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ABSTRACT  

This article presents a new integration method for GNSS, 

INS and a fish-eye camera for improving vehicle 

navigation accuracy in urban environments.  

In general, the quality of satellite navigation systems in 

cities tends to be quite poor. The influence of multipath, 

masking and Non-Line-of-Sight (NLOS) signals can 

degrade the GNSS position accuracy up to tens of meters, 

making the solution quite unusable for precise applications. 

In this article, it is proposed to integrate a wide field-of-

view fish-eye camera, mounted on the roof of the car and 

facing up. This camera is used to detect which satellites are 

in direct Line-of-Sight (LOS), and which are hidden behind 

buildings, potentially resulting in NLOS. This camera is 

integrated together with a GNSS and INS sensors, which 

will allow a vehicle to navigate in city canyons.  

This article first presents the algorithm for GNSS and INS 

integration using an Extended Kalman filter, as well as the 

models used for the GNSS measurements. It then presents 

the NLOS detection method, which mixes the information 

given by the camera together with the received 𝐶/𝑁0 in 

order to estimate which satellites are in direct view of the 

receiver.  

The performance of the algorithm is finally tested in the 

urban environment of Toulouse using ENAC’s own test 

van. The tests show that the GNSS/INS/Fish-eye camera 

integration does work as a stand-alone device and it allows 

for a more accurate positioning in urban environments. 

 



INTRODUCTION  

Urban environments present a significant challenge for 

modern Global Navigation Satellite Systems (GNSS)-

based systems. These systems were originally designed to 

work in open outdoor areas, where direct line-of-sight view 

of the satellite is always possible. In cities however, 

surrounding buildings block the view of the satellite and 

their coming signals. The signals from these satellites can 

however arrive at the receiver trough different reflections, 

or multipath, still with strength. These reflections cause an 

increase in the travel distance of the signal, and thus these 

NLOS signals create large errors in the pseudorange 

measurements. 

A usual solution to this problem is to mix GNSS 

information together with INS. INS estimate the user’s 

dynamics and provide a position solution without using any 

external agent, and thus they do not suffer from problems 

when being used in urban environments. By mixing them 

with GNSS it is possible to produce a higher accuracy 

solution, reducing the importance of NLOS and achieving 

a better navigation solution. The problem of multipath and 

NLOS is however still present. 

What is proposed in this paper is to use a wide field of view 

(FOV) camera mounted on the roof of a car and looking 

upward. This camera will take a snapshot synchronized 

with GNSS measurements. Then, by projecting the 

satellites on that image, it is intended to determine which 

satellites are in the section of visible sky, and which are 

hidden behind buildings and sending NLOS signals. All the 

sensors used will represent cheap, mass market devices, in 

order to show the performance of a generic configuration. 

The main objective is thus to develop an algorithm that is 

capable to analyze each picture and detect which satellites 

are NLOS. Those satellites can then be removed from the 

computation, ideally eliminating the effect of multipath. 

By combining INS and camera exclusion with the GNSS 

measurements, a higher accuracy and more robust solution 

should be achieved. 

 

GNSS/INS INTEGRATION 

In this section the integrated INS/GNSS architecture is 

presented. Sensor fusion will allow combining the benefits 

of both GNSS and INS, and achieve a high level of 

accuracy and availability in urban environments. 

The integration algorithm uses a tightly coupled integration 

scheme based on a Kalman filter as presented in [1]. The 

general strategy of a tightly-coupled architecture is to use 

GNSS measurements (pseudorange and Doppler) in order 

to produce an estimate of the inertial navigation system 

errors. These errors are mainly due to the inertial 

measurement unit (IMU) biases. Once estimated, these 

biases can be feedback to the IMU in a closed-loop 

correction.  Figure 1 shows the general scheme of the 

proposed integration algorithm. 

In this architecture, the inertial navigation system estimates 

the vehicle position, velocity and attitude using the IMU 

measurements. This navigation solution is input to the 

Kalman filter which estimates, in addition to the IMU 

biases, the errors of this inertial solution using GNSS 

pseudoranges and Doppler measurements and outputs the 

corrected navigation solution. 

 

GNSS measurement models 

Pseudoranges and Doppler measurements were used in the 

Kalman filter. Both types must thus be correctly modeled 

in order to properly tune the Kalman filter.  

The pseudorange measurement is an estimate of the 

distance between the GNSS satellite and the receiver 

antenna, but also includes the mis-synchronization of 

satellite and receiver local oscillators. This measurement is 

computed from the propagation time between the 

transmission of the signal by the satellite and its reception 

by the receiver, and the multiplication of this time by the 

speed of light c. The fact that the clocks of the satellites and 

the receiver are not perfectly synchronized to GPS time, 

introduces a clock bias that drifts with time. Therefore, the 

pseudorange (PR) measurement can be modeled as: 

�̃�𝐺
𝑖 = 𝑟𝑖 + 𝑐𝛿𝑡 + 𝜂𝜌𝐺

𝑖  (1) 

 

Figure 1: Integration scheme between GNSS, INS and camera exclusion 

 

 



where  

 𝑟𝑖  is the true range between the satellite i and the 

receiver antenna,  

 𝛿𝑡 is the clock bias and  

 𝜂𝜌𝐺
𝑖  is a zero-mean white Gaussian noise with a 

variance denoted by 𝜎𝑃𝑅
2  

 

The Doppler measurement represents the rate of change of 

the carrier phase. The multiplication of this measurement 

by the signal wavelength 𝜆 provides the pseudorange rate 

(PRR) measurement: 

�̇�𝐺
𝑖 = �̃�𝐺

𝑖 𝜆 = �̇�𝑖 + 𝑐�̇�𝑡 + 𝜂�̇�𝐺
𝑖  (2) 

where  

 �̃�𝐺
𝑖  is the Doppler measurement of satellite i,  

 �̇�𝑖  is the true pseudorange rate between the 

satellite and the receiver,  

 �̇�𝑡 is the clock drift and  

 𝜂�̇�𝐺
𝑖  is the range rate error modeled as a zero-mean 

Gaussian white noise with a variance denoted by 

𝜎𝑃𝑅𝑅
2 . 

 

In cities, the biggest source of measurement errors will be 

the local effects affecting the tracking loops, on top of 

which will be multipath- and NLOS-induced errors. In 

order to try to correctly model this type of errors for both 

the pseudorange and pseudorange rate, the models 

proposed in [2] and [3], based on data collection in urban 

environments and commercial mass market receivers, were 

used. These models were specially proposed for use in 

urban environments, under conditions of heavy multipath.  

 

For the pseudorange measurements, the covariance of the 

measurements’ errors is defined as a function of the 𝐶/𝑁0 

as: 

𝜎𝑃𝑅
2 = 𝑎 + 𝑏10

−𝐶/𝑁0
10  (3) 

Parameters 𝑎 and 𝑏 of (3) are defined as in Table 1. 

 

Table 1: Parameters for Pseudorange Error Variance 

Measurement 𝑎 𝑏 

Pseudorange −1.5 7312 

 

For the Doppler measurements, this variance is defined as 

a function of the user velocity and received 𝐶/𝑁0 

according to “the Doppler measurement standard deviation 

as a function of velocity and 𝐶/𝑁0” table defined in [2]. 

 

Inertial Measurements Models 

When fusing the data from GNSS and an INS, the position, 

velocity and attitude are predicted with the INS. Therefore, 

the Kalman filter process model shall characterize the 

evolution of the error on the states as propagated with the 

INS. These error models can be derived from the inertial 

sensors error models. The error sources that affect inertial 

sensors are classified into biases, scale factors, 

misalignment and random noise errors. In this paper, the 

measurement errors of the gyroscopes and accelerometers 

are modelled as the sum of a noise term which is assumed 

to be a white Gaussian noise (denoted 𝑤𝑎 and 𝑤𝑔), and an 

in-run bias which is modelled as a first order Gauss-

Markov process (denoted 𝑏𝑎 and 𝑏𝑔) : 

𝑓𝑖𝑏
𝑏 − 𝑓𝑖𝑏

𝑏 = 𝑏𝑎 + 𝑤𝑎 (4) 

where  

 𝑓𝑖𝑏
𝑏  is the specific force as measured by the 

accelerometers and  

 𝑓𝑖𝑏
𝑏  is the actual specific force 

 

�̃�𝑖𝑏
𝑏 − 𝜔𝑖𝑏

𝑏 = 𝑏𝑔 + 𝑤𝑔 (5) 

where  

 �̃��̂�𝑖𝑏
𝑏  is the angular rate as measured by the 

gyroscopes and  

 𝜔𝑖𝑏
𝑏  is the actual angular rate 

 

A medium-cost 6 axis MEMS IMU (Xsens MTi) has been 

used in this paper. The standard deviation of the noise term 

and the driven noise of the sensors biases have been 

derived by analysing the Allan Variance and correlation 

function of the raw inertial sensors measurements. The 

results of this study are summarized in Table 2. Moreover, 

the correlation time for the Gauss-Markov processes has 

been set to 1000 s for the gyroscopes and 2000 s for the 

accelerometers. 

 

Table 2: Parameters for the inertial measurements error 

model 

  acc [
𝑚

𝑠2√𝐻𝑧
] gyro [

°

ℎ√𝐻𝑧
] 

bias stability root 

PSD 

x 1.3e-5 

1.3 y 4.7 e-5 

z 9.5e-6 

Noise root PSD  200 

 

GNSS/INS Integrated Kalman Filter 

Based on the integration scheme and the sensors’ 

measurement models previously described, the Kalman 

state vector can be written in the Earth-Centered-Earth-

Fixed (ECEF) frame as: 

 𝑿𝑒 = [𝛿𝝍𝑏𝑒 𝛿𝒗𝑒 𝛿𝒑𝑒 𝒃𝑎 𝒃𝑔 𝑐𝛿𝑡 𝑐�̇�𝑡]
𝑇
     (6) 

where 

 𝛿𝝍𝑏𝑒 is the inertial attitude (orientation of the 

vehicle body frame (b) with respect to the ECEF 

(e) frame) error  

 𝛿𝒗𝑒 is the vehicle velocity error expressed in the 

(e) frame 

 𝛿𝒑𝑒 is the vehicle position error in the (e) frame 

 𝒃𝑎 and 𝒃𝑔 are respectively the IMU accelerometer 

and gyroscope biases 

 𝑐𝛿𝑡 and 𝑐�̇�𝑡 are respectively the GNSS clock bias 

and clock drift. If multiple GNSSs are used, then 

the time difference between the two systems 

should be also estimated in the state-vector. 

However, the clock drift between the two systems 



could be neglected, since GNSS time is very 

stable. 

 

The Kalman filter propagation step is based on the 

computation of the navigation solution using the inertial 

system. The state transition model of the Kalman filter is 

derived by computing the state-vector rate of change and 

expressing it as a function of the state-vector and the 

system noise generated by the IMU and GNSS clock 

noises. This state transition equation is written as: 

�̇�𝑒 = 𝑭𝑒𝑿𝑒 + 𝑮𝑒𝒖 (7) 

where  

 𝑭𝒆 is the state transition matrix,  

 𝑮𝑒 is the system noise distribution matrix  and  

 𝒖 is the covariance of the system noise vector  

The expressions of all these matrices and vectors are given 

in [1]. 

 

The Kalman filter update uses the GNSS pseudoranges and 

pseudorange rate measurements in order to correct the 

inertial system outputs as well as the IMU biases. The 

observation model relates the GNSS measurement 

innovation 𝛿𝒛𝐺  to the state-vector 𝑿𝑒  as follows 

 

𝛿𝒛𝐺 =

[
 
 
 
 
 
�̃�𝐺

1 − �̂�𝐺
1

⋮
�̃�𝐺

𝑁 − �̂�𝐺
𝑁

�̃̇�𝐺
1 − �̂̇�𝐺

1

⋮
�̃̇�𝐺

𝑁 − �̂̇�𝐺
𝑁]
 
 
 
 
 

= 𝑯𝑒𝑿𝑒 +

[
 
 
 
 
 
 
𝜂𝜌𝐺

1

⋮
𝜂𝜌𝐺

𝑁

𝜂�̇�𝐺
1

⋮
𝜂�̇�𝐺

𝑁
]
 
 
 
 
 
 

 (8) 

 

where  

 �̃�𝐺
𝑖  is the ith satellite measured pseudorange 

 �̂�𝐺
𝑖  is the ith satellite pseudorange predicted from 

the inertial navigation solution 

 �̃̇�𝐺
𝑖  is the ith satellite measured pseudorange rate 

 �̂̇�𝐺
𝑖  is the ith satellite pseudorange rate predicted 

from the inertial navigation solution 

 𝑯𝑒  is the measurement matrix. Its expression can 

be found in [1] 

 

NLOS DETECTION ALGORITHM 

By joining INS and GNSS information in a tight 

architecture, the inertial sensors would guide the solution 

on those situations where very few GNSS satellites are in 

view, while GNSS satellites correct the drift present in the 

INS solution.  

While navigating through a city, however, GNSS 

measurements will be heavily affected by multipath and 

NLOS satellites. This multipath can cause large errors on 

the GNSS pseudoranges and Doppler measurements. If 

these faulty GNSS measurements are not good enough to 

be used to correct for the INS drift, over time the position 

accuracy worsens considerably, as errors in the IMU start 

accumulating in the solution. 

As explained before, the worse impact of multipath 

happens when direct view of the transmitting satellite is 

blocked by a solid object, like a building. In this situation, 

the receiver could start tracking a reflected signal coming 

from the same satellite as the original one. It is with the 

objective to block multipath, that this paper proposes the 

use of a high field-of-view (185 °) fish-eye camera.  

This camera takes pictures of the sky above (Figure 2), 

synchronized with the GNSS measurements. It is then 

possible to compute the satellite elevation and azimuth 

(which comes from the GNSS ephemeris and approximate 

receiver location) to project those satellites on the image, 

as long as the attitude of the camera, provided by the INS, 

is well estimated. The satellites that are placed in the sky 

part of the image (in green) can thus be treated as LOS with 

confidence. Those satellites placed behind a building or 

any other obstructing object will be considered as NLOS, 

or at least as less trustworthy signals. 

 

 
Figure 2: Principle of NLOS exclusion and sky detection 

(green area). 

 

Once the distinction between LOS and NLOS (or 

suspicious) signals is made, it is possible to exclude or 

down-weight the corresponding pseudorange and Doppler 

measurements in the Kalman filter. This would ideally 

allow obtaining a better position and attitude solution. 

 

Image Processing Algorithm Description 

The objective of the image processing is to tell apart the 

sky from the surrounding masking buildings in each image. 

The following operations are applied to an image to 

perform the identification of the sky vs blocked areas. 

1)  Morphological closing operation: This operation 

clears the image of small details like cables or lamp posts 

that would affect the image segmentation.   

2)  Canny segmentation: This function [4] detects the 

edges present in the image. Edges are detected in high-

gradient regions of the image. The output is a binary image, 

in which the white zones represent the edges.  

3)  Hough line detection: This function looks for line 

patterns in the image, based on a test checking if different 

edge pixels follow a geometrical constraint described by 

the equation of a line [5]. It connects a set of edge points if 



they are aligned, allowing to close gaps left by the Canny 

segmentation.  

4) Morphological opening operation: This operation 

further homogenizes the segmented image, by removing 

small holes in the image introduced by image noise. 

5) Floodfill operation: The floodfill operation changes the 

color of a certain region to black until an edge is found. As 

described later, the starting point of the floodfill operation 

is a satellite perceived as a LOS signal. The filled area will 

correspond to open sky (LOS), while the unfilled area will 

correspond to blocked (NLOS) areas. 

Mistakes in the image processing can cause NLOS 

satellites to be used, or LOS satellites to be discarded. 

Different environments and weather conditions will 

present different challenges for the image processing and 

the camera, as they have a great effect on the way the image 

is captured and its quality. Some of them are: 

 Sun glares, clouds and trees. These three factors 

are very limiting in image segmentation as they 

appear as a solid object in an image. As they have 

edges in the picture, they limit sky detection, even 

though they have no effect on pseudorange 

measurements. 

 Rain: Although not tested, as the camera is not 

insulated against water, rain would cause a huge 

problem as water droplets would block the image. 

Some hydrophobic spray could be used, and then 

then the images would only show a cloudy day. 

 Night and tunnels:  Image processing is 

impossible during night time, as the image cannot 

properly detect the edge between a building and 

the sky. Long bridges and tunnels would present 

a similar problem, with the added problem that 

fast changes in brightness (like lamps) would 

blind the camera for a few seconds. 

Satellite Selection based on 𝑪/𝑵𝟎 

In order to compensate for these problems, the proposed 

NLOS detection algorithm also uses 𝐶/𝑁0 measurements. 

It is known that high elevation satellites should have a 

high 𝐶/𝑁0, while NLOS satellites should have a lower 

received 𝐶/𝑁0, although NLOS with high 𝐶/𝑁0 can 

occurr. This information can then be used to make a first 

estimation of where the visible sky area is in the picture. 

The overview of the algorithm is as follows: 

 

Figure 3: Overview of the exclusion algorithm. 

 

According to

Figure 3: 

1) Original image: Accurately timed to know its 

corresponding GNSS and IMU epoch. 

2) Segmented image: We find the edges in the 

image to segment it into different zones. 

3) Compute the satellite projection and project 

them on the image based on the estimated attitude 

of the camera given by the IMU.  

4) Choose the satellites with a 𝐶/𝑁0 above 

45 𝑑𝐵𝐻𝑧 (marked in green). Do a flood fill 

starting from these satellites. This operation 

spreads color until a border is found.  Sky is then 

detected as the black region, and any other 

satellite present in it will be detected as LOS. 

Once the sky area has been detected, it is possible to decide 

whether the rest of the satellites are LOS or NLOS based 

on the picture information: if they fall in the dark area 

(representing the sky) they are considered as LOS, if not 

they are discarded. In order to avoid the biggest errors, and 

based on experience, satellites with 𝐶/𝑁0 above 40 𝑑𝐵𝐻𝑧 

will be automatically considered as LOS, while those with 



power levels below 30 𝑑𝐵𝐻𝑧 will be considered as NLOS. 

The different thresholds used can be seen in Figure 4.  This 

is similar to what is proposed in [10]. 

 

 
Figure 4: Thresholds for the camera algorithm. 

 

The result of this algorithm is that the camera can be used 

in the variety of environments described before.  

 Clouds or sun glares do not affect the output even 

though they are detected as edges in the image.  

 Trees have a higher effect, as they reduce the 

𝐶/𝑁0 measurements a bit, but still they would not 

fully block the detection.  

 In places where no satellites are above the sky 

detection or LOS thresholds, all satellites are 

excluded, trusting only the inertial output. This 

allows the method to be used in tunnels, as any 

GNSS value received (if any) will be erroneous.  

 During night time the 𝐶/𝑁0 will be the same, but 

the camera information will be useless (another 

type of camera can be used). 

 

As per processing time, this algorithm runs close to real-

time, even though it has only been tested in post 

processing.  This allows fast testing for each of the 

thresholds and the algorithm accuracy.  

 

TESTS 

Test campaign and conditions 

Two test campaigns were performed on the same day to 

show the performance of the NLOS exclusion. One 

campaign consisted of a mix of suburban and urban 

environments and lasted for around 40 minutes. The 

second test included a highway section and lasted 30 

minutes. The routes are shown in Figure 5. Toulouse city 

center consists of very narrow streets with very short 

houses, just three or four story high. It is worth mentioning 

also that the day was very sunny and the test was done soon 

after midday in the summer. It was seen that the sun would 

blind the camera, making segmentation much more 

difficult. A significant sun glare can also be seen in the 

center of most of the images. 

 

 
Figure 5: Route to Toulouse centre-ville (left). Highway 

route (right) 

 

Equipment Set Up 

The equipment used consists of cheap to mid-cost sensors 

with normal mass-market performance: 

 U-Blox M8T: GPS/GLONASS receiver. Also 

used for timing the IMU and camera 

measurements. 

 Xsens MTi IMU  

 IDS uEye black and white camera with a fish-eye 

lens. 

 Novatel Span: reference equipment used to 

evaluate accuracy. [6] 

 

 
Figure 6: Equipment mounted inside (Left) and on top 

(right) of a van. 

 

All this equipment was mounted on top of a van for the data 

collection. The u-Blox receiver being a dual constellation 

mono-frequency GPS/GLONASS receiver, the increase in 

satellite availability caused by the dual constellation 

showed that at least one or two satellites were always in 

direct LOS view, even in the narrowest streets.  

The receiver was also used as a timing reference for the 

IMU and the camera, which do not include accurate clocks 

of their own. Pictures and GNSS measurements were taken 

at 1 𝐻𝑧, while the IMU has an output rate of 100 𝐻𝑧. 

 

The reference equipment produced centimeter level 

positioning and it was used to estimate the positioning 

accuracy of our algorithm.  

The heading estimation used to project the satellites on top 

of the camera image was initially based on the reference 

equipment, in order to first only test the selection algorithm 



based on the correct projection of the satellites on the 

image.  

 

Initial Considerations on Code and Doppler 

Measurements’ Filtering 

The Kalman Filter innovation gives an indication on the 

discrepancy between reconstructed GNSS measurements 

based on the propagated solution and the GNSS 

measurements.  If a large (abnormal) innovation is seen, it 

can be assumed that it comes from a faulty GNSS 

measurement, caused by a NLOS satellite. Innovation 

filtering then consists in setting a threshold, over which one 

of the measurements is considered as faulty. Table 3 shows 

the accuracy obtained when adding Doppler innovation 

filtering with 2 thresholds 4𝑚/𝑠  and 1𝑚/𝑠 (user velocity). 

In this initial test, the camera was not used. It can be seen 

that Doppler innovation filtering brings a significant 

improvement in the position accuracy. These results 

indicate us that Doppler measurements can be extremely 

untrustworthy in urban environments, although when 

correctly filtered, they improve the accuracy. 

As a consequence, in the forthcoming results, a specific 

Doppler innovation filtering test is used with threshold of 

4𝑚/𝑠. 

 

Table 3 : Test with Doppler measurement selection in 

urban environment 

Parameters 

Integration 

with 

Doppler 

𝟒𝒎/𝒔 max 

innovation 

𝟏𝒎/𝒔 max 

innovation 

Mean 

Horizontal 

Error [m] 

8.43 5.92 3.33 

95% 

Horizontal 

Error [m] 

20.90 14.43 7.84 

Max. 

Horizontal 

Error [m] 

33.29 23.74 23.40 

Mean Yaw 

Error [deg] 
7.79 5.26 2.79 

95% Yaw 

Error [deg] 
24.78 12.72 6.77 

Max Yaw 

Error [deg] 
40.10 19.67 14.26 

 

Besides, initial test using the camera exclusion detection 

were performed and a parametric analysis was made. In 

particular, a trade-off between a full exclusion and a simple 

down-weighting of the NLOS detected measurements was 

performed. It was shown that an optimal solution (with 

respect to the test campaign) was to fully exclude all the 

Doppler measurements from NLOS detected 

measurements and to only down-weight, by a factor of 1.5 

on the variance values, the NLOS-detected pseudorange 

measurements. This is thus used in the following. 

 

Urban Test 

During the urban test, the influence of the camera can be 

clearly seen. The first 10 minutes of data are located in a 

suburban area between ENAC and Toulouse center, while 

the rest was located in the narrow streets of the city center. 

Table 4 shows the accuracy results for three cases:  

 The first one is the case when only the INS/GNSS 

algorithm is used (no camera exclusion).  

 The second column represents the accuracy 

results when we turn on the camera for NLOS 

exclusion, and we use the extremely accurate 

reference heading to project the satellites on the 

images. This is obviously outside the scope of the 

system, as it relies on the very expensive reference 

receiver. Nonetheless it offers a good 

approximation on how good the NLOS exclusion 

algorithm is, as there are no errors when 

projecting the satellites on the image.  

 The final column represents what happens when, 

instead of using the reference heading for 

projecting the satellites, we use our own estimated 

heading using our IMU. This would be the 

performance if we used our GNSS, IMU and 

camera in an integrated, stand-alone device. 

 

Table 4: accuracy results in the urban environment. 

Configuration 

INS/GNSS 

No 

camera 

Camera 

with 

Reference 

heading 

Camera 

with 

Estimated 

heading 

Mean 

Horizontal 

Error [m] 

4.24 3.74 3.81 

95% 

Horizontal 

Error [m] 

10.60 8.96 9.63 

Max. 

Horizontal 

Error [m] 

18.67 21.34 22.17 

Mean heading 

Error [°] 
3.95 2.55 3.71 

95% heading 

Error [°] 
10.11 7.45 8.40 

Max heading 

Error [°] 
18.671 11.52 15.13 

 

It can be seen that the NLOS exclusion when using the 

reference heading does reduce the horizontal error. Both 

the mean error, and the 95th percentile see a reduction of 

around one meter when the camera is activated.  

Figure 7 and Figure 8 show this tendency over the duration 

of the test. It can be seen that use of the camera exclusion 

reduces much of the errors present in the INS/GNSS 

integration. The heading error, which suffers a lot from the 

lack of satellite visibility in cities, also decreases to a very 

usable level.  



However, it is worth noting that the maximum horizontal 

error does increase when using the camera. This is caused 

by NLOS detection errors in very low visibility areas. 

These errors cause a decrease in horizontal accuracy for an 

epoch or two, but then the solution improves again. 

 

 
Figure 7: Comparison of horizontal accuracies when 

using the estimated heading in urban environment. 

 

 
Figure 8: Comparison between the cumulative distribution 

function of the horizontal error. 

 

In terms of the number of satellites excluded, Figure 9 

shows a huge drop in the number of satellites used when 

the NLOS detection algorithm is used. The mean number 

of satellites seen by both configurations shows a difference 

of more than 7 satellites in Toulouse city center (from 15 

to less than 8), and about 4 to 5 in sub-urban areas, showing 

how strong this exclusion is in an urban environment. In 

the narrowest streets, it can be seen that most of the time 

there are less than 4 satellites available when using the 

camera, when more than 10 satellites are generally 

available. 

 

 
Figure 9: Number of LOS satellites as detected by the 

camera 

 

Highway test 

During the highway test, satellite visibility was much 

higher, as there were fewer obstacles along the way.  Figure 

10 shows the decrease in the number of available satellites 

when using the camera. The graph shows that most of the 

time only two or three satellites are excluded. However, 

there are many local drops in the number of satellites. 

These drops have many causes: bridges and traffic signs 

overhead would block the view of the camera, and so very 

few satellites would be used. Trucks driving next to the car 

would also block the visibility on one side. 

 

 
Figure 10: Number of satellites in the highway 

environment. 

 

The camera then does not add much to the solution 

accuracy, as seen in Table 5. However some special 

environments could also be observed in the test. The 

performance of the algorithm was tested when driving 

under a short bridge. Figure 11 shows that once inside a 

tunnel, the algorithm decides (based on C/N0 values) that 

the van is no longer under open sky (no black areas in the 

image), and so it discard all satellites (seen in red). It then 

goes to fully inertial navigation for the duration of the 

tunnel. 

 

Table 5: Accuracy results in the highway environment. 

Configuratio

n 

INS/GNS

S 

No 

camera 

Camera 

with 

Referenc

e heading 

Camera 

with 

Estimate

d heading 

Mean 

Horizontal 

Error [m] 

1.17 1.16 1.18 

95% 

Horizontal 

Error [m] 

2.33 2.21 2.25 

Max. 

Horizontal 

Error [m] 

5.09 7.03 4.55 

Mean 

heading 

Error [°] 
3.78 3.21 3.45 

95% heading 

Error [°] 
17.69 17.08 17.08 

Max heading 

Error [°] 
39.30 26.90 29.09 

 



 
Figure 11: Inside a tunnel. Left: original Image. Right: 

Processed image. 

 

Figure 12 also shows the performance of the sky detection 

under trees. Trees cause troubles for the camera exclusion, 

as they are detected as solid objects in the picture: they 

have many edges and different colors than the sky, and thus 

they limit the image segmentation. Since the 𝐶/𝑁0 

information is used for the image floodfill, the algorithm 

knows that those satellites behind the tree are in fact LOS, 

as their 𝐶/𝑁0 is high. However, many satellites are still 

detected as NLOS, as the dense foliage does have an effect 

over the received power levels. One solution could be to 

interpret such a fragmented image in a specific way 

associated to the presence of a tree. 

 

 
Figure 12: Performance under trees.  

Left: original Image.  

Right: Processed image. NLOS satellites are in red. 

 

Figure 13 shows how satellites above 40 dB-Hz are always 

taken as LOS, while satellites with received power below 

30 𝑑𝐵𝐻𝑧 are taken as NLOS. A gray area exists then 

between 30 − 40 𝑑𝐵𝐻𝑧 in which the camera performs the 

main part of its detection works. 

 

 
Figure 13: 𝐶/𝑁0 depending on visibility. Green represents 

LOS and red NLOS. 

CONCLUSIONS AND FUTURE WORK 

This article has shown an algorithm in which INS, GNSS 

and fisheye camera data are integrated in order to produce 

accurate positioning in urban environments. The tests 

performed with the algorithm show that it is a viable 

option, and that it does increase the accuracy of the 

solution. This increase in accuracy happens with respect to 

a GNSS/INS solution which is already quite precise, as the 

use of double constellation already allows for very good 

positioning.  

The most important factor in these results is that the 

integration was proved to work as a stand-alone device. 

The u-Blox receiver can be used together with the xSense 

IMU and the IDS fish-eye camera in order to produce a 

more accurate solution for urban environments.  

It is also important to mention the fact that the test route 

was in no way thought or planned to prove any 

performance. The route included the normal characteristics 

of urban environments and the weather conditions were not 

especially favorable for the camera detection, as the 

camera would be blinded by the sun. 

 

Future work on this subject is still necessary, as the 

increase of accuracy does not necessarily justify the cost of 

adding a camera into the integration.  Three main areas of 

quick improvement are seen for the current status of the 

integration algorithm: 

 fine tuning of the thresholds used for the NLOS 

exclusion, as seen in Figure 4. The current 

threshold was not based on hard data of the 

receiver’s performance. The thresholds could 

probably be raised in order to obtain a more robust 

and accurate solution. 

 use of a color camera instead of a black and white 

one. The increased quality and range of colors will 

make segmentation between sky and buildings 

much easier, reducing the errors. 

 

Finally, it is worth mentioning that such an equipment 

could be used to evaluate the NLOS measurements 



characteristics. Indeed, most of the safety-critical 

applications that are using GNSS-based location devices 

working in urban or sub-urban environments required a 

knowledge on the NLOS occurrence rate and NLOS 

measurement error distribution. The proposed scheme is 

fully able to do so since it can be integrated with a reference 

trajectory system. Therefore, measurement errors can be 

accurately estimated and can be associated to LOS and/or 

NLOS situations. It can also be related to the satellite 

elevation and/or azimuth. Initiating such measurement 

campaigns is thus also part of the future work. 
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