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Abstract: This paper presents a method for solving a dynamic sectorization problem. It is important because
the airspace is limited and the number of aircraft in the airspace increases. The number of aircraft in the
airspace cannot be increased due to unbalanced workload of air traffic controllers. It is unbalanced because
fixed sectors are used. Airspace capacity can be increased if the sectorization is more flexible. The sectorization
must be changed according to the traffic. We use column generation algorithm to solve dynamic sectorization
problem. Column generation refers to linear programming (LP) algorithm designed to solve problems in which
there are a huge number of variables compared to the number of constraints and the simplex algorithm step
of determining whether the current basic solution is optimal or finding a variable to enter the basis is done by
solving an optimization problem rather than by enumeration Column generation problem consists of the master
problem and sub-problem. The master problem focuses on choosing the best configuration for each period,

among a restricted list of configurations available, taking into consideration the static and dynamic costs.
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1 INTRODUCTION

Fixed airspace structure is one obstacle why more
aircraft cannot fly in the airspace. The sector geome-
try has not changed even if routes have changed over
the past decade. Dynamic Airspace Sectorization is
a principle where the airspace is redesigned dynam-
ically to take into account changing traffic demands.
Some solutions have been proposed to dynamically
partition the airspace to accommodate traffic growth.
The problem is that their complexity increases as the
airspace size and traffic volume increase. Yousefi pro-
posed method for resectorization but it was too slow
for implementing it in real time [1]. Tien proposed
method to avoid sector boundary changes during busy
periods [3] A mixed-integer programming (MIP) model
was developed [2]. In this paper column generation
algorithm to solve dynamic sectorization problem. Col-
umn generation algorithm is used to solve problems in
which there are a huge number of variables.

2 MATHEMATICAL MODEL
2.1 Principle

The master problem focuses on choosing the best
configuration for each period, among a restricted list
of configurations available, taking into consideration

the static and dynamic costs. Each master problem is
solved with a linear solver. The pricing (also called
subproblem) uses dual variables values to generate
configurations of negative reduced cost that need to
be added to the restricted list of configurations for the
master problem. In this implementation we propose
to solve the pricing heuristically with graph partition-
ing algorithm designed for a fast and efficient 1 period
partitioning.

2.2 Model

Let C be the set of feasible configurations appli-
cable to any time period, let c! be the static cost of a
configuration i € C at time ¢ and let:

e X!beequal to 1 if configuration i is used at time
t and O otherwise,

e Y! be equal to 1 if edge e is frontier at time ¢
and O otherwise,

e Z! be equal to 1 if edge e was not frontier at
time —1 but became frontier at time ¢, or if edge
e was frontier at time # — 1 and is not frontier at
time ¢. The variable is = 0 if the edge status
(frontier or not) has not changed from 7 — 1 to r.



The resectorization problem can be reformulated
as follows:
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where 7 is a predefined weighting factor and C(e) c C
is the subset of configurations that use edge e as a
frontier.

The objective-function (1) minimizes the sum of
the static and dynamic costs. The static cost is given
by the configurations in use at each instant (for which
! will quantify the weighted sum of the total load,
load difference, ...) whereas the dynamic cost is given
by the number of edges that change status normalized
by B. Constraints (2) ensure that one configuration
is chosen per time period. Constraints (3) link the
status of each edge (frontier or not) with the set of
configurations (C(e)) in which the edge is a frontier.
Constraints (4) and (5) ensure that the status changes
between consecutive instants are correctly computed
for each edge.

The dynamic cost is defined in terms of frontier
edge in this model, instead of sectors as in the CB
model, to avoid computing the transition cost between
all pairs of existing (and also newly added) configura-
tions.

It can be proven that only the binarity of variables
Y! is mandatory in CFB and that the other two vari-
ables can be considered continuous between 0 and 1.
Therefore constraints (7) and (8) can be replaced with
(9) and (10). Such modification reduces the num-
ber of binary variables and therefore the number of
potential branches if a branch-and-price is applied.
Also, branching on variables Y. is compatible with
the pricing method of the column generation, which
means that there is no need to develop a second pric-
ing method.

Vie{l.T}L,VieC  (9)
Vie (2.T),YecE  (10)

0<X <1,
0<Z <1,
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2.3 Resolution: Column generation / Branch-and-
Price

Model Pcpp has a polynomial number of constraints
but an exponential number of variables, therefore a
column-generation resolution method is appropriate.
This method iterates between two phases: a master
problem resolution and a pricing resolution (or also
known as subproblem resolution or generator). The
master problem solves the linear relaxation of the prob-
lem restricted to a predefined set of variables. The
pricing uses the optimal dual variables values from
the master problem to identify/generate new variables
of negative reduced cost to add to the master prob-
lem, before the latter is solved again. The algorithm
stops when no variable of negative reduced cost was
generated.

The restricted master problem can be expressed as
follows:

T T
(RMPers)minf = 3 Y cXi4y > 3 70 (1)
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ieC
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where C is the restricted list of configurations consid-
ered. Each restricted master problem can therefore be
solved with a linear programming solver.

Let u!, ¥t € {1..T} be the dual variables associated
with constraints (12) and let v,V € {1.T},Ve € E
be the dual variables associated with constraints (13).
The pricing aims at generating new configurations of
negative reduced costs, which can be added to C.

The resulting column generation procedure is sum-
marized in the pseudo-code 1.
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Algo 1 Column Generation-based resolution method
for the CFB-model
Require: graph G, dynamic coefficient 8

1: ImportData(G, c, Q)

2: Vee{l.T},u' :=0

3: Vie{l.T},Ye€e E,V, =0

4: f:=0

5: for each time period t € {1..T} do

6:  GenerateBestConfigurations(G, c, Q)
7: end for

8: InitializeMasterProblem(E)

9: stop:=0

10: repeat

SolveMasterProblem(a fou,v)
12:  for each time period ¢ € {1..T'} do

—_

13: UpdateEdgesReducedCosts(G, ¢, u, v)

14: GenerateBestConfigurations(G, ¢, Q)

15:  end for

16:  if 3 Configurations of Negative Reduced Cost
then

17: C = CU{a few configurations}

18:  else

19: stop :=1

20:  end if

21: until stop == 1
22: return f

2.3.1 Generate Best Configurations

Given the time period ¢, the graph G and the edge
costs (c or ¢) as well as the node weights and group
capacity Q, the goal is to design/identify the best con-
figurations. It corresponds to the pricing phase of the
column generation. If the pricing is solved optimally,
then the optimality of the final solution is guaranteed
once no configuration of negative reduced cost can be
found.

We propose to use a graph partitioning to solve the
pricing. As a consequence, the optimality of the final
solution is not guaranteed, but valid lower bounds and
feasible solutions of good quality can be obtained.

2.3.2 Initialize Master Problem

Using the set of configurations generated C, create
the first restricted master problem (11)-(18).

2.3.3  Solve Master Problem

Solve the restricted master problem with a linear
solver such as Cplex or Gurobi (or Scip). Get the dual
variables values ' and V., associated with constraints
(12) and (13).

2.3.4 Update Edges reduced costs

The graph weights must be updated to ensure that
the application of graph partitioning on the modified
graphs generates the configurations with the best re-
duced costs. Let & denote the reduced cost of a con-
figuration i for period ¢ and let 7 (i) denote the list of
edges that are frontier in configuration i. By defini-
tion, & = ¢! —u' — Y5 ;) v, Where u' and V), are the
dual variables values associated with constraints (2)
and (3) respectively.

For a given time period 7, u' is constant and has
the same value for all configurations, therefore find-
ing the configuration that has the best reduced cost
is equivalent to finding the configuration i with the
best ¢! — Y,cr) v, value, and then substracting u'.
Since ¢! = aloaddifference + f8 3, 5 Cl, then ¢! —
Yeer (i) Ve = eloaddifference + 8 Zeesfr(i) Co = DieeF (i) Ve
= aloaddifference + B Y eq;)(ch — %). As a conse-

quence, finding the configuration that has the best re-
duced cost on the graph G with edge costs c, is equiv-
alent to finding the configuration that has the mini-
mum total cost on graph G with modified edge costs
o=tk
e e ﬂ
cost.
Therefore, it suffice to apply graph partitioning on
the graph with modified edge costs ¢, and then sub-
stracting u’ from the total cost (on the modified graph)
of the configuration obtained.

and then substracting ' from that total

3 PRICING
3.1 Graph Partitioning

Consider a simple weighted graph G = (V,E),
where V = [1,n] is the set of vertices and E is the
set of edges. Denote by w;;, the non-negative weight
of the undirected edge ij € E; if ij ¢ E, then w;; = 0.
Let v;be a positive weight of vertex i € V and v(A) =
Dica Vi, where A C V The goal of the k-partititoning
problem is to find a partition of V into a family of k
disjoint nonempty subsets p(m)<k<, While enforcing
the following [4]:

1) w;; is minimized (edgecut)

> Wij
ien,= jén,
2) is minimize (balanced objective)
) - 22,
max |v(r,) - —
pellk] P k

3.2 Multi Level Algorithm

The multi-level graph partitioning algorithm is used
for reducing the size of the graph by merging ver-
tices and edges at different levels and then partitions
the smallest graph and then reconstructs initial graph
structure See figure 1. At each level the partition is



Table 1 Computation Time

Test | Nodes | Parts | Computation time [s]
1 64 4 3.02

2 128 4 8.2

3 256 4 10.5

4 64 8 2.7

5 128 8 7.4

6 256 8 8.8

7 64 16 2.5

8 128 16 7.3

9 256 16 8.0

initial partitioning

Figure 1 Example of multilevel framework for a 4-
partitioning problem [4]

0 2000 4000 8000 8000 10000

Figure 2 Test Network [6]

refined. The the multi-level graph partitioning algo-
rithm is used for partitioning and the Fiduccia Matthey-
ses algorithm for refining the partition at each level. The
coarse graph is a replica of the original graph.

4 RESULTS
4.1 Input Data

To evaluate proposed algorithm a test network for
which an evident solution is known is used. See Fig.
2
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4.2 Experiments

Proposed were tested with different network sizes
and different number of parts. See Table 1

5 CONCLUSION
This paper presented a method for solving a dy-

namic sectorization problem. Column generation method

is useful for large scale optimization problem. Col-
umn generation problem consisted of the master prob-
lem and sub-problem. The master problem focuses
on choosing the best configuration for each period,
among a restricted list of configurations available, tak-
ing into consideration the static and dynamic costs.

6 FUTURE WORK

This method should be tested with real traffic and
sectors that are used today in the airspace.It can solve
more quickly than other MIP solvers. More precise
model with additional variable could be developed
that takes into account more constraints.
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