by adjusting the cruise speed
(see [27], [31]). Currently, the set of possible maneuvers do
not comprise constraints on the climb profile, such as a target
speed or thrust law, or a minimum or maximum climb rate.
In this context, it is justified to use a data-driven approach
on a dataset of recorded traffic containing a variety of climb
profiles in order to extract a reliable altitude interval prediction
model. Further refinements would be to extract several datasets
corresponding to different modes of operation of the aircraft
and learn a separate model from each dataset. This is typically
what we do when building a dataset for each aircraft type. A
more sophisticated approach would be to use mixture models
where several models are weighted in order to predict the
output.

The data-driven approach has the advantage that it can take
account of parameters external to the physical model of the
aircraft (e.g. the airline operator, or the distance to go), that
can significantly improve the prediction.

D. Application of regression models to altitude prediction
Regression is a statistical technique which can be used to

find the relationship between a numeric variable (response

2As an example, a conflict situation involving 10 aircraft solved by a
population-based metaheuristic with 100 elements evolving over 50 gener-
ations would require to compute 50000 trajectories (assuming the population
is completely renewed at each generation)

variable) and some other numeric or non-numeric variables
called independent (or explanatory) variables. In order to
predict the aircraft altitude, we want to find a function which
takes the past aircraft trajectory as argument (and maybe
some other interesting inputs) and returns the future altitude
(prediction) of the aircraft at a given look-ahead time, as
illustrated in Figure 2.

Figure 2. Application of regression models to aircraft trajectory prediction.

Before using it for prediction, the model first needs be tuned
on a dataset containing examples of the desired response (here
the altitude) associated with some example inputs. This is done
by minimizing the overall error between the computed outputs
and the desired responses. The generalization performance of
the tuned model– i.e. its ability to make correct predictions for
fresh inputs – must be assessed on a separate dataset, different
from the training set used to train the model. In this paper,
we use a cross-validation schema (described in Section III-D)
to validate our regression based interval prediction models.

In this study, we restrict ourselves to a single initial altitude
(flight level FL180) corresponding to the initial time t = 0 and
a single look-ahead time (10 minutes ahead). The regression
approach can be extended to predict a vector of altitudes
corresponding to different look-ahead times, for any initial
altitude. This could be done by introducing the initial altitude
and look-ahead time in the input parameters of the model,
and in the dataset of examples. An alternative is to train a
specific model for each look-ahead time (or time interval). The
latter approach might be the most consistent with the intended
application (CD&R), as we might want different levels of
confidence for different look-ahead times. This extension of
the current study is left for future work.

E. High-confidence intervals for altitude prediction

The construction of high-level confidence intervals starts
with a pointwise prediction of the nominal value (here, the
altitude), followed by an estimation of the interval bounds,
based on the model properties and the observed model errors.
Least-squares regression predicts the conditional mean of the
response variable (altitude) for a given input x. Quantile re-
gression predicts the chosen quantile (e.g. 25% or 75%) of the
conditional distribution. Least-squares and quantile regression
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also provide a variance for their estimations. Specifying a level
of confidence allows us to find, in both cases, an upper bound
for the upper quantile and a lower bound for the lower quantile,
thus obtaining a high-confidence interval.

Such altitude intervals could give us reliable lower and
upper bounds for the polygonal volumes modeling the un-
certainties on the future aircraft positions, for the purpose
of detecting and solving air traffic conflicts with a maximum
look-ahead time of 10 to 20 minutes.

III. BACKGROUND ON REGRESSION

We choose a fixed regression design where the dataset
S = (x1, y1), . . . , (xn, yn) is a random sample. We assume
that xi (i ∈ {1, . . . , n}) is a deterministic vector of observa-
tions and that yi is an observation drawn from the distribution
of a random variable Yi = Y (xi). In this work, we suppose
that there is a true mean regression function f(·) with a zero
mean error and an unknown variance σ2. S is a finite random
sample, so the estimated regression model is the pair (f̂ , σ̂).
Note that if the errors are not normally distributed, the pair
(f̂ , σ̂) does not correctly specify the model. Thus in quantile
regression, we use the symbol PS instead of Pf̂ ,σ̂ to refer to
the estimated regression model on the random sample S. We
use the following notations:
• S = (x1, y1), . . . , (xn, yn): the random sample of regres-

sion;
• f(x): the conditional mean of the response variable for

a specified combination of predictors;
• f̂(·): the estimated regression function;
• f̂(x): the estimated regression function at point x;
• ε: the error variable;
• σ2: the true and unknown variance of the error variable;
• σ̂2: the estimated variance of the error variable;
• Y (x): the conditional response variable for a given com-

bination of the predictors, Y (x) = f(x) + ε;
• χ2

p,n: the p-quantile of a chi-square distribution with n
degrees of freedom;

• Zp: the p-quantile of a standard normal distribution;
• tp,n: the p-quantile of a Student distribution with n

degrees of freedom.

A. Least-Squares Regression
As mentioned in fixed-design regression, the random vari-

able Yi or Y (xi) follows a mean function f(xi) with a random
error term εi defined as:

Yi = f(xi) + εi, where E(εi) = 0. (1)

The model supposes that the εi are independent and iden-
tically distributed (iid) random variables. The objective is to
estimate the mean function f(·) by f̂(·), being as close as
possible to the unknown function f(·). The usual assumption
is to suppose that the variance of the error is the same
everywhere (homoscedasticity). Least-squares regression takes
an estimator f̂(·) that minimizes the Mean of Squared Errors
(MSE):

MSE(f̂) =
1

n

n∑
i=1

(yi − f̂(xi))
2 (2)

B. Quantile Regression (QR)
Koenker and Bassett (1978) [34] introduced quantile re-

gression, in which one finds an estimation of conditional
quantiles of the response variable. Least squares regression
estimates the conditional mean of the response variable based
on given values of the independent variables, whereas quantile
regression extends the regression model to the conditional
quantiles of the response variable. We focus on finding 50th,
75th or 95th percentile of the conditional distribution of Y ,
where each random variable Yi comes from

Yi = f(xi) + εi (3)

where εi is a random error. It is also important to note that
quantile regression is much more flexible than least squares
regression when dealing with heterogeneous conditional distri-
butions, because it makes no distributional assumption about
the error term in model (3) and simply provides a conditional
distribution of the prediction given the predictor values [35].

Let us denote τ an arbitrary quantile (0 < τ < 1). Linear
quantile regression assumes that the τ th conditional quantile
of Y , denoted below by Qτ (Y |x), is a linear function:

Qτ (Y |x) = xT θτ .

Having the observations (xi, yi) (i = 1, . . . , n), we can
estimate θτ by θ̂τ by solving the following optimization
problem:

θ̂τ = arg min
θτ

n∑
i=1

ρτ (yi − xTi θτ ),

where
ρτ (u) = (τ − I(u < 0))u,

and I(·) is the indicator function. If the error terms are iid, then
θ̂τ is asymptotically normal with mean θτ and its asymptotic
covariance is given in [35].

C. Bonferroni Inequality for Joint Confidence Statements
The Bonferroni inequality for two events A and B is:

P (A ∪B) ≤ P (A) + P (B)

This inequality can be rewritten as:

1− P (A ∪B) ≥ 1− (P (A) + P (B)). (4)

Let I1−α
X1

and I1−α
X2

be respectively two (1−α)-confidence
intervals for two arbitrary random variables X1 and X2. Let
A be the event X1 /∈ I1−α

X1
, and B the event X2 /∈ I1−α

X2
.

P (A) and P (B) respectively denote the probability of type I
error for confidence intervals I1−α

X1
and I1−α

X2
. The rewritten

Bonferroni inequality (4) now becomes:

1− P
(
(X1 /∈ I1−α

X1
) ∪ (X2 /∈ I1−α

X2
)
)
≥ 1− 2α

This allows us to obtain the following joint confidence
statement:

P
(
(X1 ∈ I1−α

X1
) ∩ (X2 ∈ I1−α

X2
)
)
≥ 1− 2α

Therefore, we can always use the Bonferroni inequality on
different (1− α

n )-confidence intervals to obtain one confidence
statement over n confidence intervals which has a probability
greater than or equal to 1− α.
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D. Cross-validation

Cross-validation [36] is a common schema used to assess
the generalization performance of a model3, i.e. its ability
to generalize correctly on fresh inputs. Let us denote f̂MS
the estimated prediction model found by a method M on a
random sample S. In a k-fold cross-validation schema, the
random sample S is partitioned into k folds (Si)16i6k, where
we have S−i = S\Si. Here S−i and Si are respectively the
training set and the validation set in the ith fold.

In this schema, a different prediction model f̂MS−i is esti-
mated on each random sample S−i (training set in the ith

fold). Then the prediction error of the trained model f̂MS−i is
measured on the validation set Si. At the end, the overall
model performance measure is estimated from the prediction
errors over the k disjoint validation sets.

IV. HIGH CONFIDENCE INTERVAL PREDICTION

Regression models are always built with finite sample size,
thus the predicted mean or quantile is an estimate of the true
unknown conditional mean or quantile of the random variable
Y (x) = f(x) + ε. Therefore, while dealing with datasets
of finite size, we need to estimate a confidence interval. In
this paper, we are interested in finding intervals in regression
models which contain, with a specified confidence level γ,
at least a desired proportion β of the conditional response
variable.

Commonly used prediction intervals (for example, linear
prediction intervals [37]) do not consider all aspects of un-
certainties caused by the limited number of observations.
Krishnamoorthy and Mathew [38], Hahn and Meeker [39] and
Kocherginsky et al. [40] provided an in-depth justification of
why tolerance intervals and confidence intervals on regression
quantiles are appropriate methods for the problem of high
confidence interval prediction. For an recent work on high
confidence intervals in non-linear models, see [41]. The rest
of this section describes tolerance intervals for least-squares
regression and confidence intervals for regression quantiles,
which are two classical approaches for obtaining such inter-
vals. We introduce a new method – denoted LR Tolerance in
our results – for obtaining tolerance intervals in Section IV-B,
in the context of least squares regression. We also propose
TBQCI (Two-sided Bonferroni-Quantile Confidence Intervals)
in Section IV-E, as a new method for building two-sided high-
confidence intervals in quantile regression.

A. Tolerance Intervals for Least-Squares Regression

Tolerance intervals for Ordinary Least Squares (OLS) have
been introduced by Wallis [42] in order to obtain intervals that
are guaranteed, with a confidence level γ, to contain at least a
proportion β of the conditional distribution of the response
variable Y (x). We refer to such intervals as β-content γ-
coverage regression tolerance intervals and they are denoted by

3In this work the performance is assessed through the Mean Interval Size
(MIS) and the Mean Inclusion Percentage (MIP), which are described later
in Section VII.

ITγ,β(x). A two-sided tolerance interval ITγ,β(x) for Y (x) takes
the form f̂(x)± ρ(x)σ̂, where ρ(x) is a tolerance factor to be
determined subject to the content β and the desired confidence
level γ. It is stated formally as:

Pf̂ ,σ̂

(
PY (x)

(
Y (x) ∈ ITγ,β(x)

)
≥ β

)
= γ, (5)

where

ITγ,β(x) = [LTβ,γ(x), UTβ,γ(x)] = [f̂(x)−ρ(x)σ̂, f̂(x)+ρ(x)σ̂].

Hahn and Meeker [39], and Krishnamoorthy and Mathew
[38] provided a comprehensive comparison between tolerance
intervals and other statistical intervals.

B. Bonferroni Tolerance Intervals for Least-Squares Regres-
sion

In this part, we introduce Bonferroni regression tolerance in-
tervals for least-squares regression and we apply them to OLS.
Compared to the state-of-the-art on tolerance intervals for OLS
(see [38] for an in-depth reference on the subject), this method
has three important advantages: it is reliable, fast and easy to
implement. Lieberman and Miller [43] used the Bonferroni
inequality to combine two confidence statements and obtain
simultaneous tolerance intervals for linear regression. In this
work, we apply the Bonferroni inequality to obtain tolerance
intervals for linear regression. It first consists in finding a
(1− τ

2 ) pointwise confidence interval for the conditional mean
f(x) = xT θ described by Equation (6) [37]. Then we obtain a
(1− τ

2 )-level upper confidence bound on the error’s standard
deviation. In the case of OLS, it is obtained by (7) where N ,
k and θ̂ denote respectively the number of observations, the
number of predictors and the estimator of θ in the OLS model
[43], [37].

Pθ̂

(
xT θ ∈ Ipw1− τ2

(x)

)
= 1− τ

2
, (6)

Pσ̂(σ ≤ cσ̂) = 1− τ

2
, (7)

where

Lpw1− τ2
(x) = xT θ̂ − t( τ4 ,N−k−1)σ̂,

Upw1− τ2
(x) = xT θ̂ + t( τ4 ,N−k−1)σ̂,

Ipw1− τ2
(x) = [Lpw1− τ2

(x), Upw1− τ2
(x)],

c =

(
N−k−1
χ2
τ
2
,N−k−1

) 1
2

.

Now by injecting Equations (6) and (7) in the Bonferroni
inequality, we obtain a γ-coverage β-content tolerance interval
which is formulated as follows:

Pθ̂,σ̂

(
PY (x)

(
Lpw1− τ2

(x) + Z 1−β
2
cσ̂ ≤ Y (x) ≤ (8)

Upw1− τ2
(x) + Z 1+β

2
cσ̂

)
≥ β

)
≥ γ,

where γ = 1 − τ . As one can notice, Equation (8) could
be obtained by tables of chi-squares, Student, and normal
distributions, which reduces the computational complexity
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of each interval computation to O(1) and is also easy and
straightforward to implement. We exploit the Bonferroni in-
equality to combine two different confidence intervals and
obtain tolerance intervals for least-squares. The application of
the Bonferroni inequality does not depend on the estimated
function and can be applied to linear as well as non-linear or
non-parametric regression models with normally distributed
errors.

C. Interval Prediction with Quantile Regression Models

While least-squares models estimate the conditional mean
function f(·), a quantile regression obtains estimates of con-
ditional quantiles which, on average, are equal to the true
quantile function as n goes to infinity (consistent estimator).
A quantile regression model gives one-sided intervals:

IQ1−α(x) = (−∞, Q1−α(x)], (9)

where Q1−α(x) estimates the true (1 − α)-quantile of Y (x),
given a particular combination of predictors. Note that, as
we saw in Section III-B, Q1−α(x) is an estimator of the un-
known conditional quantile function. This means that interval
IQ1−α(x) will, on average, contain a proportion 1 − α of
Y (x).

D. Confidence Interval on Regression Quantiles

Once we have estimated our conditional quantile with
a quantile regression model, we need to obtain confidence
intervals on the conditional quantile. Kocherginsky et al. [40]
compared several methods for obtaining confidence intervals
on regression quantiles and they proposed different approaches
depending on the size of the dataset and the number of
variables. In this work, we used the method denoted MCMB-
A4 introduced by Kocherginsky et al. [40]. This is a time-
saving re-sampling method based on a modification of the
Markov Chain Marginal Bootstrap (MCMB) which has a
computational complexity of O(np), where p is the number
of predictors (explanatory variables) and n the number of ex-
amples. However these intervals are one-sided intervals. In the
following subsection, we introduce TBQCI which obtains two-
sided intervals having similar properties to tolerance intervals.

E. Two-sided Bonferroni-Quantile Confidence Intervals
(TBQCI)

In order to obtain two-sided (1 − α)-content conditional
intervals (β = 1 − α), one must build two distinct quantile
regression models: a lower α

2 -quantile regression model and
an upper (1 − α

2 )-quantile regression model. However each
model needs itself a confidence interval as explained in IV-D.

Suppose that we have built the upper and lower quantile
regression models and let γ = 1 − τ be the confidence level
of the desired two-sided interval (which contains at least a
proportion 1 − α of Y (x)). We begin by obtaining a lower
(one-sided) (1− τ2 )-confidence interval on the lower α2 -quantile
regression model and an upper (one-sided) (1− τ

2 )-confidence

4This is the only implemented method and it is available in the quantReg
package of R.

interval on the upper (1− α
2 )-quantile regression model. These

lower and upper (1− τ
2 )-confidence intervals are respectively

denoted by IL
1− τ2
α
2

(x) and IU
1− τ2
1−α2

(x) in Equations (10) and
(11).

PS

(
PY (x)

(
Y (x) ∈ IL1− τ2

α
2

(x)|S
)
≤ α

2

)
= 1− τ

2
, (10)

where
IL

1− τ2
α
2

(x) = (−∞, L1− τ2
α
2

(x)].

PS

(
PY (x)

(
Y (x) ∈ IU1− τ2

1−α2
(x)|S

)
≥ 1−α

2

)
= 1− τ

2
, (11)

where
IU

1− τ2
1−α2

(x) = (−∞, U1− τ2
1−α2

(x)].

In Equation (10), L1− τ2
α
2

(x) denotes a lower confidence
bound on the α

2 -regression quantile at point x. Its
corresponding confidence interval contains, with a confidence
1 − τ

2 , at least the α
2 quantile of Y (x). In Equation

(11), U1− τ2
1−α2

(x) denotes an upper confidence bound on the

regression quantile at point x and IU
1− τ2
1−α2

(x) contains, with
confidence 1− τ

2 , at least the 1− α
2 quantile of Y (x).

By applying the Bonferroni inequality, we merge two prob-
ability statements of (1− τ

2 ) confidence and we obtain a joint
confidence statement with a probability greater than or equal
to 1− τ :

PS

(
PY (x)

(
Y (x) ∈ IQ1−τ

1−α(x)

)
≥ 1− α

)
≥ γ, (12)

where

IQ1−τ
1−α(x) = [L

1− τ2
α
2

(x), U
1− τ2
1−α2

(x)], γ = 1− τ.

To the authors’ knowledge, this method addressing the
problem of obtaining two-sided high confidence interval, using
one-sided confidence intervals on regression quantiles, is new
to the literature. We name such intervals Two-sided Bonferroni
Quantile Confidence Intervals (TBQCI).

Equation (12) states that TBQCI provides two-sided inter-
vals that contain, with a specified confidence γ, at least a
desired proportion β of the distribution of Y (x). Such intervals
are similar to two-sided γ-coverage (1−α)-content tolerance
intervals defined by Equation (5). While TBQCI is for quantile
regression, tolerance intervals are for least-squares regression.

V. TRAJECTORY PREDICTION USING A POINT-MASS
MODEL

Before showing the results of our regression methods on
the task of predicting aircraft altitude intervals, let us describe
the point-mass model that serves as baseline method in our
experiments. This section describes the trajectory prediction
with point-mass models, and a state-of-the-art variant where
the aircraft mass is estimated from past trajectory points. We
also describe how β-content altitude intervals can be built
when using such models, and explain the aircraft operation
during climb.
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Figure 3. Simplified point-mass model.

A. The Point-Mass Model

The point-mass model, illustrated in Figure 3, describes the
forces applying to the center of gravity of the aircraft and
their influence on the aircraft’s acceleration, making several
simplifying assumptions. It is assumed that the thrust and drag
vectors are collinear to the airspeed vector

−→
Va, and that the

lift is perpendicular to these vectors. We denote Thr the total
thrust, D the aerodynamic drag of the airframe, m the aircraft
mass, g the gravitational acceleration and WUP the vertical
component of the wind. Introducing the geodetic altitude h,
projecting Newton’s second law along the air speed

−→
Va gives

us the following equation :

Thr −D
m

Va = VaV̇a + gḣ+
−̇→
W ·
−→
Va − gWUP (13)

Several equivalent forms of this equation can be used (see
[44]), depending on what unknown variable is being calculated
from the other known variables. Actually using Equation (13)
to predict a trajectory requires a model of the aerodynamic
drag for any airframe flying at a given speed through the air.
In addition, we may need the maximum climb thrust, which
depends on the engines with which the aircraft is equipped. In
the experiments presented here, the Eurocontrol BADA model
was used for that purpose.

However, one cannot use Equation (13) without prior knowl-
edge of the initial state (mass, position, speed, etc.) of the
aircraft, and of the pilot’s intents as to how the aircraft will be
operated in the future (thrust law, speed law, or rate of climb).
The position and speed are known using radar measurements,
but none of the other aforementioned parameters are available
to ground-based systems.

B. Estimating the mass

Two mass estimation methods ([8], [9], [45]) have been
recently derived from Equation 13. In order to use these
methods, one has to assume a thrust setting. In this work,
we assume a max climb thrust. We have tested the interval
prediction using the BADA point-mass model, either with the
default mass given in the BADA tables, or with the mass
estimated by the adaptive method ([8], [9]), which is simple
to implement.

C. Interval Prediction for BADA Models

In Section IV, we have seen how to deal with the prediction
uncertainty in regression models. In the case of point-mass

models (BADA and BADA Adaptive), the uncertainty on the
altitude prediction is assessed as follows:

• First, we assume that the point-mass prediction error has
a zero mean, homoscedastic (constant variance) normal
distribution.

• Second, we estimate σ2
train, the variance of the 10-

minute-ahead pointwise prediction error on the training
set.

• Finally we take the β-inter-quantile of a normal dis-
tribution with mean and variance respectively equal to
fΦ(x), the point-mass prediction, and σ2

train the standard
deviation of the point-mass model errors. The interval,
denoted IΦ

β (x), is then obtained as follows:

IΦ
β (x) = fΦ(x)± σtrainZ 1−β

2
(14)

The term Φ stated in the above expressions can be
replaced by BADA or BADA Adaptive, depending on the
chosen model (BADA with default parameters, or BADA
with the mass estimated by the adaptive method).

D. Aircraft Operation During Climb

Generally, when no external constraint applies during the
climb, the aircraft is operated at constant CAS5 and variable
Mach number, until a specified Mach number is reached.
Above this CAS/Mach crossover altitude, the aircraft is oper-
ated at a constant Mach number, and variable CAS. External
constraints may apply, however. After take-off, the aircraft
cannot exceed a specified maximum CAS until Flight Level
1006 is reached. This first climb segment is followed by an
acceleration at FL100, and then a second climb segment at
a higher calibrated airspeed, until the CAS/Mach crossover
altitude is reached.

In this paper, we consider only this second climb segment at
constant CAS, followed by the constant Mach climb, as we are
mostly interested in predicting the aircraft trajectory in the en-
route airspace. The actual CAS and Mach values are chosen by
the airline operators, according to a cost index specific to each
airline. The cost index and the chosen CAS and Mach values
are not known by air traffic control systems, although some
studies show the improvements that such knowledge would
provide in trajectory prediction ([46], [47]). In this work, the
trajectories are predicted using the standard CAS and Mach
values of the BADA climb procedures file.

VI. DATASET AND PATTERNS FOR TRAINING

This section describes how the raw data has been processed
in order to obtain the climbing trajectories and the associated
patterns for training. We focused on one aircraft type and
we selected the Airbus A320 because it is the most common
aircraft in Europe and in our trajectory set.

5CAS: the Calibrated Air Speed is the speed indicated on the pilot’s
instruments, disregarding the intrument errors.

6FL100 = 10000 feet above isobar 1013.25 hPa.
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A. The Recorded Data

The trajectories used in this study were obtained from
recorded radar tracks from the Paris Air Traffic Control Center.
We selected flights over two months (July 2006 and January
2007) departing from Paris Orly or Paris Charles-de-Gaulle.
The raw data is made of one position report every 1 to 3
seconds. The raw Mode-C altitude7 has a granularity of 100
feet.

The weather data grid is provided by Meteo France. The
wind and temperature are available at various isobar altitudes
over the same two months. The wind and temperature at every
trajectory point were interpolated from the weather data grid.

B. Data Preprocessing

The recorded aircraft trajectories were smoothed using cubic
splines, in order to obtain: the aircraft position (X , Y in
a projection plan, or latitude and longitude in WGS84), the
ground velocity vector (Vx, Vy), the smoothed pressure altitude
Hp, and the rate of climb or descent (ROCD).

The climb, cruise and descent segments were identified,
using triggers on the rate of climb or descent to detect the
transitions between two segments. The trajectories were then
filtered so as to keep only the climb segments. An additional
40 seconds were trimmed from the beginning and end of each
segment, so as to remove climb/cruise or cruise/climb tran-
sitions. The trajectories were then sampled every 15 seconds,
with time and distance origins at the point P0 where the climb
segment crosses flight level FL1808. The trajectory segments
were sampled so as to obtain 10 points preceding P0 and 40
points after P0 because of the 10 minutes look-ahead time. In
the end, we obtained 4939 sampled trajectories.

Using the position, velocity and wind data, we computed the
true air speed, the distance flown in the air, the drift angle and
the along-track and cross-track winds. The successive velocity
vectors allowed us to compute the trajectory curvature at each
point. The actual aircraft bank angle was then derived from
true airspeed and the curvature of the air trajectory. Finally,
the BADA model equations were used to compute additional
data, such as: calibrated airspeed, Mach number, energy share
factor9, as well as the derivatives of these quantities with
respect to time.

C. Building Patterns for Regression

Regression models are built using a set of patterns (x, y).
From each sampled climbing segment, one pattern (x, y) is
extracted. In our application, y is the pressure altitude Hp at
10 minutes after P0 and x is built using the variables known
at t0. This vector includes state variables measured at t0 and
before. It also contains variables from the flight plan like the
Requested Flight Level, the requested speed and the distance

7This altitude is directly derived from the air pressure measured by the
aircraft. It is the height in feet above isobar 1013.25 hPa.

8FL180= 18000 feet above isobar 1013.25 hPa.
9The energy share factor measures how much of the energy is devoted to

climb or to longitudinal acceleration. Using the observed speed, acceleration
and rate of climb, it can be computed using the following formula: gḣ

VaV̇a+gḣ
.

between the departure and arrival airports. In addition, the
temperatures and winds given by the weather grid at different
altitudes and the mass estimated with the adaptive method are
used. In the end, there are 338 explanatory variables and one
response variable. This set contains 4939 patterns.

A principal component analysis was performed on the
explanatory variables x, so as to reduce the dimensionality and
avoid redundant input variables in the trajectory prediction.
Principal components are linear combinations of the initial
variables that we can use instead of the initial explanatory
variables in the regression method. Once these principal
components are computed, only the p principal components
with the largest variances are used instead of the initial 338
explanatory variables. In this case, we reduced the dimension-
ality of the dataset from 338 explanatory variables to two
different datasets containing 35 and 65 significant Principal
Components (PC) which respectively explain 95% and 99%
of the variance of the feature space. Figure 4 shows the
standard deviations of the first 80 principal components: the
first 35 and 65 principal components are respectively located
above the solid orange line and the dotted blue line and they
explain respectively 95% and 99% of the variance of the 338
explanatory variables.
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Figure 4. Principal components standard deviations for the 338 explanatory
variables of the ATM described in Section VI. The first 35 and 65 principal
components are respectively located above the solid orange line and the dotted
blue line and they explain respectively 95% and 99% of the variance of the
338 explanatory variables.

VII. EXPERIMENTS

Let us now compare the methods introduced in Sec-
tions IV-B and IV-E with the two flavors of point-mass model
described in Section V, using the dataset described in the
previous section. Here, we compare the intervals obtained by
the mentioned methods regardless of any variable selection or
outliers detection preprocessing.

A. Experimental setup

Our interval prediction models are scored using 100 runs
of a 10-fold cross-validation on the dataset described in
Section VI. With these 100 runs, we obtain 1,000 models.
Each model is tested on a validation set. From one validation
set we can compute the average fraction of actual altitudes
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falling inside their predicted interval and in what follows, this
value is called the Mean Inclusion Percentage (MIP).

The MIP is an estimation of P (Y (x) ∈ I(x)) because it is
found by the average fraction of actual altitudes falling inside
their predicted interval. This value can change with different
aircraft trajectory data and different sample size; it is a random
variable.

As explained before, our context requires a reliable pre-
diction of the future aircraft positions, so we are interested
in interval prediction models being very likely to give a
model with their P (Y (x) ∈ I(x)) greater than or equal
to the desired content β. For this purpose, we will use the
probability P (P (Y (x) ∈ I(x)) ≥ β) which can be estimated
by computing the average fraction of MIP greater or equal to
β. This is done using the 1,000 estimates of MIP associated
to the 1,000 validation sets. It is expected to be greater than
or equal to the desired coverage γ.

Please note the difference between choosing a model which
has on average P (Y (x) ∈ I(x)) = β and ensuring with a high
probability γ that P (Y (x) ∈ I(x)) ≥ β.

For example, for β = 0.9 and γ = 0.95, we expect that
at least 950 models among the 1,000 tuned models will have
a MIP greater than or equal to 0.9. Of course, this objective
is easier to achieve for very wide intervals, which are not
desirable: our aim is to find the tightest interval that contains
the desired proportion of altitude predictions. Consequently,
the model quality is also assessed by looking at the size of
the predicted interval.

The model performance criteria are the MIP and the Mean
Interval Size (MIS). As for the MIP, one MIS value is
computed from one validation set. The MIS is the mean size
of I(x) for x in the validation set. In the following, when
assessing the performance of the proposed methods, the term
reliability refers to the fact that the observed content MIP is
greater than or equal to the desired content β, whereas the
term precision refers to the MIS: the tighter the interval, the
more precise the method.

In our experiments, we take γ = 0.95. This choice is
arbitrary and corresponds to the level of confidence that we
require on the altitude interval bounds. This means that we
choose a 0.05 probability10 of having a model which does
not provide intervals that contain at least a desired proportion
of the conditional distribution of the response variable (here,
the altitude). From an operational point of view, we assume
that such relatively rare occurences can be managed by the air
traffic control system, for example through the use of existing
safety net tools and short-term conflict alert and collision
avoidance tools.

In the rest of this section, we compare the following
prediction methods, using the MIP and MIS criteria:

• BADA: BADA point-mass model, with the BADA default
values for the aircraft mass, target speeds (CAS/Mach),
and assuming a maximum climb thrust. This model takes
the temperature and the effect of the wind into account.
In order to predict intervals one has to replace fΦ(x)

10This is a common choice in statistical inference.

Method MIP MIS [ft] P (MIP ≥ β)

BADA 0.947 (0.0099) 6237 (17) 0.359
BADA Adaptative 0.948 (0.01) 4057 (16) 0.42

0.95-LR Tolerance p=65 0.967 (0.0078) 4283 (27) 0.982
0.95-LR Tolerance p=35 0.967 (0.0079) 4453 (21) 0.98

0.95-TBQCI p=65 0.97 (0.0078) 4454 (97) 0.989
0.95-TBQCI p=35 0.966 (0.0083) 4451 (52) 0.965

Table I
MIP AND MIS FOR DIFFERENT INTERVAL PREDICTION MODELS WITH A

THEORETICAL β-CONTENT OF 0.95 AND A 10 MINUTES PREDICTION
HORIZON. THE STANDARD DEVIATION OVER THE 1,000 VALUES IS SHOWN

IN PARENTHESES.

and σtrain in Equation (14) by the corresponding values
obtained by this method.

• BADA Adaptive: Same as BADA, except that the mass
is estimated using the adaptive method, introduced in [8],
on eleven past trajectory points.

• 0.95-TBQCI p=65: two-sided Bonferroni 0.95-level con-
fidence β-content interval obtained by two different quan-
tile regression models, as explained in Section IV-E, built
on the dataset with the first 65 principal components. We
used the rq and rq.predict function in R’s quantReg
package in order to obtain the intervals IL1−τ/2

α/2 (x) and

IU
1−τ/2
1−α/2(x) mentioned in Equations 10 and 11.

• 0.95-TBQCI p=35: Same as 0.95-TBQCI p=65 but built
on the dataset with the first 35 principal components.

• 0.95-LR Tolerance p=65: two-sided 0.95-coverage β-
content Bonferroni least-squares regression tolerance in-
tervals (explained in IV-B) built on the dataset with the
first 65 principal components.

• 0.95-LR Tolerance p=35: Same as 0.95-LR Tolerance
p=65 but built on the dataset with the first 35 principal
components.

B. Results for β = 0.95

Let us first show a few results for a desired content β =
0.95. This β-content should not be confused with the specified
confidence level γ used in our methods, which is also set to
0.95.

The interval prediction results for the tested methods are
shown in Table I. The second column shows the mean and
standard deviation of the 1,000 MIPs associated to the 1,000
validation sets. This column is to be compared with the desired
content β. The third column shows the mean and standard
deviation of the 1,000 values of MIS associated to the 1,000
validation sets. This column is related to the precision of
the method. The last column shows the average fraction of
MIP values greater than or equal to β. This column is to be
compared with the desired coverage γ.

The tested BADA reference model has the smallest mean
MIP and gives much wider altitude intervals than all other
methods. This poor performance can certainly be explained by
the choice of default parameters for the inputs of the physical
model described in Section V-A. In the BADA method, we
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Method CPU time in seconds

0.95-LR Tolerance p=65 0.12
0.95-LR Tolerance p=35 0.07

0.95-TBQCI p=65 761
0.95-TBQCI p=35 230

Table II
CPU TIME OF LR TOLERANCE AND TBQCI MODELS FOR THE

0.95-CONTENT 10-MINUTE AHEAD INTERVAL PREDICTION TASK ON THE
ATM DATASET DESCRIBED IN SECTION VI.

have the same mass, speed intent, and thrust law for all aircraft
of the same type.

The BADA Adaptive method works very well, the obtained
MIP is almost the same as the desired one and it gives
the tightest interval: estimating the mass highly improves the
precision of the interval prediction. However, the probability
that the built model contains the β content, estimated by
P (MIP ≥ β), is low compared to the γ = 0.95 coverage
desired.

Unlike the BADA methods, all versions of our methods
(0.95-LR Tolerance and 0.95-TBQCI) have a P (MIP ≥ β)
greater than the desired coverage γ. But this higher reliability
is obtained at the expense of slightly larger interval sizes, when
compared with the BADA Adaptive MIS.

In Table II, we compare the CPU times of our methods, on
the ATM dataset. Note that we measure the time required to
compute prediction only, and not the time required to build
the models. We see that the CPU times are in line with the
computational complexity of the LR Tolerance and TBQCI
models as seen in Section IV.

One can observe that the TBQCI model with 65 principal
components is much more time consuming than the one with
35 principal components, and that both methods are much
slower than the least squares tolerance methods. This is due to
the computational complexity O(np) of the approach adopted
by TBQCI as explained in Section IV-D.

However, these CPU times are for the computation of 4939
interval predictions. The average CPU times per trajectory for
the two TBQCI methods (with 35 or 65 principal components)
are 0.05 and 0.15 seconds respectively. This is acceptable for
an operational use if we compute only a few trajectories per
aircraft. This might be too long for the CD&R application
evoked in Section II. There are still some computational issues
to be addressed for the TBQCI method. For want of anything
better, we could parallelize the computation of the trajectories.

C. Results for different values of β

Figure 5 plots the MIP as a function of the desired content β.
For each β and each method, we have 1,000 values of MIP.
The distribution of these 1,000 MIP values are visualized using
a boxplot. The boxplot shows the 5 %, 25 %, 50 %, 75 % and
95 % quantiles. Thus, if one boxplot is over the black line
y = x, then 95 % of the MIPs are greater than or equal to the
desired content β. If this is the case we can conclude that this
method have the desired γ coverage. With Figure 5, we can
see that the BADA methods have a median MIP close to the

desired β. Only the methods introduced in this paper satisfy
the γ coverage constraint.

Figure 6 plots P (MIP ≥ β) as a function of β. With this
figure, we can conclude that our methods have a coverage
greater than γ = 0.95 for all values of β less than 0.95.
For β = 0.97 and β = 0.99, the coverage is much less than
expected for the 0.95-LR Tolerance p=65 method. Concerning
the 0.95-TBQCI p=35 method, it remains high but slightly
inferior to the desired coverage.

Indeed, obtaining statistical intervals in multiple regression
having their true coverage equal to their nominal coverage is
a hard task and this difficulty grows when increasing β and/or
the number of independent variables [38], [39]. Moreover, we
know that the true data generation function is not an OLS
model. The OLS (the 0.95-LR Tolerance p=65 method) is the
statistical least-squares regression model which better matches
our data. It is not the true function. The robustness of the 0.95-
TBQCI p=35 method is simply explained by the robustness of
quantile regression. As explained before, quantile regression
has fewer model assumptions and is more robust to outliers
than OLS.

Figure 7 plots the MIS showing the precision of the
interval prediction methods for different values of the desired
content β. Considering Figures 5 and 7 simultaneously, we
see that the BADA Adaptive model is more precise, in terms
of interval size, than our methods based on the Bonferroni
inequality, but less reliable in terms of γ coverage. All these
methods perform much better than the baseline BADA model
that is currently used in many trajectory predictors.
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Figure 5. Mean Inclusion Percentage (MIP) for different values of β, and
for the models described in Section VII-A. For each β and each method, we
have 1,000 values of MIP. The distribution of these 1,000 MIP values are
visualized using a boxplot. The boxplot shows the 5 %, 25 %, 50 %, 75 %
and 95 % quantiles.

VIII. CONCLUSION

This paper dealt with the application of high-confidence
interval prediction techniques to the altitude prediction of
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Figure 6. For each β and each method, we have 1,000 values of MIP. This
figure plots the proportion of MIP greater or equal to β as a function of β.
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Figure 7. Mean Interval Size (MIS) for different values of β, and for the
models described in Section VII-A. For each β and each method, we have
1,000 values of MIS. The distribution of these 1,000 MIS values are visualized
using a boxplot. The boxplot shows the 5 %, 25 %, 50 %, 75 % and 95 %
quantiles.

climbing aircraft. We were interested in finding two-sided
prediction intervals in regression models which contain, with
a specified confidence level γ, at least a desired proportion β
of the conditional distribution of the predicted altitude. This
paper introduced two new methods based on the Bonferroni
inequality to compute such intervals. The first one (LR Toler-
ance) computes tolerance intervals for least squares regression.
The second one – denoted Two-sided Bonferroni-Quantile
Confidence Intervals (TBQCI) – obtains high confidence two-
sided intervals in quantile regression.

The proposed methods have been compared with two state-
of-the-art point-mass models, on the task of predicting the
altitude of climbing aircraft 10 minutes ahead, starting from
an initial point at flight level FL180. The results show that
the proposed methods perform much better than the baseline
BADA model that uses a default value for the aircraft mass.
When comparing with the BADA Adaptive model where the

aircraft mass is estimated using past trajectory points, our
methods prove more reliable (in terms of confidence level γ),
although less precise (in terms of interval size), than BADA
Adaptive.

This was to be expected, as our methods explicitely build
intervals so as to guarantee the desired β-content, with a
probability greater than a specified confidence level γ. This
is not the case for the interval prediction methods based on
the point-mass models.

From an operational point of view, the proposed methods
could be applied to the detection and resolution of potential
conflicts between trajectories. In such a context, one might
want to find the proper trade-off between reliability and
precision. This trade-off may differ with the condidered look-
ahead time: predictions at short look-ahead times should
definitely be as reliable as possible: not detecting a conflict
could lead to catastrophic consequences. When predicting far
ahead, reliability is less crucial but precision is required in
order to limit the number of false alarms and unnecessary
maneuvers.

Future works might extend the proposed approach to various
look-ahead times, considering the above discussed trade-off
between reliability and precision, and also to different initial
altitudes at t0. The regression approach could also be extended
to several aircraft types, possibly considering hierarchical
models combining specialized sub-models in order to improve
the prediction.
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