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INTRODUCTION

Vehicles moving on airport surfaces require a stringent positioning accuracy in order to guarantee their safety. The surveillance requirements in terms of accuracy, integrity, continuity and availability on airport surfaces are detailed in [START_REF] Icao | Manual on advanced surface movement guidance and control systems (A-SMGCS) -DOC9830 AN/452[END_REF]. The position accuracy during manoeuvers on airport surfaces should not exceed few meters. In our work, this accuracy is targeted for airport ground vehicles. Stand-alone GNSS cannot always provide this required level of accuracy because of the possible signal degradation mainly due to multipath resulting from its diffraction on airport surfaces, or due to its blockage [START_REF] Park | A Study of Severe Multipath Errors for the Proposed GBAS Airport Surface Movement Application[END_REF].

As an alternative to stand-alone GNSS, it has been shown that fusing information from different sensors results in an improved position robustness and accuracy if they have complementary advantages. In fact, by exploiting the complementarity of sensors, hybridization algorithms can improve the navigation solution with respect to that provided by each stand-alone sensor. The most widely implemented hybridization algorithms for land vehicles fuse GNSS measurements with inertial and/or odometric data [3] [4]. This way, these dead-reckoning (DR) sensors ensure the system continuity when GNSS information is unavailable and improve the system performance when GNSS signals are corrupted by multipath; and in return the GNSS limits the drift of DR solution if it is available. However the performance achieved by this hybridization depends thoroughly on the quality of the DR sensor used especially when GNSS signals are degraded. Since the targeted application is cost-sensitive, low-cost sensors will be used in this study. Therefore, the challenge of this paper is to achieve a high level of accuracy with a low-cost solution, and some other complementary low-cost sensors should be employed to achieve the performance required.

In the last decades, cameras have become one of the most attractive positioning sensors. In fact it has been proven that vision techniques are capable of providing accurate navigation solution [START_REF] Nistér | Visual odometry for ground vehicle applications[END_REF] while having reasonable cost. In general, vision systems reach very accurate results when using stereovision. However, the main drawback of such a configuration compared to a single camera is that in largescale environments, the images captured by the cameras might contain objects placed too far. Processing these images does not allow recovering the depth values unless the stereo camera baseline is of few metres [START_REF] Hong | Visual odometry for outdoor environment using a downwardtilting camera and self-shadow removal algorithm[END_REF]. In addition to this compactness issue, a calibration issue arises when a multi-camera system is used and the calibration of a single camera is much easier [START_REF] Strasdat | Scale drift-aware large scale monocular SLAM[END_REF]. Therefore, a single camera will be considered in this study. In case of a monocular vision module, a classical issue due to the projective nature of a single camera arises: the depth information of a 3D world point projected onto the image plane cannot be recovered using a single camera since a single 2D image point is the projection of an infinite number of 3D world points. This depth ambiguity results in a scale factor affecting the position estimated by the visual module and decreases dramatically its accuracy. Therefore, the visual navigation solution accuracy depends thoroughly on the good estimation of the scale factor.

Most of prior work focused on eliminating this scale problem in order to improve the visual solution either by using other sensors such as inertial [START_REF] Nutzi | Fusion of IMU and vision for absolute scale estimation in monocular SLAM[END_REF], GNSS [START_REF] Dusha | Attitude observability of a loosely-coupled GPS/Visual Odometry Integrated Navigation Filter[END_REF], and odometric measurements [START_REF] Eudes | Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion[END_REF], or by using previouslymapped markers [START_REF] Lamberti | Mixed markerbased/marker-less visual odometry system for mobile robots[END_REF]. However, little work has considered the monocular vision module as a black box providing aiding measurements (position in undefined scale and scale free attitude) in a multi-sensor fusion framework. The proposed work in this paper focuses on this idea and uses visual information as aiding measurements in an integrated multi-sensor system aiming at providing a cost-effective and a robust navigation solution. In the proposed architecture, the INS is selected as the reference sensor since it provides a complete and continuous navigation solution including position, velocity and attitude. The INS estimation errors are corrected by GNSS, vision and WSS measurements using an error-state EKF based on a closed loop configuration and a loosely-coupled architecture. The visual scale factor is estimated in the filter state vector and is used after in the update step of the Kalman filter in order to make homogeneous the inertial and visual position. This way, vision provides accurate information to the fusion algorithm and in return, the other sensors help the visual module to overcome the scale factor issue. This paper is organized as follows. First, an overview of the use of camera as a navigation sensor is performed. Then, the integrated navigation system is detailed and the fusion strategy is proposed. The equations of the process and measurement models are presented and discussed. Finally, the performance analysis of the proposed algorithm is performed. In particular, the results of the implemented GNSS/IMU/WSS/VSLAM are compared to the ones of the classical GNSS/IMU/WSS, GNSS/IMU in order to highlight the contribution of each sensor and particularly the camera, especially when the quality of the GNSS solution is degraded or when GNSS solution is unavailable.

II. CAMERA AS A NAVIGATION SENSOR

There are different ways to use the camera as a navigation sensor. In fact, mounted on board a vehicle, cameras can simply provide geometric information, such as distance or angle to a target detected in the image sequence, or process the information supplied by the images in order to provide an estimation of the position and orientation of the camera, referred to as the camera pose. This pose is expressed in a frame called vision frame described in section (III.A).

We focus in this study on the latter case where the camera is used as a pose estimation sensor. In this case, the vehicle motion is estimated based on the changes that occur in the images captured when the camera moves. In fact, motion is estimated based on the comparison of some specific object locations in the images. This comparison can be performed either with respect to a database previously built which means that the environment is already known, or between the images captured by the camera using the dead-reckoning principle for unknown environments. Since the development of a database is too heavy and too complex, this study focuses on the case where the environment is unknown.

A review and a classification of visual pose estimation techniques are performed in a previous work [START_REF] Ben-Afia | Review and classification of vision-based localisation techniques in unknown environment[END_REF]. Generally, these techniques are based on the detection and tracking of salient zones of the images called Features. These techniques are classified into two main categories: Visual Odometry (VO) and Visual Simultaneous Localization And Mapping (VSLAM). Both techniques incrementally estimate the pose in the vision frame by examining the changes that motion induces on images taken by the camera(s). The only difference is that VO aims at estimating only the camera pose according to the displacement measured from the comparison of the image sequence. This comparison is performed by establishing matches between the features observed in the sequence of images. On the other hand, VSLAM not only provides an estimation of the camera pose, but also builds at the same time the map of the environment in which the camera is moving. That is, after detecting features in an image, VSLAM determines the 3D feature positions and uses these reconstructed features in order to estimate the camera pose.

In this study, a keyframe-based VSLAM is used. This technique reconstructs features detected in some selected images called Keyframes and computes the camera pose using these features. Then a refinement process aiming at minimizing the re-projection errors of the reconstructed features is performed in order to improve jointly the estimation of the map and the camera pose. This process is called Bundle Adjustment [START_REF] Engles | Bundle adjustment rules[END_REF]. More details on the use of camera as a navigation sensor are in [START_REF] Ben-Afia | Review and classification of vision-based localisation techniques in unknown environment[END_REF]. Thanks to this refinement step, VSLAM has better performance than VO. Nonetheless its navigation solution not only drifts because of the DR principle, but also suffers from an unknown scale factor affecting the position when a monocular camera is used. These problems are handled in the proposed multisensor fusion architecture and the corrected visual information is, in turn, exploited to improve the system accuracy.

III. NAVIGATION FILTER

A.

Muti-sensor System Design

The aim of this study is to develop a low-cost multi-sensor fusion system capable of providing accurate navigation information for ground airport vehicles.

The proposed architecture consists of a single frequency GNSS receiver, a low-cost Inertial Measurement Unit (IMU), a vision module processing the images of a single camera with the keyframe-based VSLAM technique and a WSS. The IMU is selected as the reference sensor since it is the only sensor continuously providing a complete navigation solution (position, velocity and attitude). As shown in Figure 1, the INS mechanization errors are corrected by the measurements of the other sensors. An error-state EKF is used in order to estimate the corrections that should be applied to the inertial navigation solution.

The estimated IMU measurement errors are fed back to the mechanization since we have to deal with a low-cost IMU.

Otherwise, as highlighted in [START_REF] Shin | Accuracy improvement of low cost INS/GPS for land applications[END_REF], the mechanization can experience unbounded error growth, and the assumption of small errors used in the linearization process of the filter can be violated.

As mentioned previously, the proposed architecture uses GNSS, VSLAM and WSS as aiding sensors. It also exploits constraints reflecting the behaviour of the vehicle during navigation. These constraints consist mainly in considering that the vehicle moves only in the forward direction [START_REF] Sukkarieh | Low Cost, High Integrity, Aided Inertial Navigation Systems for Autonomous Land Vehicles[END_REF]. GNSS, if available, provides the vehicle position and velocity. The choice of processed GNSS data (position and velocity) instead of raw GNSS measurements (pseudoranges and pseudo-range rates) is justified by the fact that the airport can be assimilated to a semi-constrained environment. In such environments, we often meet the condition of having at least 4 satellites in view. In addition, loose coupling of GNSS with INS is much simpler, more robust and has faster processing time compared to tight coupling [START_REF] Angrisano | GNSS/INS Integration Methods[END_REF]. VSLAM provides the vehicle attitude in the vision frame, as well as its position given with an undefined scale 𝑘 𝑣 .

In order to be able to exploit the VSLAM attitude information, the orientation of the vision frame with respect to the local frame should be estimated. The VSLAM position information is used if the scale is also estimated. These two quantities are added to the state vector in order to be estimated.

Finally the WSS provides the forward vehicle velocity.

Figure 1: Multi-sensor system design

Due to the integration of such heterogeneous sensors, a special attention should be paid to the different coordinate systems associated to the sensors and the relationship between them. Table 1 specifies, for each sensor, the outputs and the associated coordinate system.

As highlighted in [START_REF] Shin | Accuracy improvement of low cost INS/GPS for land applications[END_REF] and [START_REF] Sukkarieh | Low Cost, High Integrity, Aided Inertial Navigation Systems for Autonomous Land Vehicles[END_REF] , it is preferred to express the position error in meters than in radians in order to avoid numeric instability inside the filter. Hence, the Local Tangent Plane is used as the reference system instead of the Latitude, Longitude and Height frame. As shown in Figure 2, the origin of this frame defined locally is chosen to be the initial position of the vehicle and its axes point towards the geographic East, North and Up directions (ENU). The velocity and the orientation are also expressed in this frame.

In this study, we represent the orientation of a frame (𝛼) w.r.t. a frame (𝛽) by a (3𝑥3) rotation matrix denoted 𝑪 𝛼2𝛽 .

The WSS output is defined along the body frame axes as shown in Figure 2. This frame is rigidly attached to the vehicle. The y-axis points to the forward direction, the zaxis points upwards and the x-axis completes the righthanded orthogonal frame.

Figure 2: Reference frames

The VSLAM outputs are given with respect to the vision frame. The VSLAM is considered in this study as a black box providing the camera pose in the vision frame. Therefore, the vision frame orientation with respect to the local frame is unknown. However, its origin is assumed to be the initial position of the vehicle [START_REF] Angrisano | GNSS/INS Integration Methods[END_REF]. The difference between the sensors lies also in their running rates. Normally, the INS has the highest rate followed by the camera. The WSS and the GNSS have the lowest rates. Regardless of the frame rate values, the filter integrates each aiding measurement as it comes and updates the state vector. The GNSS measurements considered of bad quality are removed. This selection is based on the Dilution Of Precision (DOP) as well as the C/𝑁 0 values of the satellites.
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If the aiding sensors do not provide any measurement or if a GNSS measurement is removed based on the previously mentioned criteria, then the IMU measurements are used for propagating the state. If a sensor (WSS or camera) provides a measurement at the same time as GNSS and if the GNSS measurements were not rejected, then the filter selects the GNSS measurements since they are the most reliable measurement in good GNSS conditions.

B. Navigation Filter

Notations and assumptions

In this study, the notations with the hat ^ are estimated quantities and those with the tilde ~ are measured quantities.

The notations without hat or tilde are actual quantities.

We assume that all the lever arms and orientation between the aiding sensors and the IMU are perfectly known and are measured before the navigation starts. where 𝒇 ̃𝑏 and 𝝎 ̃𝑏 are respectively the measured specific force and angular rate in the body frame. 𝒌 𝑎 and 𝒌 𝑔 are the scale factors associated to the accelerometers. 𝒃 𝑎 and 𝒃 𝑔 are the biases, and 𝜼 𝑎 and 𝜼 𝑔 are the noises.

Vision measurement model

The VSLAM outputs are given in the vision frame. In order to build the vison module measurement model, these outputs should be expressed as a function of the INS mechanization outputs. This can be done using the following equations. We remind that (𝒗) and (𝒍) have the same origin, that the position provided by VSLAM has an undefined scale and that the attitude is scale free.

Position:

𝒌 ̂𝑣 . 𝒑 ̃𝑐𝑎𝑚 𝑣 = 𝑪 ̂𝑙2𝑣 • (𝑪 ̂𝑏2𝑙 • ∆𝒑 𝑐𝑎𝑚 𝑏 + 𝒑 ̂𝑏 𝑙 ) + 𝜼 𝑉 (3)
with 𝜼 𝑉 is modeled as zero-mean, white and Gaussian noise.

(𝑋 𝑙 )

Attitude:

𝑪 ̃𝑐𝑎𝑚2𝑣 = 𝑪 ̂𝑙2𝑣 • 𝑪 ̂𝑏2𝑙 • 𝑪 𝑐𝑎𝑚2𝑏 (4) 
GNSS measurement model GNSS provides position and velocity in (𝒍) frame. The GNSS measurement model taking into account the leverarm is [START_REF] Shin | Accuracy improvement of low cost INS/GPS for land applications[END_REF]:

Position 𝒑 ̃𝐺 𝑙 = 𝒑 ̂𝑏 𝑙 + 𝑪 ̂𝑏2𝑙 • ∆𝒑 𝐺𝑁𝑆𝑆 𝑏 + 𝜼 𝐺,𝑝 (5) 
Velocity 

𝒗 ̃𝐺 𝑙 = 𝒗 ̂𝑏 𝑙 + 𝑪 ̂𝑏2𝑙 𝛀 𝑙𝑏 𝑏 ∆𝒑 𝐺 𝑏 + 𝜼 𝐺,𝑣 (6) 

WSS measurement model

WSS provides velocity along the forward axis of (𝒃) frame. The measurement model of the WSS is given in by: 𝒗 ̃𝑤 𝑙 = 𝑪 ̂𝑏2𝑙 (1 + 𝑘 ̂𝑤)𝒗 ̃𝑤 𝑏 + 𝑪 ̂𝑏2𝑙 𝜴 𝑙𝑏 𝑏 ∆𝒑 𝑤 𝑏 + 𝜼 𝑤 [START_REF] Strasdat | Scale drift-aware large scale monocular SLAM[END_REF] with 𝒗 ̃𝑤 𝑏 = [0 𝑣 ̃𝑤 𝑦 0] 𝑇 , 𝑘 𝑤 is the WSS scale factor and 𝜼 𝑤 is the WSS noise modeled as zero-mean, white and Gaussian. The lateral and vertical velocities are set to zero. This is due to the motion constraints of a ground vehicle, called Non-Holonomic Constraints [START_REF] Sukkarieh | Low Cost, High Integrity, Aided Inertial Navigation Systems for Autonomous Land Vehicles[END_REF].

Sate Vector

The INS estimates the navigation parameters i.e. the position, velocity and attitude of the vehicle, and the aiding sensors allow the filter to estimate the errors of INS parameters as well as the errors of the inertial raw measurements. The errors of the navigation parameters are defined by:

𝛿𝒑 𝑏 𝑙 = 𝒑 ̂𝑏 𝑙 -𝒑 𝑏 𝑙 ( 8 
) 𝛿𝒗 𝑏 𝑙 = 𝒗 ̂𝑏 𝑙 -𝒗 𝑏 𝑙 (9) 
𝑪 ̂𝑏2𝑙 = (𝑰 -𝑬 𝑏2𝑙 ) 𝑪 𝑏2𝑙 [START_REF] Eudes | Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion[END_REF] where 𝑬 𝑏2𝑙 is the skew-symmetric matrix of the attitude error 𝜺 𝑏2𝑙 = [ 𝜀 𝐸 𝜀 𝑁 𝜀 𝑈]

Using the previous notations, a 21-element error state vector associated to INS is consequently used:

𝛿𝒙 𝐼𝑁𝑆 = [𝛿𝒑 𝑏 𝑙 𝛿𝒗 𝑏 𝑙 𝜺 𝑏2𝑙 𝛿𝒃 𝑎 𝛿𝒃 𝑔 𝛿𝒌 𝑎 𝛿𝒌 𝑔 ] 𝑇 (11) 
Since we use processed measurements from GNSS, no state is associated to GNSS.

Vision position and WSS velocity are affected by the scale factor ambiguities. Vision attitude is exploited only if the orientation of (𝒗) w.r.t (𝒍) is known. These parameters should be estimated. The associated state vectors are therefore given by:

𝛿𝒙 𝑉𝑖𝑠𝑖𝑜𝑛 = [𝛿𝑘 𝑣 𝜺 𝑙2𝑣 ] 𝑇 (12) 
𝛿𝑥 𝑤𝑠𝑠 = 𝛿𝑘 𝑤 [START_REF] Engles | Bundle adjustment rules[END_REF] The full EKF state is the concatenation of the state vectors associated to each sensor. It is given by:

𝛿𝒙 = [ 𝛿𝒙 𝐼𝑁𝑆 𝑇 𝛿𝑥 𝑉𝑖𝑠𝑖𝑜𝑛 𝑇 𝛿𝑥 𝑤𝑠𝑠 ] 𝑇 (14) 

State transition model

The behavior of the navigation parameter errors can be obtained by perturbing the following INS mechanization equation using Eq. (1-2) and Eq. (8-10) and keeping only the first order terms:

[ 𝒑̇𝑏 𝑙 𝒗̇𝑏 𝑙 𝑪 ̇𝑏2𝑙 ] = [ 𝒗 𝑏 𝑙 𝑪 𝑏2𝑙 𝒇 𝑏 -(2𝝎 𝑖𝑒 𝑙 + 𝝎 𝑒𝑙 𝑙 ) × 𝒗 𝑏 𝑙 + 𝒈 𝑙 𝑪 𝑏2𝑙 (𝛀 𝑏 -𝛀 𝑖𝑙 𝑏 ) ] ( 15 
)
where 𝒈 𝑙 is local gravity including the Gravitation term and the centripetal term related to Earth rotation.

We model the inertial measurement bias and scale factor errors as Gauss-Markov process [START_REF] Angrisano | GNSS/INS Integration Methods[END_REF]:

𝛿𝑒 𝑠𝑢 ̇= - 1 𝜏 𝑒 𝑠𝑢 • 𝛿𝑒 𝑠𝑢 + 𝜂 𝑒 𝑠𝑢 ( 16 
)
where 𝑒 is the error (𝑒 = 𝑏 or 𝑒 = 𝑘), 𝑠 is the sensor (𝑠 = 𝑎 or 𝑠 = 𝑔) and 𝑢 is the (𝒃) frame axis (𝑢 = 𝑥, 𝑢 = 𝑦 or 𝑢 = 𝑧). 𝜏 𝑒 𝑠𝑢 is the correlation time of the error 𝑒 of the sensor 𝑠 along the 𝑢-axis and 𝜂 𝑒 𝑠𝑢 is a zero-mean Gaussian noise.

The vision and WSS scale factor errors, as well as the orientation error of the vision frame with respect to the local frame, are modeled as constant states:

𝛿𝑘 𝑣 ̇= 𝜂 𝑘𝑣 (17) 
𝜺 𝑙2𝑣 ̇= 𝜼 𝜖 (18)

𝛿𝑘 𝑤 = ̇𝜂𝑘𝑤 (19)
The models defined previously can be summarized to the following linearized continuous time sate transition model:

𝛿𝒙 ̇= 𝑭 • 𝛿𝒙 + 𝑮 • 𝒖 (20)
The expressions of 𝐹 and 𝐺 are given in the Appendix.

𝒖 = [ 𝜼 𝑎 𝜼 𝑔 𝜼 𝑏𝑎 𝜼 𝑏𝑔 𝜼 𝑘𝑎 𝜼 𝑘𝑔 𝜂 𝑘𝑣 𝜼 𝜖 𝜂 𝑘𝑤] 𝑇 (21)

The corresponding process noise covariance matrix is given by:

𝑸 = cov(𝒖) (22) 
The discrete time sate transition model assuming that F and G are constant over the time step between two consecutive state propagations ∆𝑡 is given by:

𝛿𝒙 𝑘+1 = 𝚽 𝑘 • 𝛿𝒙 𝑘+1 + 𝒘 𝑘 (23) with [3] 𝚽 𝑘 = 𝑰 + 𝑭. ∆𝑡 (24) 
and 𝐐 𝑘 = cov(𝒘 𝑘 ) = 𝚽 𝑘 𝑮𝑸𝑮 𝑻 𝚽 𝑘 𝑇 ∆𝑡 (25)

With the discrete state transition model, we can propagate the state using the prediction equations of the EKF. Since we are in a closed-loop configuration where the errors estimated by the EKF are fed back after the measurement update, the state vector should be reset to zero. Nonetheless, the state covariance is predicted using the equation: However, the lever-arm between the GNSS antenna and the IMU, denoted ∆𝒑 𝐺 𝑏 , should be accounted for. Using Eq.(5-6), the measurement vector is given by: 𝛿𝒛 𝐺,𝑝 = 𝒑 ̃𝐺 𝑙 -𝑪 ̂𝑏2𝑙 ∆𝒑 𝐺 𝑏 -𝒑 ̂𝑏 𝑙 (29) 𝛿𝒛 𝐺,𝑣 = 𝒗 ̃𝐺 𝑙 -𝑪 ̂𝑏2𝑙 𝛀 𝑙𝑏 𝑏 ∆𝒑 𝐺 𝑏 -𝒗 ̂𝑏 𝑙 (30)

Since we use an error-state EKF, the relationship between the measurement vector and the state can be written as: 

𝛿𝒛 𝐺,𝑝 = 𝑯 𝐺,𝑝 • 𝛿𝒙 + 𝜼 𝐺,𝑝 (31) 
where the notation (𝒂) × means the skew-symmetric matrix of the (3𝑥3) vector 𝒂.

WSS measurement model:

As for GNSS, the WSS velocity measurement is defined from Eq.7, taking into account the WSS scale factor [START_REF] Seo | Lever Arm Compensation for GPS/INS/Odometer Integrated System[END_REF]: where 𝜑 𝑉𝑆𝐿𝐴𝑀 , 𝜃 𝑉𝑆𝐿𝐴𝑀 and 𝜓 𝑉𝑆𝐿𝐴𝑀 describe the attitude of the vehicle using the VSLAM attitude output. In fact, using Eq.4, the vehicle attitude can be deduced from the camera attitude:

𝛿𝒛
(𝑪 ̃𝑏2𝑙 ) 𝑉𝑆𝐿𝐴𝑀 = 𝑪 ̂𝑙2𝑣 𝑇 • 𝑪 ̃𝑐𝑎𝑚2𝑣 • 𝑪 𝑐𝑎𝑚2𝑏 𝑇 (40)
Using the expression of 𝐶 𝑏2𝑙 defined in the Appendix: Let 𝛿𝑧, 𝐻 and 𝑅 be respectively the full measurement vector, measurement matrix and measurement covariance matrix. Then, the update is performed using the Kalman filter equations:

𝜑 ̃𝑉𝑆𝐿𝐴𝑀 = -
𝐾 𝑘+1 = 𝑃 𝑘+1 -𝐻 𝑘+1 𝑇 • [𝐻 𝑘+1 𝑃 𝑘+1 -𝐻 𝑘+1 𝑇 + 𝑅 𝑘+1 ] -1 (53) 𝛿𝑥 ̂𝑘+1 + = 𝐾 𝑘+1 𝛿𝑧 𝑘 (54) 𝑃 𝑘+1 + = 𝑃 𝑘+1 --𝐾 𝑘+1 • 𝐻 𝑘+1 • 𝑃 𝑘+1 - ( 55 
)
IV.

EXPERIMENTS AND RESULTS

The algorithm is tested using GNSS and inertial data collected in an environment similar to airport. GNSS data is given by the GPS stand-alone mode of a Ublox-6 running at 1Hz. Inertial measurements are obtained using an Xsens Mti IMU running at 100 Hz. In a first step, VSLAM and WSS are simulated from the reference data using Eq.(3-4) and Eq.7 with respective rates of 50Hz for the VSLAM and 10Hz for the WSS. In a second step, a 1280x1024 forward looking camera was mounted on the roof of the car. The video is processed using the VSLAM algorithm. The reference trajectory is determined using the NovAtel SPAN equipment [START_REF] Seo | Lever Arm Compensation for GPS/INS/Odometer Integrated System[END_REF]. Figure 3 shows the equipment used for the measurement campaign. For simplicity reasons and since we target a vehicular application, only the horizontal performance will be analyzed. We remind that VSLAM outputs are given in the (𝒗) frame defined up to a rotation and a scale factor with respect to the (𝒍) frame. Finally a comparison between the headings outputted by each fusion algorithm is illustrated in Figure 8. It is clear that the heading aiding of the VSLAM improves dramatically the heading estimation. However, a simulation of zero-mean Gaussian error on the attitude outputted by the SLAM is a very optimistic assumption. Real data should be used in order to validate the model.

On the other hand, the use of WSS improves the estimation of the heading. This improvement is due to the correlation that exists between the attitude and the velocity. This correlation is expressed into the 𝐹 matrix of the Kalman filter process model.

In the case of INS/GPS/WSS/VSLAM, the vision scale factor is estimated and is reinserted to the filter in order to be used in the update step. Figure 9 shows the estimation of this scale factor by the developed EKF. If the estimation of this parameter is wrong, then the VSLAM position measurement will be wrong and will introduce a high error in the filter. That is why, the covariance matrix of the VSLAM position measurement depends thoroughly on the variance of the scale factor outputted by the EKF. In order to take into account this dependency, the measurement covariance matrix is multiplied by the scale variance. This improves the performance of the filter. In the first 205s, the vehicle is at rest. Since the VSLAM algorithm starts when the vehicles starts moving, then the use of the algorithm, and therefore the estimation of the scale factor starts after the vehicle moves. The convergence of the scale is achieved in 55s.

B. Real VSLAM data

The video taken by the camera is processed using the VSLAM algorithm. The comparison of the trajectory given by the VSLAM with the reference trajectory is performed in Figure 10. It shows clearly that the SLAM trajectory is affected by a scale factor. A zoom on the VSLAM trajectory in Figure 11 shows that in addition to the scale problem, this trajectory is turned with respect to the reference trajectory. As for simulated data, a comparison between the accuracy of the different navigation algorithms is illustrated in Figure 12 and Figure 13. It shows that, even if the VSLAM trajectory is affected by a scale factor and a rotation, the use of this information improves the performance of the navigation system. This is highlighted in Figures 14 and Figure 15 where the scale factor and the rotation angle (2D case) are well estimated by the Kalman filter. The improvement of the navigation performance using the VSLAM is shown by Table 3 in which a comparison of the West-East error statistics is performed. Finally, a GNSS outage is simulated on the entire trajectory in order to test the performance of our algorithm with only dead-reckoning sensors. Figure 16 and Figure 17 show that after 250s, the drift is about 20m with the use of visual information. 

CONCLUSION

The current paper introduces a navigation system fusing low-cost sensors in order to improve the navigation parameter estimation for vehicles moving on airport surfaces. Results show that the use of a GPS/INS system is not sufficient to reach a high level of accuracy. The integration of complementary sensors such as the VSLAM providing position and attitude and the WSS providing velocity improves dramatically the navigation system performances. This was shown using simulated and real data. The possibility of having more than a measurement makes the system able to select the measurements according to their quality which improves the estimation of the navigation solution. This is the primary results of a study focusing on sensor integration. The next step will be to improve the fusion algorithm by using, for example, the filter innovation and the redundancy of measurements in order to exclude measurements having a large error. This can be done especially when GNSS raw measurements are used. This allows us to exclude the faulty GNSS measurements which may improve the filter performance.
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Appendix State transition Model in the ENU frame

State transition model:

The state transition equation is given by: 𝛿𝒙 ̇= 𝑭 The full state transition matrix is given by:

𝐹 = [ 𝐹 𝐼𝑁𝑆 0 21𝑥5 0 5𝑥21 0 5𝑥5 ]
And the G matrix is given by: 𝐺 = [ 0 3𝑥3 0 3𝑥3 0 3𝑥17 𝐶 𝑏2𝑙 0 3𝑥3 0 3𝑥17 0 3𝑥3 -𝐶 𝑏2𝑙 0 3𝑥17 0 17𝑥3 0 17𝑥3 𝐼 17𝑥17 ]

  The following notations are used: -Lever arm between GPS antenna and IMU: ∆𝒑 𝐺 𝑏 -Lever arm between camera and IMU: ∆𝒑 𝑐𝑎𝑚 𝑏 -Lever arm between WSS and IMU: ∆𝒑 𝑤 𝑏 -Orientation of the camera w.r.t. (𝒃): 𝑪 𝑐𝑎𝑚2𝑏Inertial Sensor ModelAn IMU is at least composed of accelerometers and gyroscopes. The accelerometers measure the specific force and the gyroscopes measure the angular rate. The measurements are provided in the body frame. In this work, 3 accelerometers and 3 gyroscopes are used. These measurements are inevitably affected by errors. For a lowcost IMU, these errors mainly consist of biases, scale factors and noise. In this study, the inertial measurements are modelled by the following equations:𝒇 ̃𝑏 = (𝑰 𝟑 + 𝒌 𝑎 ) • 𝒇 𝑏 + 𝒃 𝑎 + 𝜼 𝑎[START_REF] Icao | Manual on advanced surface movement guidance and control systems (A-SMGCS) -DOC9830 AN/452[END_REF] 𝝎 ̃𝑏 = (𝑰 𝟑 + 𝒌 𝑔 ) • 𝝎 𝑏 + 𝒃 𝑔 + 𝜼 𝑔[START_REF] Park | A Study of Severe Multipath Errors for the Proposed GBAS Airport Surface Movement Application[END_REF] 

  GNSS measurement model:The position and velocity measurement vectors consist respectively in the difference between the GNSS position and the INS position denoted 𝛿𝒛 𝐺,𝑝 , and the GNSS velocity and the INS velocity denoted 𝛿𝒛 𝐺,𝑣 . In the case where the GNSS antenna and the IMU are placed in the same place, these measurement vectors are normally given by:

  𝑤,𝑣 = 𝑪 ̂𝑏2𝑙 (1 + 𝑘 ̂𝑤)𝒗 ̃𝑤 𝑏 -𝑪 ̂𝑏2𝑙 Ω 𝑙𝑏 𝑏 ∆𝒑 𝑤 𝑏 -𝑣 ̂𝑏 𝑙 (35) 𝑯 𝑤,𝑣 = [𝟎 3 | -𝑰 3 | ( 𝒗 ̂𝑏 𝑙 ) ×| 𝟎 3 | 𝑪 ̂𝑏2𝑙 (∆𝒑 𝑤 𝑏 ) ×| (36) 𝟎 3𝑥10 | ( 𝒗 ̂𝑏 𝑙 + 𝑪 ̂𝑏2𝑙 𝜴 𝑙𝑏 𝑏 ∆𝒑 𝑤 𝑏 )] Visual measurement model: The visual module provides position and attitude measurements. These measurements are expression by Eq.(3-4). Therefore 𝛿𝒛 𝑐𝑎𝑚,𝑝 = 𝑘 ̂𝑣 . 𝒑 ̃𝑐𝑎𝑚 𝑣 -𝑪 ̂𝑙2𝑣 • (𝑪 ̂𝑏2𝑙 • ∆𝒑 𝑐𝑎𝑚 𝑏 + 𝒑 ̂𝑏 𝑙 ) (37) 𝑯 𝑐𝑎𝑚,𝑝 = [𝑪 ̂𝑙2𝑣 | 𝟎 3 | 𝑪 ̂𝑙2𝑣 (𝑪 ̂𝑏2𝑙 ∆𝒑 𝑐𝑎𝑚,𝑎𝑡𝑡 𝛿𝒙 + 𝜼 𝑣,𝑎𝑡𝑡 (39)

Figure 3 :

 3 Figure 3: measurement campaign equipment A. Simulated VSLAM data The vision scale factor is modeled as drifting linearly over time as shown in Figure 4. This model is not necessarily good since the visual scale factor has only spatial drift [18].In fact, the vision scale only changes if new or different features are observed, and it keeps constant if the same features are observed. But since we are in outdoor environment, the observed features are always different and the time drift model can therefore be appropriate. We assume that the noise on the visual position is zero-mean, white and Gaussian with a standard deviation of 2m. The noise on the attitude angles provided by the SLAM is assumed to have a standard deviation of 1°.

Figure 4 :Figure 5

 45 Figure 4: Vision scale factor drift Figure 5 illustrates a comparison between the reference, the GPS and the VSLAM trajectories in the horizontal plane.We remind that VSLAM outputs are given in the (𝒗) frame defined up to a rotation and a scale factor with respect to the (𝒍) frame.

Figure 5 :Figure 6 and

 56 Figure 5: Horizontal trajectoriesA comparison between the navigation performances of each of the following fusion algorithms is done in this section in order to highlight the contribution of each sensor to the improvement of the navigation performance:-GPS -GPS/IMU -GPS/IMU/WSS -GPS/IMU/WSS/VSLAM Only the horizontal parameters will be analyzed since they are the most important parameters for land vehicle navigation. Figure6and Figure7illustrate a comparison of the horizontal position errors in the West-East and South-North directions given by the different systems.

Figure 6 :Figure 7 :

 67 Figure 6: Horizontal West-East error

Figure 8 :Figure 9 :

 89 Figure 8: Heading error

Figure 10 :Figure 11 :

 1011 Figure 10: Reference and VSLAM trajectories

Figure 12 :Figure 13 :

 1213 Figure 12: Horizontal West-East error

Figure 14 :Figure 15 :

 1415 Figure 14: Vision scale factor estimation

  Definitions and NotationsIn order to build the state transition model, some parameters should first be defined: -The vehicle latitude, longitude and height are respectively denoted 𝜑, 𝜆 and ℎ -The vehicle velocity in the (𝑙) frame is represented by the vector 𝒗 𝑏 𝑙 = [ 𝑣 𝐸 𝑣 𝑁 𝑣 𝑈 ] 𝑇 -The vehicle attitude is defined by the roll, pitch and heading respectively denoted 𝜙 , 𝜃 and 𝜓. -The meridian and transverse radii of curvature in the earth ellipsoid respectively denoted 𝑅 𝑚 and 𝑅 𝑛 . -The relationship between 𝜙 , 𝜃 and 𝜓, and 𝐶 𝑏2𝑙 is given by :𝑪 𝑏2𝑙 = [ 𝑐𝜙𝑐𝜓 + s 𝜙 s 𝜃 s 𝜓 c 𝜃 s 𝜓 s 𝜙 c 𝜓 -c 𝜙 s 𝜃 s 𝜓 -c 𝜙 s 𝜓 + s 𝜙 s 𝜃 c 𝜓 c 𝜃 c 𝜓 -s 𝜙 s 𝜓 -c 𝜙 s 𝜃 c 𝜓 -s 𝜙 c 𝜃 s 𝜃 c 𝜙 c 𝜃 ]with 𝑐 and s are respectively cosine and sine.

Table 1 :

 1 Sensor outputs

	. module	Output		Frame	Frame Origin
		INS Position	𝒑 ̂𝑏 𝑙	Local	Initial
	INS	INS Velocity	𝒗 ̂𝑏 𝑙	ENU	vehicle
		INS Attitude	𝑪 ̂𝑏2𝑙	(𝑙)	position
	GNSS	Antenna Position Antenna Velocity	𝒑 ̃𝐺 𝑙 𝒗 ̃𝐺 𝑙	Local ENU (𝑙)	Initial vehicle position
	VSLA	Camera Position	𝑣 𝒑 ̃𝑐𝑎𝑚	Vision	Initial vehicle
	M	Camera Attitude	𝑪 ̃𝑐𝑎𝑚2𝑣	(𝑣)	position
	WSS	Rear Wheels Velocity	𝑣 ̃𝑤 𝑦	Body (𝑏)	Vehicle center of mass

  𝝎 𝑒𝑙𝑙 is the transport rate resolved in (𝒍) frame. -𝜼 𝐺,𝑝 and 𝜼 𝐺,𝑣 are additive zero-mean, white and Gaussian noises whose variances are provided by the GNSS navigation module.

	with
	-𝛀 𝑙𝑏 𝑏 = (𝛀 ̃b -𝛀 𝑖𝑙 𝑏 ), 𝛀 b and 𝛀 𝑖𝑙 𝑏 are respectively the skew-
	𝑏 . symmetric matrix of the gyro measurement 𝜔 ̃𝑏and of 𝜔 𝑖𝑙 -𝝎 𝑖𝑙 𝑏 = 𝑪 𝑏2𝑙 𝑇 (𝝎 𝑖𝑒 𝑙 + 𝝎 𝑒𝑙 𝑙 ), with 𝝎 𝑖𝑒 𝑙 is the earth rate and

  The same angle definition is applied for 𝜑 ̂𝐼𝑁𝑆 , 𝜃 ̂𝐼𝑁𝑆 and 𝜓 ̂𝐼𝑁𝑆 deduced from the rotation matrix 𝑪 ̂𝑏2𝑙 outputted by the INS mechanization. By applying Eq.10, we find:

						𝐻 38 =	[𝐶 ̂𝑏2𝑙 12 ] -𝐶 ̂𝑏2𝑙 2 + [𝐶 ̂𝑏2𝑙 22 ] 22 𝐶 ̂𝑏2𝑙 32	2	(52)
		arctan (	(𝑪 ̃𝑏2𝑙 31 ) 𝑉𝑆𝐿𝐴𝑀 (𝑪 ̃𝑏2𝑙 33 ) 𝑉𝑆𝐿𝐴𝑀	)	(41)	Filter modes and update The previous section defines the measurement models for each aiding sensor. Since the processing rate of each sensor
	𝜃 ̃𝑉𝑆𝐿𝐴𝑀 = arcsin ((𝑪 ̃𝑏2𝑙 32 ) 𝑉𝑆𝐿𝐴𝑀 )	(42)	is different from the other and since the different rates are not necessarily multiples of each other, then we can identify
						7 running modes:
	𝜓 ̃𝑉𝑆𝐿𝐴𝑀 = arctan (	(𝑪 ̃𝑏2𝑙 12 ) 𝑉𝑆𝐿𝐴𝑀 (𝐶 ̃𝑏2𝑙 22 ) 𝑉𝑆𝐿𝐴𝑀	)	(43)	-INS only mode (for state covariance propagation since we are in closed-loop) -INS/VSLAM
						-INS/WSS
						-INS/GNSS
						-INS/VSLAM/WSS
						-INS/VSLAM/GNSS
						-INS/WSS/GNSS
	𝜃 ̂𝐼𝑁𝑆 = arcsin(𝜀 𝑁 𝐶 ̂𝑏2𝑙 12 -𝜀 𝐸 𝐶 ̂𝑏2𝑙 22 + 𝐶 ̂𝑏2𝑙 32 )	(44)	-INS/VSLAM/WSS/GNSS
	𝜓 ̂𝐼𝑁𝑆 = arctan (	𝐶 ̂𝑏2𝑙 12 + 𝜀 𝑈 𝐶 ̂𝑏2𝑙 22 -𝜀 𝑁 𝐶 ̂𝑏2𝑙 32 -𝜀 𝑈 𝐶 ̂𝑏2𝑙 12 + 𝐶 ̂𝑏2𝑙 32 ) 22 + 𝜀 𝐸 𝐶 ̂𝑏2𝑙	(45)	For each mode, the full measurement vector/matrix is the concatenation of the available measurement vectors/matrices. The measurement covariance is the
	where 𝐶 ̂𝑏2𝑙					diagonal matrix whose elements are the variances of the available measurements.
	0 1𝑥6 𝐻 17 𝐻 18 0 0 1𝑥17	(46)
	𝑯 𝑐𝑎𝑚,𝑎𝑡𝑡 = [ 0 1𝑥6 𝐻 27 𝐻 28 0 0 1𝑥17	]
	0 1𝑥6 𝐻 37 𝐻 38 1 0 1𝑥17
	with:				
	𝐻 17 =	[𝐶 ̂𝑏2𝑙 31 ] 𝐶 ̂𝑏2𝑙 21 𝐶 ̂𝑏2𝑙 2 + [𝐶 ̂𝑏2𝑙 33 ] 33 -𝐶 ̂𝑏2𝑙 23 𝐶 ̂𝑏2𝑙 2 31	(47)
	𝐻 18 =	[𝐶 ̂𝑏2𝑙 31 ] 𝐶 ̂𝑏2𝑙 13 𝐶 ̂𝑏2𝑙 2 + [𝐶 ̂𝑏2𝑙 33 ] 31 -𝐶 ̂𝑏2𝑙 11 𝐶 ̂𝑏2𝑙 2 33	(48)
	𝐻 27 =	√ 1 -[𝐶 ̂𝑏2𝑙 32 ] -𝐶 ̂𝑏2𝑙 22	2	(49)
	𝐻 28 =	√ 1 -[𝐶 ̂𝑏2𝑙 32 ] 𝐶 ̂𝑏2𝑙 12	2	(50)
	𝐻 37 =	[𝐶 ̂𝑏2𝑙 12 ] -𝐶 ̂𝑏2𝑙 2 + [𝐶 ̂𝑏2𝑙 22 ] 12 𝐶 ̂𝑏2𝑙 32	2	(51)

𝑖𝑗 

is the (i,j) component of matrix 𝑪 ̂𝑏2𝑙 .

The measurement matrix 𝑯 𝑐𝑎𝑚,𝑎𝑡𝑡 is computed by differentiating the expressions of the three angles with respect to 𝜀 𝐸 , 𝜀 𝑁 and 𝜀 𝑈 :

Table 2 : West-East error statistics

 2 Each time a sensor is added, the navigation performance is improved. The errors in both West-East and South-North directions decrease dramatically when the sensors are added. A comparison of the West-East error statistics is performed in Table2.

	Algorithm	Mean (m) STD (m) Max (m)
	GPS	13.01	31.56	115.3
	GPS/INS	-11.09	22.33	83.59
	GPS/INS/WSS	-6.34	11.65	55.88
	GPS/INS/WSS/VSLAM	-1.84	3.61	12.17

Table 3 : West-East error statistics

 3 

	.18	8.72	46.03

Table 4

 4 gives the West-East error statistics in the case of GNSS removal and shows that it is possible to get a good accuracy with low-cost sensors.

	Algorithm	Mean (m) STD (m) Max (m)
	INS	3520	3051	8943
	INS/WSS	351	241.8	669.7
	INS/WSS/VSLAM	9.6	9.7	20.7

Table 4 : West-East error statistics Figure 16: Horizontal West-East error Figure 17: Horizontal South-North error

 4 

  • 𝛿𝒙 + 𝑮 • 𝒖 The computation of the state transition matrix for INS states gives

	𝑭 𝑒𝑣 =	[	0 1 𝑅 𝑛 + ℎ tan(𝜑) 𝑅 𝑛 + ℎ	-1 𝑅 𝑚 + ℎ 0 0	0 0 0 ]		𝐹 𝑣𝑝 13 = 𝐹 𝑣𝑝 22 =	𝑣 𝐸 𝑣 𝑈 (𝑅 𝑛 + ℎ) 2 --2𝜔 𝑒 𝑣 𝐸 𝑐𝑜𝑠(𝜑) 𝑣 𝐸 𝑣 𝑁 𝑡𝑎𝑛(𝜑) (𝑅 𝑛 + ℎ) 2 𝑅 𝑚 + ℎ -(𝑅 𝑛 + ℎ)(𝑅 𝑚 + ℎ) 𝑐𝑜𝑠 2 (𝜑) 𝑣 𝐸 2
												𝐹 𝑣𝑝 23 =	𝑣 𝑁 𝑣 𝑈 (𝑅 𝑚 + ℎ) 2 +	𝑣 𝐸 2 tan(𝜑) (𝑅 𝑛 + ℎ) 2
												𝐹 𝑣𝑝 32 = -	2𝜔 𝑒 𝑣 𝐸 𝑠𝑖𝑛(𝜑) 𝑅 𝑚 + ℎ
												𝐹 𝑣𝑝 33 =	-𝑣 𝐸 2 (𝑅 𝑛 + ℎ) 2 -	𝑣 𝑁 2 (𝑅 𝑚 + ℎ) 2 +	2𝑔 𝑙 𝑅 + ℎ
												𝐹 𝑣𝑣 11 𝐹 𝑣𝑣 12 𝐹 𝑣𝑣 13
												𝐹 𝑣𝑣 = [ 𝐹 𝑣𝑣 21 𝐹 𝑣𝑣 22 𝐹 𝑣𝑣 23	], with
												𝐹 𝑣𝑣 31 𝐹 𝑣𝑣 32	0
												𝐹 𝑣𝑣 11 =	𝑣 𝑁 𝑡𝑎𝑛(𝜑)-𝑣 𝑈 𝑅 𝑛 + ℎ
												𝐹 𝑣𝑣 12 =	𝑣 𝐸 𝑡𝑎𝑛(𝜑) 𝑅 𝑛 + ℎ	+ 2𝜔 𝑒 𝑠𝑖𝑛(𝜑)
												𝐹 𝑣𝑣 13 = -2𝜔 𝑒 𝑐𝑜𝑠(𝜑) -	𝑣 𝐸 𝑅 𝑛 + ℎ
												𝐹 𝑣𝑣 21 =	-2𝑣 𝐸 𝑡𝑎𝑛(𝜑) 𝑅 𝑛 + ℎ	-2𝜔 𝑒 𝑠𝑖𝑛(𝜑)
				𝐹 𝑝𝑝 𝐹 𝑝𝑣	0 3	0 3	0 3	0 3	0 3	𝐹 𝑣𝑣 22 =	-𝑣 𝑈 𝑅 𝑚 + ℎ
					𝐹 𝑣𝑝 𝐹 𝑣𝑣 𝐹 𝑣𝑒 𝐶 𝑏2𝑙 𝐹 𝑒𝑝 𝐹 𝑒𝑣 -Ω 𝑖𝑙 𝑙 0 3 -𝐶 𝑏2𝑙 0 3	𝐶 𝑏2𝑙 • 𝐹 𝑏 0 3	0 3 -𝐶 𝑏2𝑙 • 𝑊 𝑏	𝐹 𝑣𝑣 23 =	-𝑣 𝑁 𝑅 𝑚 + ℎ
	𝑭 𝐼𝑁𝑆 =			0 3 0 3 0 3 0 3 0 3 0 3	0 3 0 3 0 3	𝛽 𝑏𝑎 0 3 0 3	0 3 𝛽 𝑏𝑔 0 3	0 3 0 3 𝛽 𝑠𝑎	0 3 0 3 0 3	𝐹 𝑣𝑣 31 =	2𝑣 𝐸 𝑅 𝑛 + ℎ	+ 2𝜔 𝑒 𝑐𝑜𝑠(𝜑)
	With	[	0 3 0 3	0 3	0 3	0 3	0 3	𝛽 𝑠𝑔	]	𝐹 𝑣𝑣 32 =	2𝑣 𝑁 𝑅 𝑚 + ℎ
		𝑉 𝑈 𝑅 𝑛 + ℎ	-	𝑉 𝑁 𝑡𝑎𝑛(𝜑) 𝑅 𝑚 + ℎ	𝑉 𝐸 𝑡𝑎𝑛(𝜑) 𝑅 𝑚 + ℎ	-𝑉 𝐸 𝑅 𝑛 + ℎ	𝐹 𝑣𝑒 = (𝐶 𝑏2𝑙 𝑓 𝑏 ) ×
	𝑭 𝑝𝑝 =	[				0 0			𝑉 𝑈 𝑅 𝑚 + ℎ 0	-𝑉 𝑁 𝑅 𝑚 + ℎ 0 ]	𝑭 𝑒𝑝 0	0	𝑣 𝑁 (𝑅 𝑚 + ℎ) 2
	𝑭 𝑝𝑣 = 𝑰 𝟑							=	0	-	𝜔 𝑒 sin(𝜑) 𝑅 𝑚 + ℎ	-𝑣 𝐸 (𝑅 𝑛 + ℎ) 2
	𝑭 𝑣𝑝 = [	0 𝐹 𝑣𝑝 12 𝐹 𝑣𝑝 13 0 𝐹 𝑣𝑝 22 𝐹 𝑣𝑝 23	], with			[ 0	𝜔 𝑒 cos(𝜑) 𝑅 𝑚 + ℎ	+	𝑣 𝐸 (𝑅 𝑛 + ℎ)(𝑅 𝑚 + ℎ) cos 2 (𝜑)	-𝑣 𝐸 tan(𝜑) (𝑅 𝑛 + ℎ) 2 ]
			0 𝐹 𝑣𝑝 32 𝐹 𝑣𝑝 33				
	𝐹 𝑣𝑝 12 =	2𝜔 𝑒 (𝑣 𝑁 𝑐𝑜𝑠(𝜑) + 𝑣 𝑈 𝑠𝑖𝑛(𝜑)) 𝑅 𝑚 + ℎ	+	𝑣 𝐸 𝑣 𝑁 (𝑅 𝑛 + ℎ)(𝑅 𝑚 + ℎ) 𝑐𝑜𝑠 2 (𝜑)