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Abstract: Air Traffic Management (ATM) ensures the safety of flights by optimizing flows and maintaining
separation between aircraft. Many ATM applications involve some aircraft trajectory optimization in order
to improve the performance of the overall system. Trajectories are objects belonging to spaces with infinite
dimensions. Widely used approaches are based on discretization, sampling trajectories at some regular points,
and then using appropriate representations to reduce the dimension of the search space. We propose an approach
in which trajectories in a two-dimensional space are designed with the help of convex hull generation. By using
static as well as moving obstacles for which the position and the size are controlled by artificial evolution, we
propose a new algorithm for efficient trajectory planning in Terminal Maneuvering Areas.
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1 INTRODUCTION

Trajectory planning is crucial in Air Traffic Man-
agement (ATM) to regulate air traffic flows while en-
suring flight safety. Trajectories are designed so as to
avoid aircraft potential conflicts as well as to optimize
some criteria, such as cost index or environmental cri-
teria (noise abatement, pollutant emission, etc.). De-
pending on the considered time horizon, the following
kinds of trajectory planning can be carried out:

e At a strategical level, only macroscopic indi-
cators like congestion, mean traffic complexity,
delays can be taken into account, as well as the
presence of obstacles;

e at a pre-tactical level, the accuracy of previous
indicators, specially congestion and complex-
ity, increases while at the same time early con-
flict detection can be performed;

o finally, at the tactical level, conflict resolution
is the major concern and optimality of the tra-
jectories is only marginally interesting.

In this work, we focus on path planning in Termi-
nal Maneuvering Areas (TMA), that are the areas sur-
rounding one or more neighbooring airports, where
arriving and departure routes (also called STAR and
SID respectively) have to be handled. Such a plan-
ning is done at a strategical level, and aims at design-
ing trajectories avoiding obstacles.

Aircraft trajectories are usually designed into three
steps. The first step consists in the design of the two-
dimensional shape between two points, respectively
the origin and the destination point. Then, an optimal
altitude profile is computed in order to create a full
three-dimensional shape. Finally, the speed profile is
computed in order to optimize some cost criteria (fuel,
cost index). In this work, we propose a new approach
to optimize the two-dimensional shape of an aircraft
trajectory. We consider that an aircraft systematically
receives its optimal altitude and speed profiles. So,
the obtained 2D shapes are supposed to be evaluated
in the three-dimensional space by using some given
altitude profiles.

The paper is organized as follows. Section 2 out-
lines the main existing approaches for trajectory plan-
ning. Section 3 presents the proposed model and algo-
rithm. First, the trajectory shape design is introduced,
then a combinatorial optimization problem and an evo-
lutionary algorithm for its solution, used to carry out
such a design, are presented. Section 4 present an ex-
tension of the proposed approach to take efficiently
into account the case of dynamic obstacles. Some
results validating such an approach are discussed in
Section 5. Finally, Section 6 draws some conclusion.

2 STATE OF THE ART

Trajectories are mathematical objects belonging
to spaces with infinite dimensions. Widely used ap-
proaches for their design are based on discretization.
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Figure 1 .The optimization process control the X vec-
tor in order to build a trajectory vy for evaluation.
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Figure 2 Piecewise linear interpolation. By summing
the triangle shapes (dash lines) controlled by the po-
sitions of the red dot and the associated extension,
we can generate a full linear piecewise interpolation
(solid line).

The general idea is to use a discrete number of pa-
rameters describing the trajectory, optimize such pa-
rameters with respect to some selected criterion to
design a given class of trajectory shapes, and finally
build a trajectory y. This process is summarized in
Fig. 1. Starting from a discrete set of points, a way
to build a trajectory v is based on using interpolation.
Piecewise linear interpolation is the simplest piece-
wise interpolation method. An example of such a
linear piecewise interpolation is shown in Fig. 2. In
this case, the derivative of the resulting curve is not
continuous. In order to fix this drawback, one can
use piecewise quadratic, piecewise cubic interpola-
tion [8] or cubic spline interpolation [2], which en-
sures smooth C? shapes. Alternatively, when interpo-
lating the given points is not a hard constraint, one
can use some control points which control the shape
of a given trajectory without forcing this trajectory to
go through such points. Among such kind of approx-
imation approaches, we may recall the ones based on
Bézier curves [6] or on B-splines [3]. If many points

have to be considered, using a Bézier curve one has
to manipulate polynoms with high degree. B-splines
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allow to circumvent this weak point. A B-spline is
a spline function that has minimal support with re-
spect to a given degree, smoothness, and domain par-
tition. An example of B-Spline of order one is given
on Fig. 3. To increase the smoothness of the resulting
shape, one may use B-splines of order three. When
many aircraft trajectories samples are available (for
instance, from radar), one can build a dedicated basis
and minimize the number of coeflicients for trajectory
reconstruction:

k=K

Yit) = ) any(t) (1

k=1

For instance, Principal Component Analysis (PCA [1])
can be used to convert a set of observations of possi-
bly correlated variables into a set of values of linearly
uncorrelated variables, called principal components.

Another easy way to build trajectory is to use some
reference trajectories (regular trajectories used by air-
craft) and to compute a weighted sum of such ref-
erence trajectories to build a new one. Considering
two (or more) reference trajectories yy, y, joining the
same origin-destination pair (see Fig. 2?) (past flown
trajectories may be considered), one can create a new
trajectory vy, by using an homotopy :

Yo = —@)y1 +ay,, ac]0,1]. 2)

Remark that the above approaches do not take into
account obstacles in the design process. Obstacles
can nevertheless be included as a penalty in the ob-
jective function. Trajectory design in a constrained
space (i.e., with obstacles) has been looked at through
various techniques. They include the A* algorithm
to provide obstacles-free trajectories, followed by the
use of some smoothing algorithm to improve their
regularity [10]. Another approach consists in using
a branch and bound algorithm where the branching
strategy is associated to the way obstacles avoided,
bypassing them in one direction or the other [5].

In this paper we propose an approach based on ob-
stacle convex hulls generation in order to create paths

X, (1)
Pi

1
By 1, {0

ti-1 ti tisl

Figure 3 An example of B-spline of order 1.
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Figure 4 Jarvis March algorithm

around some given sets of obstacles. Two sets of ob-
stacles are then considered: one of real obstacles and
one of virtual obstacles. The proposed model is pre-
sented in the next section.

3 OPTIMIZATION MODEL AND ALGORITHM
3.1 Trajectory shape design

Let us consider, in a two-dimensional space, two
points representing the origin and the destination of
the trajectory to be designed (the origin being the point
with the smallest x-axis value), and a set Q of obsta-
cles. Let us model obstacles in Q by sets of points
defining their 2D contour shapes. These points have
x-axis values between those of the origin and destina-
tion. We suppose these points defining convex sets; if
this is not the case, we consider the associated convex
envelope as the obstacle instead of the original one.
We also suppose that the points defining obstacles are
ordered clockwise or counter-clockwise.

Building on the technique from R.A. Jarvis, known
as Jarvis March [9], we propose a trajectory planning
approach based on building convex hulls around ob-
stacles. Specifically, we use the following adaptation
of the Jarvis March or gift wrapping algorithm. Let
G be a set of two-dimensional points which represent
obstacles. We first consider the point M such that:

YP e G, (P), > (My), 3)

where (P), denotes the x-value of point P. We then
look for the next point M, such that:

VP € G, P is on the left side of MyM;

Iterating this procedure, we get the point M,,; € G
such that:

VP € G, P is on the left side of M, M,

We stop once M, is equal to My. The set C =
{My, ..., M,} is the so called convex hull of G. An

example of such convex hull computation is shown
in Fig. 4. The convex hull created through the above
technique, in the case of two obtacles, describes two
paths around the obstacles like illustrated in Fig. 5.
Remark that the described algorithm is not able to
generate shapes like the one shown in Fig. 6. To build
a trajectory with a shape like the one shown in Fig. 6,
which is more close to what is done in practice in the
operational context, and whose length is less then the
one of a trajectory obtained with the above algorithm,

Figure 5 Trajectories around two obstacles, built by
using the Jarvis March algorithm. Two segments join
the extreme points.

Figure 6 Trajectory around two obstacles. It is buit
with two segments, one convex and another one con-
cave.



Figure 7 Trajectory around two obtacles. The new
version of the Jarvis March algorithm is used.

we propose a variant of the algorithm which generates
piecewise convex hull segments. To this aim, we first
partition the set of obstacles into two subsets: the set
0, of obstacles to be avoided by a “convex” trajec-
tory, and the set O, of obstacles to be avoided with a

“concave” trajector.ﬁ.. Let G, (respectively G},) be the
set of points describing O, (respectively 015. Simi-

larly to what is done when the Jarvis March algorithm
is used, we first consider the point M such that:

VP € Gy, (P)y 2 (Mo), “

Then, proceeding iteratively, we define the point M,,.,:

VP € G4, Pis on the left side of M,M,,.;  (5)

The difference with the above Jarvis March algorithm
lies in the stopping criterion. This time we stop the
algorithm when the following condition is satisfied:

VP € Gy, Pis on the right side of M,,M,,,; with  (6)
Mm Mn+l € Ga

The point M, is not included in the convex hull C,,.
We get a kind of semi convex hull. An example of
trajectory around two obstacles obtained by the pro-
posed algorithm is given in Fig. 7. Note that the above
algorithm only builds the blue part of the trajectory in
Fig. 7. To produce the red part, the algorithm has to be
applied again with O, and another obstacle O.. This
time, since we want to bypass the obstacle through a
concave trajectory, we follow exactly the same proce-
dure except that all the right — le ft side comparisons
are reverted, i.e., the stopping criterion is changed to:

VP € G., Pis on the left side of M,M,, . with  (7)
Mna Mn+l € Gb
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To connect the two pieces of trajectories created
as described above, we just add the last point of C,
to Gy, Finally, a full trajectory is built by considering
the starting point S as the first obstacle and the end-
ing point E as the last obstacle, corresponding to the
origin and the destination. Such a trajectory is like the
one in Fig. 6.

We can now describe our optimization model.

3.2 Decision variables

Let Q be the set of all n obstacles to be avoided.
Let O, and O, € Q be two obstacles defined by the
set of points G, and G:

pea=(m)sm)  ®
with

(M,) <(P),,¥PeG, 9)
and

(M,), < (P),,¥P e G, (10)

We consider obstacles ordered from the “left to
the right”. The decision variables of our optimization
model are binary variables defined as follows:

_ | 1 if obstacle i is to be bypassed
Xi = { 0 otherwise an
and
1 if obstacle i is to be bypassed by the bottom
v = (convex piece of trajectory)

0 if obstacle i is to be bypassed by the top
(concave piece of trajectory)

(12)

The space state of the optimization problem is then

defined by 2 X n variables, with n the total number of

obstacles. Fig. 8 gives an example of decision vari-

ables values where two obstacles have to be avoided.

3.3 Objective function

The objective function, to be minimized, is com-
posed of two parts, each accounting for a criterion to
be taken into account. The first one is linked to the
length of the (discrete) trajectory 7T':

n

L(T) = )" IP;, Pi-1) (13)

i=1

with T = {P;,i € {1,...,n}} and I(M, N) the distance
between the two points M and N. The second one
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is associated to pieces of trajectories going through
obstacles: even if a piece of trajectory crosses an ob-
stacle in the two-dimensional space, it may happen
that it does not intersect the obstacle on the vertical
plan. This situation can be detected when the three-
dimensional space is considered, in a second step, af-
ter that the two-dimensional shape of the trajectory is
obtained. We introduce the following function:

D) =Y Y Rxar.0) (14

i=1 j=1

where R; is the cost for going inside the obstacle O;,
and A(P, O) = 1 if the point P is inside the obstacle
O and A(P,0) = 0 otherwise. To detect if a point
is or not inside an obstacle, we use the assumptions
that obstacles are convex and the fact the points defin-
ing obstacles are ordered in the clockwise direction.
Then:

Pisin O, & (P,M)(P,M,) > 0,YM,M, € G,

where P € R?, O, is defined by the set of points G,
and (P, M) is the cross product between P and M.

Finally, the objective function of our optimization
model is defined as follows:

F(T)=LT)+D(T) (15)

and has to be minimized.

3.4 Genetic algorithm

The problem to be solved is a combinatorial opti-
mization problem, whose complexity is directly re-
lated to the number of obstacles. We then address
the problem by using an artificial evolution algorithm,
where a stochastic tournament selection process is used
associated with an elitism principle. More specifi-
cally, we use a genetic algorithm, where three kinds
of mutation operators, ;i = 1...3, are applied with
a given probability. The first mutation operator (¢)
randomly generate two new vectors X and Y. It is
very disruptive and is mainly applied at the beginning
of the evolution process. The second operator (¢)
randomly change a percentage of bit in X and Y (this
percentage is diminishing with the generation num-
ber). The third one (i3), in the case of a trajectory
crossing some obstacles, randomly chose an obstacle
O, between the ones which are crossed by the trajec-
tory and change the values of X, and Y,. Crossover
operators have also been developed, but from some
numerical test it appears that they do not really im-
prove the performance of the algorithm, so only mu-
tation operators are kept.

4 MODEL EXTENSION
4.1 Adding a time dimension

4.1.1 New obstacle’s definition

Aircraft trajectory design is also subject to dy-
namic obstacles like storms moving in the airspace

which have to be avoided. We then extend the previ-
ous approach so as to take into account dynamic ob-
stacle avoidance. We consider obstacles in three di-
mensions, including now the time dimension in their
definition. So, we define obstacles as discrete struc-
tures composed by a starting time and an ending time,
a set of points in two-dimensional space, and a speed
vector. Let O, be a three-dimensional obstacle. Let
t, be the starting time, t; the ending time, G, the set
of points at ¢, and v the speed vector. Then, O, is de-
fined by Op = {t, € R*,ty € R*,G,,v € R?}. Let
G(#) define the set of points representing the obstacle
at time ¢:

0 ,t>tf
G() = 0 ,t<t, (16)
{P+vxt,PeG,} ,t21,t=<1y

4.1.2 Obstacles intersection

In order to dynamically detect when a generated
trajectory crosses a given moving obstacle O,, we use
the pretty simple following assertion.

Let P = (x,y,1) € R? x R* be a point,

PeO,o ()andt, <t <ty 17
where (1) is:
(P, M1())(P, M(1)) = 0, YM(t), M»(¢) € G,,(t)(.1 5

This corresponds to the spatial-time extension of the
obstacles.

Obstacle 1
Obstacle 2

s [
[

Figure 8 In this example both obstacles are active, the
second one has to be avoided by the top.



Table 1 Dimension of the state space

Time step Q Q.
0.5 5.904 x 10% | 3.874 x 108
0.2 5.904 x 10* | 2.058 x 10"
0.1 5.904 x 10* | 7.178 x 103

N

N

Figure 9 Trajectory created using the whole projec-
tion of O, in the two-dimensional space.

Figure 10 Projection of O, restricted to the traveling
time between points B and C.

4.2 Solution approach
4.2.1 First approach

Once obstacles are defined including their time di-
mension, an issue arises in computing a convex hull
in order to extract two unique paths. Indeed, to do so,
we need to consider obstacles in a two-dimensional
space and design trajectories around them. However,
it is not an easy task to determine an obstacle position
when the obstacle is moving. We can for example use
a pessimistic approach, which consist in avoiding an
obstacle on all the space that he would cover while
we go from point a point A to a point D designing the
trajectory (see Fig. 9 and Fig. 10). In the example in
Fig. 10, O, is not moving and O}, has the same shape
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as O, but is moving from the bottom to the top. How-
ever, when we are around the obstacle O, (in other
words, when the aircraft flying on the trajectory is on
the section between the points B and C), the obstacle
has moved and the previous planned trajectory (using
the projection of the obstacle) is no more optimal. To
solve this issue we dissociate the trajectory definition
in the two-dimensional space (still building the tra-

jectory around two-dimensional obstacles) from the
evaluation through the objective function, that takes

into accounts the other dimensions. The problem be-
comes how to transcript our three-dimensional ele-
ments into two-dimensional elements in an efficient
way. A first way to address this problem is transform-
ing a moving object into a large number of static ob-
jects existing only for a short period of time all over
the trajectory of the moving object. We let the ge-
netic algorithm decide which one of these static ob-
jects is the best one to consider. However, doing this
increases dramatically the computation time to solve
our problem. To figure out this problem, let Q be a
set of obstacles composed of ten static obstacles. Let
O,, be a moving obstacle and Q,, = Q U {O,,}. Obsta-
cle O,, appears at f, = 1.0 seconds and disappears at
ty = 5.0 seconds. In Table 1, we report the dimension
of the state space with the associated time step. To
compute these values, we assume that each point of
the state space is composed of n variables, where 7 is
the number of obstacles. Each of these variables can
take three values, depending on the choise of ignoring
the obstacle and go through it, bypassing it in a con-
cave way or bypassing it in a convex way. We obtain
3" possibilities for each point of the state space. The
number n when there are moving obstacles depends
on the time step. Since in our example O,, exists dur-
ing a 4 seconds period, if the time step is 0.5 we will
need 8 obstacles to represent O,,. Let N be the num-
ber of possibilities for a chromosome, we have :

tr=to

N=3""% (19)

where, n = card(€2) and At is the time step.

4.2.2  Cluster approach

As an alternative to the above approach, we pro-
pose an approach based on clusters of obstacles. We
define a cluster as a set of n obstacles, where one se-
lects a number m < n of obtacles to be bypassed at
a given time, ignoring the others. Note that a clus-
ter contains possible positions for the same obstacle
at different times. Furthermore, an aircraft following
the designed trjectory will be close to the obstacle be-
tween two times 7, and #,, so the position of the obsta-
cle at these two times can be used to build the trajec-
tory. The values of times ¢, and #;, are computed using
the genetic algorithm presented above.

Remark that for static obstacles a cluster is de-
fined as a set composed of only one obstacle with m =
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Figure 11 Management of obstacles using clusters.
The dimension of the chromosome is strongly re-
duced with respect to the first proposed approach,
while the performance of the algorithm is near the
same.

Figure 12 Obstacles in Q. The blue obstacle has been
drawn for all the duration on its appearance.

Table 2 Comparison of the cluster and the naive ap-
proach in terms of size of the state space

Time step | cluster method | naive approach
0.5 1.134 x 107 3.874 x 108
0.2 7.086 x 107 2.058 x 10'
0.1 2.834 x 108 7.178 x 10%

1, which corresponds to the simple two-dimensional
case.

The number of possible combinations N corre-
sponding to a system of n clusters is given by:

n
N=3]]m (20)

i=1
where,
n is the number of clusters.
r; is the number of obstacles in the ith cluster.
m; is the number of obstacles that can be used at the
same time in the ith cluster.
In Table 2, the dimensions of the state space in the
above naive approach and in the cluster approach are
compared, showing the drastic size reduction induced
by the latter.

4.2.3 Genetic algorithm: new chromosome defini-
tion

Using the clusters-based approach, we need to change

the meaning of the variables in a chromosome, to be
used in the genetic algorithm. Indeed, in this case we
do not control exactly which obstacle we are going to
avoid, but we control which cluster we are going to
avoid. Let Q be a set of n obstacles that form k clus-
ters. Let C be a cluster and G, the set of obstacles
included into C. Let m be the number of obstacles
in C to be possibly avoided. When C is activated dur-
ing the computation (at the initialization phase or after
a mutation), the genetic algorithm choses randomly
m obstacles within G, and use them to construct the
trajectory. The structure of the new chromosome is
given in Fig. 11.

5 SOME RESULTS WITH MOVING OBSTA-
CLES

Let consider an instance of the problem of design-
ing a trajectory avoiding static and moving obstacles,
like the one depicted in Fig. 12. In this example there
are 18 obstacles, that are all static but one, represented
in blue color, that models a moving storm. The storm
appears on the left side and moves to the right. Dur-
ing its movement, it describes a shape that it covers

at different times. Suppose that we want to design a
trajectory from the origin point (0.0, 2.5) to the desti-

nation point (4.2,2.5). To do so, we apply the above
genetic algorithm with the parameters in Table 3. The
computing time to obtain the solution is about 20 sec-
onds on a Pentium 3GHz. The trajectory designed
by the algorithm is shown in Fig. 13. This trajectory
is based on intermediate states of the storm to avoid
it. Displaying an animated aircraft moving along the
designed trajectory we indeed see that it avoids the
storm almost perfectly.



Table 3 Genetic algorithm: parameters

Population size 500
Number of generations 500
Probability of mutation ; | 0.20
Probability of mutation ¢, | 0.15
Probability of mutation 3 | 0.65

Figure 13 Designed trajectory. Remind that the blue
obstacle has been drawn for its whole time extesnion.
The aricraft does not intesect it at any time.

6 CONCLUSION

We presented a trajectory planner which is able to
perform obstacle avoidance in an efficient way. We
first adapted the Jarvis March algorithm in order to
generate convex or concave obstacle avoidance, and
have used it to develop a trajectory generation in a
two-dimensional space that avoids obstacles while op-
timizing the trajectory length. The problem is mod-
eled as a combinatorial optimization problem, whose
size may be large, especially in the case of a large
number of obstacles and in that of moving obstacles.
Thus, we propose to address the problem with an ar-
tificial evolution approach. Specifically, we propose
a genetic algorithm, where mutation operators have
been developed with different granularities and ap-
plied with different probabilities. An extension based
on clusters of obstacles has also been developed in
order to improve the performance of the algorithm in
the case of moving obstacles.

Future work will address the extension of the pro-
posed approach for the design of trajectory shapes in a
three-dimensional space, to address more closely the
design of departure and arrival 3D-routes in Terminal
Manoeuvering Areas.
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